Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 55
Number of page(s) 34
DOI https://doi.org/10.1051/bsgf/2021042
Published online 04 November 2021
  • Aguilar C, Liesa M, Štípská P, Schulmann K, Muñoz JA, Casas JM. 2015. P–T–t–d evolution of orogenic middle crust of the Roc de Frausa Massif (Eastern Pyrenees): a result of horizontal crustal flow and Carboniferous doming? J Metamorph Geol 33: 273–294. https://doi.org/10.1111/jmg.12120. [Google Scholar]
  • Agulles M, Jordà G, Jones B, Agustí S, Duarte CC. 2020. Temporal evolution of temperatures in the red sea and the gulf of aden based on in situ observations (1958–2017). Ocean Sci 16: 149–166. https://doi.org/10.5194/os-16-149-2020. [Google Scholar]
  • Alvarez-Marrón J, Pérez-Estaún A, Danñobeitia JJ, Pulgar JA, Martínez JR, Marcos A, et al. 1996. Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles. Tectonophysics 264(1–4): 153–174. [Google Scholar]
  • Alves TM, Moita C, Cunha T, Ullnaess M, Myklebust R, Monteiro JH, et al. 2009. Diachronous evolution of Late Jurassic-Cretaceous continental rifting in the northeast Atlantic (west Iberian margin). Tectonics 28(4). [Google Scholar]
  • Alves TM, Cunha TA. 2018. A phase of transient subsidence, sediment bypass and deposition of regressive-transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters 484: 168–183. [Google Scholar]
  • Ampferer O, Hammer W. 1911. Geologischer Querschnitt durch die Ostalpen vom Allgäu zum Gardasee. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt 61(3/4): 532–710. [Google Scholar]
  • Andrieu S, Saspiturry N, Lartigau M, Issautier B, Angrand P, Lasseur E. 2021. Large-scale vertical movements on Cenomanien to Santonian carbonate platforms in Iberia: a marker for a Coniacian Pyrenean convergence initiation? Bulletin de la Société géologique de France 192(1): 19. https://doi.org/10.1051/bsgf/2021011. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth 11: 1313–1332. https://doi.org/10.5194/se-11-1313-2020. [Google Scholar]
  • Argand E. 1924a. La tectonique de l’Asie. In: 13th International Geological Congress. Brussel, pp. 171–372. [Google Scholar]
  • Argand E. 1924b. Les Alpes et l’Afrique. Bulletin Société vaudoise des Sciences naturelles 55: 233–236. [Google Scholar]
  • Argand, E. 1916. Sur l’arc des Alpes occidentales. Bridel G. [Google Scholar]
  • Argand E, Bloesch E, Heim A, Heim A. 1911. I. Les nappes de recouvrement des Alpes pennines et leurs prolongements structuraux (No. 31-33). In: Kommission bei A. Francke (vorm. Schmid & Francke). [Google Scholar]
  • Arthaud F, Matte P. 1975. Les decrochements tardi-hercyniens du sud-ouest de l’europe. Geometrie et essai de reconstitution des conditions de la deformation. Tectonophysics 25: 139–171. https://doi.org/10.1016/0040-1951(75)90014-1. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleopassive margin, western Pyrenees (France). Tectonics 38(5): 1666–1693. [Google Scholar]
  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Vitale Brovarone A, Masini E. 2014. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Science Rev 131: 88–115. https://doi.org/10.1016/j.earscirev.2014.01.001. [Google Scholar]
  • Bertrand M. 1884. Rapports de structure des Alpes de Glaris et du bassin houiller du Nord. Bull Soc Géol Fr 3: 318–330. [Google Scholar]
  • Biteau J-J, Le Marrec A, Le Vot M, Masset J-M. 2006. The Aquitaine Basin. Pet Geosci 12: 247–273. https://doi.org/10.1144/1354-079305-674. [Google Scholar]
  • Boillot G, Recq M, Winterer EL, Meyer AW, Applegate J, Baltuck M, et al. 1987. Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics 132: 335–342. https://doi.org/10.1016/0040-1951(87)90352-0. [Google Scholar]
  • Bois C, Pinet B, Roure F. 1989. Dating lower crustal features in France and adjacent areas from deep seismic profiles. In: Mereu RF, et al. eds. Properties and Processes of Earth’s Lower Crust. American Geophysical Union Geophysical Monograph 51: 17–31. https://doi.org/10.1029/GM051p0017. [Google Scholar]
  • Boissonnas J, Destombes JP, Heddebaut C, Le Pochat G, Lorsignol S, Roger P, et al. 1974. Feuille de Iholdy (1027), Carte géologique de la France, scale 1/50,000. Bureau de Recherche Géologique et Minières. [Google Scholar]
  • Braun J, Chéry J, Poliakov A, Mainprice D, Vauchez A, Tomassi A, et al. 1999. A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine. J Geophys Res 104: 25,167–25,181. [Google Scholar]
  • Brune S, Heine C, Clift PD, Pérez-Gussinyé M. 2017. Rifted margin architecture and crustal rheology: Reviewing IberiaNewfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology 79: 257–281. https://doi.org/10.1016/j.marpetgeo.2016.10.018. [Google Scholar]
  • Buck WR. 1991. Modes of continental lithospheric extension. J Geophys Res 96: 20,161–20,178. [Google Scholar]
  • Cadenas P, Lescoutre R, Manatschal G, Fernández-Viejo G. 2021. The role of extensional detachment systems in thinning the crust and exhuming granulites: analogies between the offshore Le Danois High and the onshore Labourd Massif in the Biscay/Pyrenean rifts. Bulletin de la Société géologique de France. https://doi.org/10.1051/bsgf/2021045. [Google Scholar]
  • Cadenas P., Manatschal G., Fernández-Viejo G. 2020. Unravelling the architecture and evolution of the inverted multi-stage North Iberian-Bay of Biscay rift. Gondwana Res 88: 67–87. https://doi.org/10.1016/j.gr.2020.06.026. [Google Scholar]
  • Canérot J. 2017. The pull apart-type Tardets-Mauléon Basin, a key to understand the formation of the Pyrenees. Bull Soc Geol Fr 188: 35. https://doi.org/10.1051/bsgf/2017198. [Google Scholar]
  • Canérot J, Hudec MR, Rockenbauch K. 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. Am Assoc Pet Geol Bull 89: 211–229. https://doi.org/10.1306/09170404007. [Google Scholar]
  • Chao P. 2021. Tectono-sedimentary and magmatic evolution of rifting and early seafloor spreading in the NW propagator to the South China Sea. PhD. University of Strasbourg. [Google Scholar]
  • Chenin P. 2016. Unravelling the impact of inheritance on the Wilson Cycle: A combined mapping and numerical modelling approach applied to the North Atlantic rift system. Doctoral dissertation, Strasbourg. [Google Scholar]
  • Chenin P, Jammes S, Lavier LL, Manatschal G, Picazo S, Müntener O, et al. 2019. Impact of mafic underplating and mantle depletion on subsequent rifting: a numerical modeling study. Tectonics 38: 2185–2220. https://doi.org/10.1029/2018TC005318. [Google Scholar]
  • Chenin P, Manatschal G, Lavier LL, Erratt D. 2015. Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. J Geol Soc Lond 172: 711–720. https://doi.org/10.1144/jgs2014-139. [Google Scholar]
  • Chenin P, Manatschal G, Picazo S, Müntener O, Karner GD, Johnson C, et al. 2017. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13: 1–18. https://doi.org/10.1130/GES01363.1. [Google Scholar]
  • Chenin P, Picazo S, Jammes S, Manatschal G, Müntener O, Karner G. 2018. Potential role of lithospheric mantle composition in the Wilson cycle: a North Atlantic perspective. In: Wilson RW, Houseman GA, McCaffrey KJW, Doré AG, Buiter SJH, eds. Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Geological Society, London, Special Publications 470. https://doi.org/10.1144/SP470.10. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Sci Rep 8: 1–8. https://doi.org/10.1038/s41598-018-27889-x. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Ruiz M, Paul A, Cougoulat G, et al. 2015. The Pyrenean architecture as revealed by teleseismic P-to-S converted waves recorded along two dense transects. Geophys J Int 200: 1096–1107. https://doi.org/10.1093/gji/ggu400. [Google Scholar]
  • Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrenees; sur le fonctionnement de la faille transformante nord-pyreneenne ; comparaisons avec des modeles actuels. Bull Soc Geol Fr 7: 689–700. [Google Scholar]
  • Clerc C. 2012. Évolution du domaine nord-pyrénéen au Crétacé. Amincissement crustal extrême et thermicité élevée : Un analogue pour les marges passives. Université Pierre et Marie Curie-Paris VI. [Google Scholar]
  • Clerc C, Jolivet L, Ringenbach JC. 2015. Ductile extensional shear zones in the lower crust of a passive margin. Earth Planet Sci Lett 431: 1–7. https://doi.org/10.1016/j.epsl.2015.08.038. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. https://doi.org/10.1002/2013TC003471. [Google Scholar]
  • Clerc C, Ringenbach JC, Jolivet L, Ballard JF. 2018. Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Res 53: 20–40. https://doi.org/10.1016/j.gr.2017.04.030. [Google Scholar]
  • Cochelin B. 2016. Champ de déformation du socle paléozoïque des Pyrénées. Université Toulouse 3 Paul Sabatier. [Google Scholar]
  • Cochelin B, Lemirre B, Denèle Y, de Saint Blanquat M, Lahfid A, Duchêne S. 2018. Structural inheritance in the Central Pyrenees: the Variscan to Alpine tectonometamorphic evolution of the Axial Zone. Journal of the Geological Society 175(2): 336–351. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). C R Geosci 348: 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineralogy and Petrology 112(5): 647–670. [Google Scholar]
  • Dahlstrom CDA. 1969. Balanced cross sections. Canadian Journal of Earth Sciences 6(4): 743–757. [Google Scholar]
  • Debroas EJ, Bilotte M, Canérot J, Astruc G. 2010. Réinterprétation des brèches de la Faille nord-pyrénéenne ariégeoise (France). Bull Soc Hist Nat Toulouse 146: 77–88. [Google Scholar]
  • Decandia FA, Elter P. 1969. Riflessioni sul problema delle ofioliti nell’Appennino settentrionale (nota preliminare). Atti della Soc Toscana di Sci Nat. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem Geophys Geosyst 18: 631–652. https://doi.org/10.1002/2016GC006690. [Google Scholar]
  • Delvolvé JJ, Vachard D, Souquet P. 1998. Stratigraphic record of thrust propagation, Carboniferous foreland basin, Pyrenees, with emphasis on Pays-de-Sault (France/Spain). Geol Rundschau 87: 363–372. https://doi.org/10.1007/s005310050215. [Google Scholar]
  • Denèle Y, Paquette J-L, Olivier P, Barbey P. 2012. Permian granites in the Pyrenees: the Aya pluton (Basque Country). Terra Nova 24: 105–113. https://doi.org/10.1111/j.1365-3121.2011.01043.x. [Google Scholar]
  • Dewey JF, Burke K. 1974. Hot spots and collisional break-up: Implications for collisional orogeny. Geology 2: 57–60. https://doi.org/10.1130/0091-7613(1974)2<57:HSACBI>2.0.CO;2. [Google Scholar]
  • Dielforder A., Frasca G., Brune S., Ford M. 2019. Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochemistry Geophysics Geosystems 20(5): 2395–2417. https://doi.org/10.1029/2018GC007840. [Google Scholar]
  • Ducoux M, Jolivet L, Callot JP, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics 38: 3881–3915. https://doi.org/10.1029/2018TC005348. [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021a. Basement-cover decoupling during the inversion of a hyperextended basin: Insights from the Eastern Pyrenees. Tectonics 40: e2020TC006512. https://doi.org/10.1029/2020TC006512. [Google Scholar]
  • Ducoux M, Jolivet L, Masini E, Augier R, Lahfid A, Bernet M, et al. 2021b. Distribution and intensity of High-Temperature Low-Pressure metamorphism across the Pyrenean-Cantabrian belt: constraints on the thermal record of the pre-orogenic hyperextension rifting. BSGF - Earth Sciences Bulletin 192: 43. https://doi.org/10.1051/bsgf/2021029. [Google Scholar]
  • Duretz T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, et al. 2019. Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Res 32(4): 652–667. https://doi.org/10.1111/bre.12389. [Google Scholar]
  • Engeser T, Schwentke W. 1986. Towards a new concept of the tectogenesis of the Pyrenees. Tectonophysics 129(1–4): 233–242. [Google Scholar]
  • Epin ME, Manatschal G, Amann M. 2017. Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss J Geosci 110: 419–438. https://doi.org/10.1007/s00015-017-0271-6. [Google Scholar]
  • Fabriès J, Lorand JP, Bodinier JL, Dupuy C. 1991. Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology (2): 55–76. [Google Scholar]
  • Fabriès J, Lorand JP, Bodinier JL. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292(1–2): 145–167. [Google Scholar]
  • Ferrer O, Jackson MPA, Roca E, Rubinat M. 2012. Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay). Geol Soc Spec Publ 363: 361–380. https://doi.org/10.1144/SP363.16. [Google Scholar]
  • Florineth D, Froitzheim N. 1994. Transition from continental to oceanic basement in the Tasna Nappe: evidence for Early Cretaceous opening of the Valais Ocean. Schweiz Miner Petrogr Mitt 74: 437–448. [Google Scholar]
  • Ford M, Vergés J. 2021. Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France. J Geol Soc Lond 178: jgs2019-157. https://doi.org/10.1144/jgs2019-157. [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the western “Chainons béarnais”(French Pyrenees): Structural and paleogeographical pattern. Tectonophysics 129(1–4): 81–98. [Google Scholar]
  • Frasca G, Manatschal G, Cadenas P, Miró J, Lescoutre R. 2021. Restoring deformable microplates with intracontinental strike-slip corridors: hints from Iberia. Terra Nova 00: 1–9. https://doi.org/10.1111/ter.12549. [Google Scholar]
  • Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics 34: 1–21. https://doi.org/10.1002/2014TC003760. [Google Scholar]
  • Gillard M, Tugend J, Müntener O, Manatschal G, Karner GD, Autin J, et al. 2019. The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth Sci Rev 196: 102882. https://doi.org/10.1016/j.earscirev.2019.102882. [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. https://doi.org/10.1016/j.tecto.2019.05.022. [Google Scholar]
  • Hall CA, Johnson JA. 1986. Apparent western termination of the North Pyrenean fault and tectonostratigraphic units of the western north Pyrenees, France and Spain. Tectonics 5(4): 607–627. [Google Scholar]
  • Hart NR, Stockli DF, Hayman NW. 2016. Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U-Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere 12: 1166–1186. https://doi.org/10.1130/GES01273.1. [Google Scholar]
  • Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 36: 1103–1128. https://doi.org/10.1002/2016TC004365. [Google Scholar]
  • Hess HH. 1962. History of ocean basins. In: Engel AEJ, James HL, Lonard BF, eds. Petrologic Studies: A Volume to Honor A.F. Buddington. New York: Geological Society of America, pp. 599–620. [Google Scholar]
  • Holmes A. 1931. Radioactivity and Earth Movements. In: Transactions of the Geological Society of Glasgow. Geological Society of London, pp. 559–606. https://doi.org/10.1144/transglas.18.3.559. [Google Scholar]
  • Incerpi N, Manatschal G, Martire L, Bernasconi SM, Gerdes A, Bertok C. 2020a. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees). Int J Earth Sci 109: 1071–1093. [Google Scholar]
  • Incerpi N, Martire L, Manatschal G, Bernasconi SM, Gerdes A, Czuppon G, et al. 2020b. Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre- to post-rift sedimentary sequence (SE Switzerland, N Italy). Basin Res 32: 91–115. https://doi.org/10.1111/bre.12370. [Google Scholar]
  • Issautier B, Saspiturry N, Olivier S. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon basin (Early Cretaceous Arzacq and Tartas Basins). Mar Pet Geol 118: 104395. https://doi.org/10.1016/j.marpetgeo.2020.104395. [Google Scholar]
  • Izquierdo-Llavall E, Menant A, Aubourg C, Callot J-P, Hoareau G, Camps P, et al. 2020. Preorogenic folds and syn-orogenic basement tilts in an inverted hyperextended margin: The Northern Pyrenees case study. Tectonics 39: e2019TC005719. https://doi.org/10.1029/2019TC005719. [Google Scholar]
  • Jackson JA. 1980. Reactivation of basement faults and crustal shortening in orogenic belts. Nature 283: 343–346. [Google Scholar]
  • Jammes S, Huismans RS, Muñoz JA. 2014. Lateral variation in structural style of mountain building: Controls of rheological and rift inheritance. Terra Nova 26: 201–207. https://doi.org/10.1111/ter.12087. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L. 2010. Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). Am Assoc Pet Geol Bull 94: 957–975. https://doi.org/10.1306/12090909116. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28: TC4012. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Jourdon A, Mouthereau F, Le Pourhiet L, Callot J. 2020. Topographic and Tectonic Evolution of Mountain Belts Controlled by Salt Thickness and Rift Architecture. Tectonics 39: e2019TC005903. https://doi.org/10.1029/2019TC005903. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Sciences Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [Google Scholar]
  • Kelley DS, Shank TM. 2010. Hydrothermal systems: A decade of discovery in slow spreading environments. Geophys Monogr Ser 188: 369–407. https://doi.org/10.1029/2010GM000945. [Google Scholar]
  • Lagabrielle Y, Asti R., Duretz T, Clerc C, Fourcade S, Teixell A, et al. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth Sci Rev 201: 103071. https://doi.org/10.1016/j.earscirev.2019.103071. [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). C R Geosci 348: 290–300. https://doi.org/10.1016/j.crte.2015.11.004. [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29: n/a–n/a. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lago M, Arranz E, Pocoví A, Galé C, Gil-Imaz A. 2004. Permian magmatism and basin dynamics in the southern Pyrenees: A record of the transition from late Variscan transtension to early Alpine extension. Geol Soc Spec Publ 223: 439–464. https://doi.org/10.1144/GSL.SP.2004.223.01.19. [Google Scholar]
  • Lavier LL, Ball PJ, Manatschal G, Heumann MJ, MacDonald J, Matt VJ, et al. 2019. Controls on the Thermomechanical Evolution of Hyperextended Lithosphere at Magma-Poor Rifted Margins: The Example of Espirito Santo and the Kwanza Basins. Geochem Geophys Geosyst 20: 5148–5176. https://doi.org/10.1029/2019GC008580. [Google Scholar]
  • Lavier LL, Manatschal G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440: 324–328. https://doi.org/10.1038/nature04608. [Google Scholar]
  • Le Maire P, Thinon I, Tugend J, Issautier B, Martelet G, Paquet F, et al. 2021. New Magnetic compilation of the Bay of Biscay and surrounding continental shelves. Bulletin de la Société Géologique de France 68: 1989–1997. [Google Scholar]
  • Lehujeur S, Chevrot A, Villasenor E, Masini N, Saspiturry R, Lescoutre M, et al. 2021. Three-dimensional shear velocity structure of the Mauleon and Arzacq basins (Western Pyrenees). BSGF - Earth Sciences Bulletin 192: 47. https://doi.org/10.1051/bsgf/2021039. [Google Scholar]
  • Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res 73: 3661–3697. https://doi.org/10.1029/jb073i012p03661. [Google Scholar]
  • Le Pichon X, Sibuet JC. 1971. Western extension of boundary between European and Iberian plates during the Pyrenean orogeny. Earth Planet Sci Lett 12: 83–88. https://doi.org/10.1016/0012-821X(71)90058-6. [Google Scholar]
  • Le Pichon X, Sibuet JC, Francheteau J. 1977. The fit of the continents around the North Atlantic Ocean. Tectonophysics 38: 169–209. https://doi.org/10.1016/0040-1951(77)90210-4. [Google Scholar]
  • Leleu S, Hartley AJ, van Oosterhout C, Kennan L, Ruckwied K, Gerdes K. 2016. Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic rift system of the Central Atlantic Domain. Earth Sci Rev 158: 89–124. https://doi.org/10.1016/j.earscirev.2016.03.008. [Google Scholar]
  • Lemoine M, Tricart P, Boillot G. 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel. Geology 15: 622–625. https://doi.org/10.1130/0091-7613(1987)15. [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. Bulletin de la Société géologique de France 191(1). [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal Evolution of Asymmetric Hyperextended Magma-Poor Rift Systems: Results From Numerical Modeling and Pyrenean Field Observations. Geochem Geophys Geosyst 20: 4567–4587. https://doi.org/10.1029/2019GC008600. [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz JA. 2021. Nature, origin, and evolution of the Pyrenean-Cantabrian junction. Tectonics 40: e2020TC006134. https://doi.org/10.1029/2020TC006134. [Google Scholar]
  • López-Gómez J, Alonso-Azcárate J, Arche A, Arribas J, Fernández Barrenechea J, Borruel-Abadía V, et al. 2019. Permian-Triassic Rifting Stage. In: Regional Geology Reviews. Springer, Cham, pp. 29–112. https://doi.org/10.1007/978-3-030-11295-0_3. [Google Scholar]
  • Lucazeau F, Leroy S, Rolandone F, d’Acremont E, Watremez L, Bonneville A, et al. 2010. Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden. Earth Planet Sci Lett 295: 554–570. https://doi.org/10.1016/j.epsl.2010.04.039. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous. J Geophys Res Solid Earth 122: 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
  • Manatschal G, Lavier LL, Chenin P. 2015. The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling. Gondwana Res 27: 140–164. https://doi.org/10.1016/j.gr.2014.08.006. [Google Scholar]
  • Martin R, Giraud J, Ogarko V, Chevrot S, Beller S, Gégout P, et al. 2021. Three-dimensional gravity anomaly inversion in the Pyrenees using compressional seismic velocity model as structural similarity constraints. Geophys J Int 225(2): 1063–1085. https://doi.org/10.1093/gji/ggaa414. [Google Scholar]
  • Martínez Catalán JR, Arenas R, Díaz García F, Cuadra PG, Gómez-Barreiro J, Abati J, et al. 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the Variscan belt. In: Hatcher RD, Carlson MP, McBride JH, Martínez Catalán JR, eds. Space and Time in the Tectonic Evolution of the North-Western Iberian Massif: Implications for the Variscan Belt. The Gological Society of America Memoir 200: 403–423. https://doi.org/10.1130/2007.1200(21). [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 103: 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [Google Scholar]
  • Mattauer M, Proust F. 1967. L’évolution structurale de la partie Est du domaine pyrénéo-provençal au Crétacé et au Paléogène. In: Extrait des Comptes rendus du colloque sur la Biogéographie du Crétacé-éocène de la France Méridionale. Travaux de Laboratoire de Géochimie de la Biosphère, École Pratique des Hautes Études, vol. 310, pp. 9–20. [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196: 309–337. [Google Scholar]
  • McCarthy A, Tugend J, Mohn G, Candioti L, Chelle-Michou C, Arculus R, et al. 2020. A case of Ampferer-type subduction and consequences for the Alps and the Pyrenees. Am J Sci 320: 313–372. https://doi.org/10.2475/04.2020.01. [Google Scholar]
  • Mencos J, Carrera N, Muñoz JA. 2015. Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees). Tectonics 34(7): 1452–1474. [Google Scholar]
  • Miró J, Manatschal G, Cadenas P, Muñoz JA. 2021. Reactivation of a hyperextended rift system: The Basque–Cantabrian Pyrenees case. Basin Research 00: 1–25. https://doi.org/10.1111/bre.12595. [Google Scholar]
  • Montadert L, de Charpal O, Roberts D, Guennoc P, Sibuet J-C. 1979. Northeast Atlantic passive continental margins: Rifting and subsidence processes. In: Talwani M, Hay W, Ryan WBF, eds. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Volume 3. American Geophysical Union (AGU), pp. 154–186. https://doi.org/10.1029/me003p0154. [Google Scholar]
  • Morgan WJ. 1971. Convection Plumes in the Lower Mantle. Nature 230: 42–43. https://doi.org/10.1038/230042a0. [Google Scholar]
  • Mouthereau F, Watts AB, Burov E. 2013. Structure of orogenic belts controlled by lithosphere age. Nat Geosci 6: 785–789. https://doi.org/10.1038/ngeo1902. [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees Late crustal balanced cross-section. In: McClay KR, ed. Thrust Tectonics. London: Chapman & Hall, pp. 235–246. [Google Scholar]
  • Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U. 2004. Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust-mantle relationships. Earth Planet Sci Lett 221: 293–308. https://doi.org/10.1016/S0012-821X(04)00073-1. [Google Scholar]
  • Neumann F, Negrete-Aranda R, Harris RN, Contreras J, Sclater JG, González-Fernández A. 2017. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California. Earth Planet Sci Lett 479: 340–353. https://doi.org/10.1016/j.epsl.2017.09.037. [Google Scholar]
  • Nirrengarten M, Mohn G, Schito A, Corrado S, Gutiérrez-García L, Bowden SA, et al. 2020. The thermal imprint of continental breakup during the formation of the South China Sea. Earth Planet Sci Lett 531: 115972. https://doi.org/10.1016/j.epsl.2019.115972. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems. Tectonics 37: 89–118. https://doi.org/10.1002/2017TC004495. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia − Newfoundland: implications for plate reconstructions. Terra Nova 29: 20–28. https://doi.org/10.1111/ter.12240. [Google Scholar]
  • Nirrengarten M, Manatschal G, Yan X, Kusznir N, Millot B. 2016. Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins. Earth Planet Sci. Lett 442: 121–132. [Google Scholar]
  • Odlum ML, Stockli DF. 2020. Geochronologic constraints on deformation and metasomatism along an exhumed mylonitic shear zone using apatite U-Pb, geochemistry, and microtextural analysis. Earth Planet Sci Lett 538: 116177. https://doi.org/10.1016/j.epsl.2020.116177. [Google Scholar]
  • Oliva-Urcia B, Casas AM, Pueyo EL, Román-Berdiel T, Geissman JW. 2010. Paleomagnetic evidence for dextral strike-slip motion in the Pyrenees during alpine convergence (Mauléon basin, France). Tectonophysics 494(3–4): 165–179. [Google Scholar]
  • Parsons B, McKenzie D. 1978. Mantle convection and the thermal structure of the plates. J Geophys Res 83: 4485. https://doi.org/10.1029/JB083iB09p04485. [Google Scholar]
  • Pedrera A, García-Senz J, Ayala C, Ruiz-Constán A, Rodríguez-Fernández LR, Robador A, et al. 2017. Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section. Tectonics 36: 3155–3177. https://doi.org/10.1002/2017TC004716. [Google Scholar]
  • Pedrera A, García-Senz J, Peropadre C, Robador A, López-Mir B, Díaz-Alvarado J, et al. 2021. The Getxo crustal-scale cross-section: Testing tectonic models in the Bay of Biscay-Pyrenean rift system. Earth Sci Rev: 103429. https://doi.org/10.1016/j.earscirev.2020.103429. [Google Scholar]
  • Pérez-Gussinyé M, Ranero CR, Reston TJ. 2003. Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. J Geophys Res 108. https://doi.org/10.1029/2001JB000901. [Google Scholar]
  • Petri B, Duretz T, Mohn G, Schmalholz SM, Karner GD, Müntener O. 2019. Thinning mechanisms of heterogeneous continental lithosphere. Earth Planet Sci Lett 512: 147–162. https://doi.org/10.1016/J.EPSL.2019.02.007. [Google Scholar]
  • Petri B, Skrzypek E, Mohn G, Mateeva T, Galster F, Manatschal G. 2017. U–Pb geochronology of the Sondalo gabbroic complex (Central Alps) and its position within the Permian post-Variscan extension. Int J Earth Sci 106: 2873–2893. https://doi.org/10.1007/s00531-017-1465-x. [Google Scholar]
  • Picazo S, Müntener O, Manatschal G, Bauville A, Karner GD, Johnson C. 2016. Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: evidence for mantle modification during an extensional cycle. Lithos 266: 233–263. https://doi.org/10.1016/j.lithos.2016.08.02. [Google Scholar]
  • Polychronopoulou K, Lois A, Martakis N, Calassou S, Draganov D. 2019. Earthquake-based passive seismic exploration techniques. In: SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, pp. 5393–5397. [Google Scholar]
  • Polychronopoulou K, Lois A, Martakis N, Chevrot S, Sylvander M, Diaz J, et al. 2018. Broadband, short-period or geophone nodes? Quality assessment of Passive Seismic signals acquired during the Maupasacq experiment. First Break 36(4): 71–76. [Google Scholar]
  • Ribeiro ML, Reche J, López-Carmona A, Aguilar C, Bento dos Santos T, Chichorro M, et al. 2019. Variscan Metamorphism. In: Regional Geology Reviews. Springer, Cham, pp. 431–495. https://doi.org/10.1007/978-3-030-10519-8_12. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées Basques à l’Ouest de la transformante de Pamplona (province du Labourd). Doctoral dissertation. [Google Scholar]
  • Roest WR, Srivastava SP. 1991. Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology 19: 613–616. https://doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader AG. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. Comptes Rendus Geoscience 348(3–4): 224–235. [Google Scholar]
  • Rowan MG. 2020. The south atlantic and gulf of mexico salt basins: Crustal thinning, subsidence and accommodation for salt and presalt strata. In: Geological Society Special Publication. Geological Society of London, pp. 333–363. https://doi.org/10.1144/SP476.6. [Google Scholar]
  • Rowan MG. 2014. Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res 26: 154–182. https://doi.org/10.1111/bre.12043. [Google Scholar]
  • Saspiturry N, Issautier B, Razin P, Baudin T, Asti R, Lagabrielle Y, et al. 2021. Review of Iberia-Eurasia plate-boundary basins: Role of sedimentary burial and salt tectonics during rifting and continental breakup. Basin Res 33(2): 1626–1661. https://doi.org/10.1111/bre.12529. [Google Scholar]
  • Saspiturry N, Allanic C, Razin P, Issautier B, Baudin T, Lasseur E, et al. 2020a. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova 32: 253–260. https://doi.org/10.1111/ter.12457. [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020b. Paleogeothermal gradients across an inverted hyperextended rift system: example of the Mauléon fossil rift (Western Pyrenees). Tectonics 39(10): e2020TC006206. [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. https://doi.org/10.1016/j.tecto.2019.228180. [Google Scholar]
  • Șengör AMC. 1991. Orogenic architecture as a guide to size of ocean lost in collisional mountain belts. Bull Tech Univ Istanbul 44: 43–74. [Google Scholar]
  • Sibuet JC, Srivastava SP, Enachescu M, Karner GD. 2007. Early Cretaceous motion of Flemish Cap with respect to North America: implications on the formation of Orphan Basin and SE Flemish Cap–Galicia Bank conjugate margins. In: Karner GD, Manatschal G, Pinhiero LM, eds. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup, Geological Society, London, Special Publications, 282. The Geological Society of London, pp. 59–72. https://doi.org/10.1144/SP282.4. [Google Scholar]
  • Sibuet J-C, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. J Geophys Res 109: B08104. https://doi.org/10.1029/2003JB002514. [Google Scholar]
  • Soares DM, Alves TM, Terrinha P. 2012. The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic). Earth and Planetary Science Letters 355: 311–326. [Google Scholar]
  • Steinmann G. 1905. Geologische Beobachtungen in den Alpen. Wagners Universitäts-Buchdruckereis. [Google Scholar]
  • Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14: 2575–2597. https://doi.org/10.1002/ggge.20135. [Google Scholar]
  • Tavani S, Granado P, Corradetti A, Camanni G, Vignaroli G, Manatschal G, et al. 2021. Rift inheritance controls the switch from thin- to thick-skinned thrusting and basal décollement re-localization at the subduction-to-collision transition. GSA Bulletin 133(9–10): 2157–2170. https://doi.org/10.1130/B35800.1. [Google Scholar]
  • Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth Sci Rev 187: 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008. [Google Scholar]
  • Teixell A. 1996. The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. J Geol Soc Lond 153: 301–310. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. C R Geosci 348: 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics 38(4): 1308–1336. [Google Scholar]
  • Tharp M, Heezen BC, Ewing M. 1959. The floors of the oceans: I. The North Atlantic. 65. Geological Society of America. https://doi.org/10.1130/SPE65-p1. [Google Scholar]
  • Thinon I, Matias L, Réhault JP, Hirn A, Fidalgo-González L, Avedik F. 2003. Deep structure of the Armorican Basin (Bay of Biscay): a review of Norgasis seismic reflection and refraction data. J Geol Soc Lond 160: 99–116. [Google Scholar]
  • Thinon I, Fidalgo-González L, Réhault JP, Olivet JL. 2001. Déformations pyrénéennes dans le golfe de Gascogne. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 332(9): 561–568. [Google Scholar]
  • Trümpy R. 2001. Why plate tectonics was not invented in the Alps. Int J Earth Sci 90: 477–483. https://doi.org/10.1007/s005310000175. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir N. 2015. Spatial and temporal evolution of hyperextended rift systems: implication for the nature, kinematics and timing of the Iberian-European plate boundary. Geology 43: 15–18. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2014. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geol Soc Lond Spec Publ 413: SP413–3. https://doi.org/10.1002/2014TC003529. [Google Scholar]
  • Tuzo Wilson J. 1965. Transform faults, oceanic ridges, and magnetic anomalies Southwest of Vancouver Island. Science 150: 482–485. https://doi.org/10.1126/science.150.3695.482. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 35: 907–933. https://doi.org/10.1002/2015TC004016. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth Planet Sci Lett 408: 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [Google Scholar]
  • Vargas H, Gaspar-Escribano JM, López-Gómez J, Van Wees JD, Cloetingh S, de La Horra R, et al. 2009. A comparison of the Iberian and Ebro Basins during the Permian and Triassic, eastern Spain: A quantitative subsidence modelling approach. Tectonophysics 474: 160–183. https://doi.org/10.1016/j.tecto.2008.06.005. [Google Scholar]
  • Vergés J, García-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. Mémoires du Muséum national d’histoire naturelle (1993) 186: 187–212. [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth and Planetary Science Letters 67: 87–96. https://doi.org/10.1016/0012821X(84)90041-4. [Google Scholar]
  • Vielzeuf D, Pin C. 1989. Geodynamic implications of granulitic rocks in the Hercynian belt. Geol Soc Spec Publ 43: 343–348. https://doi.org/10.1144/GSL.SP.1989.043.01.29. [Google Scholar]
  • Vine FJ, Matthews DH. 1963. Magnetic anomalies over oceanic ridges. Nature 199: 947–949. https://doi.org/10.1038/199947a0. [Google Scholar]
  • Vissers RLM, van Hinsbergen DJJ, van der Meer DG, Spakman W. 2016. Cretaceous slab break-off in the Pyrenees: Iberian plate kinematics in paleomagnetic and mantle reference frames. Gondwana Res 34: 49–59. https://doi.org/10.1016/j.gr.2016.03.006. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44: 475–478. https://doi.org/10.1130/G37812.1. [Google Scholar]
  • Wegener A. 1915. Die Entstehung der Kontinente und Ozeane. Braunschweig. [Google Scholar]
  • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22: 108–125. https://doi.org/10.1139/e85-009. [Google Scholar]
  • Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21: 371–374. https://doi.org/10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2. [Google Scholar]
  • Wilson JT. 1966. Did the Atlantic close and then re-open? Nature 211: 676–681. https://doi.org/10.1038/211676a0. [Google Scholar]
  • Yamasaki T, O’Reilly B, Readman P. 2006. A rheological weak zone intensified by post-rift thermal relaxation as a possible origin of simple shear deformation associated with reactivation of rifting. Earth Planet Sci Lett 248: 119–131. https://doi.org/10.1016/j.epsl.2006.05.019. [Google Scholar]
  • Ziegler PA. 1988. Evolution of the Arctic-North Atlantic and the Western Tethys. Am Assoc Pet Geol Mem 43: 164–196. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.