Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Article Number 41
Number of page(s) 35
DOI https://doi.org/10.1051/bsgf/2021030
Published online 18 October 2021
  • Adiya T, Johnson CL, Loewen MA, Ritterbush KA, Constenius KN, Dinter CM. 2017. Microbial-caddisfly bioherm association from the Lower Cretaceous Shinekhudag Formation, Mongolia: Earliest record of plant armoring in fossil caddisfly cases. PLoS ONE 12: e0188194–e0188194. [Google Scholar]
  • Alonso-Zarza AM, Wright VP. 2010. Chapter 5: Calcretes. In: Alonso-Zarza AM, Tanner LH, eds. Developments in Sedimentology, 61. Elsevier, pp. 225–267. [Google Scholar]
  • Arenas C, Vázquez-Urbez M, Auqué L, Sancho C, Osácar C, Pardo G. 2014. Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: A thirteen-year record from a semi-arid environment. Sedimentology 61: 90–132. [Google Scholar]
  • Arenas C, Piñuela L, García-Ramos JC. 2015. Climatic and tectonic controls on carbonate deposition in syn-rift siliciclastic fluvial systems: A case of microbialites and associated facies in the Late Jurassic. Sedimentology 62: 1149–1183. [Google Scholar]
  • Armienta MA, Vilaclara G, De la Cruz-Reyna S, Ramos S, Ceniceros N, Cruz O, et al. 2008. Water chemistry of lakes related to active and inactive Mexican volcanoes. Journal of Volcanology and Geothermal Research 178: 249–258. [Google Scholar]
  • Arp G. 1995. Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-Impact-Crater (Miocene, Southern Germany). Facies 33: 35–90. [Google Scholar]
  • Arp G, Reimer A, Reitner J. 1999. Calcification in cyanobacterial biofilms of alkaline salt lakes. European Journal of Phycology 34(4): 393–403. [Google Scholar]
  • Ars J-M, Tarits P, Hautot S, Bellanger M, Coutant O, Maia M. 2019. Joint inversion of gravity and surface wave data constrained by magnetotelluric: Application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80: 56–68. [Google Scholar]
  • Aubert M, Bouiller R, Camus G, Cochet A, D’Arcy D, Giot D, et al. 1973. Notice de la carte géologique 1/50 000e, Clermont-Ferrand. BRGM 63. [Google Scholar]
  • Awramik SM, Buchheim HP. 2012. The quest for microbialite analogs to the South Atlantic Pre-Salt carbonate hydrocarbon reservoirs of Africa and South America. Houston Geol. Soc. Bull. 55(1): 21, 23, 25, 27. [Google Scholar]
  • Baas-Becking LGM. 1925. Studies on the sulphur bacteria. Annals of Botany 39: 613–650. [Google Scholar]
  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, et al. 2006. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185: 131–145. [Google Scholar]
  • Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP, Dupraz C, et al. 2009. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ. Microbiol. 11: 2710–2719. [Google Scholar]
  • Bergerat F. 1987. Paléo-champs de contrainte tertiaires dans la plate-forme européenne au front de l’orogène Alpin. Bulletin de la Société Géologique de France 3: 611–620. [Google Scholar]
  • Bertrand-Sarfati J, Freytet P, Plaziat JC. 1966. Les calcaires concretionnes de la limite oligocene-miocene des environs de Saint-Pourcain-sur-Sioule (Limagne d’Allier) ; role des algues dans leur edification, analogie avec les stromatolites et rapports avec la sedimentation. Bulletin de la Société Géologique de France S7-VIII: 652–662. [Google Scholar]
  • Blair TC, McPherson JG. 2008. Quaternary sedimentology of the Rose Creek fan delta, Walker Lake, Nevada, USA, and implications to fan-delta facies models. Sedimentology 55: 579–615. [Google Scholar]
  • Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ. 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Lake basins through space and time. AAPG Studies in Geology 46: 3–34. [Google Scholar]
  • Bohacs KM, Lamb-Wozniak K, Demko TM, Eleson J, McLaughlin O, Lash C, et al. 2013. Vertical and lateral distribution of lacustrine carbonate lithofacies at the parasequence scale in the Miocene Hot Spring limestone, Idaho: An analog addressing reservoir presence and quality. AAPG Bulletin 97: 1967–1995. [Google Scholar]
  • Boomer SM, Noll KL, Geesey GG, Dutton BE. 2009. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in yellowstone national park, Wyoming. Applied and Environmental Microbiology 75: 2464–2475. [Google Scholar]
  • Bougeault C, Vennin E, Durlet C, Muller E, Mercuzot M, Chavez M, et al. 2019. Biotic–abiotic influences on modern Ca–Si-rich hydrothermal spring mounds of the pastos grandes volcanic Caldera (Bolivia). Minerals 9: 380. [Google Scholar]
  • Bouton A, Vennin E, Boulle J, Pace A, Bourillot R, Thomazo C, et al. 2016. Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes. Biogeosciences Discuss 2016: 1–26. [Google Scholar]
  • Bouton A, Vennin E, Amiotte-Suchet P, Thomazo C, Sizun J, Virgone A, et al. 2019. Prediction of the calcium carbonate budget in a sedimentary basin: A “source-to-sink” approach applied to Great Salt Lake, Utah, USA. Basin Research, 1–30. [Google Scholar]
  • Bradley WH. 1924. Fossil caddisfly cases from the Green River Formation of Wyoming. American Journal of Science 7: 310–312. [Google Scholar]
  • Brasier A, Wacey D, Rogerson M, Guagliardo P, Saunders M, Kellner S, et al. 2018. A microbial role in the construction of Mono Lake carbonate chimneys? Geobiology 16: 540–555. [Google Scholar]
  • Bräuer K, Kämpf H, Niedermann S, Wetzel H-U. 2017. Regional distribution pattern of carbon and helium isotopes from different volcanic fields in the French Massif Central: Evidence for active mantle degassing and water transport. Chemical Geology 469: 4–18. [Google Scholar]
  • BRGM. 2006. Carte géologique de France à 1/1 000 000, Clermont-Ferrand. BRGM. [Google Scholar]
  • Brock TD, Brock ML. 1971. Microbiological studies of thermal habitats of the central volcanic region, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 5: 233–258. [Google Scholar]
  • Carozzi AV. 1962. Observations on Algal Biostromes in the Great Salt Lake, Utah. The Journal of Geology 70: 246–252. [Google Scholar]
  • Carroll AR, Bohacs KM. 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology 27: 99–102. [Google Scholar]
  • Casanova J. 1994. Stromatolites from the East African Rift: A synopsis. In: Bertrand-Sarfati J, Monty C, eds. Phanerozoic Stromatolites II. Dordrecht: Springer Netherlands, pp. 193–226. [Google Scholar]
  • Casanova J, Hillaire-Marcel C. 1992. Late holocene hydrological history of Lake Tanganyika, East Africa, from isotopic data on fossil stromatolites. Palaeogeogr. Palaeoclimat. Palaeoecol. 91: 35–48. [Google Scholar]
  • Casanova J, Bodenan F, Negrel P, Azaroual M. 1999. Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cézallier hydrothermal springs (Massif Central, France). Sed. Geol. 126: 125–145. [Google Scholar]
  • Castenholz RW. 1977. The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microb Eco 3: 79–105. [Google Scholar]
  • Ceraldi TS, Green D. 2017. Evolution of the South Atlantic lacustrine deposits in response to Early Cretaceous rifting, subsidence and lake hydrology. Geological Society, London, Special Publications 438: 77–98. [Google Scholar]
  • Cerling TE. 1994. Chemistry of closed basin lake waters: a comparison between African Rift Valley and some central North American rivers and lakes. In: Gierlowski-Kordesch EH, Kelts K, eds. The Global Geological Record of Lake Basins. Cambridge: Cambridge University Press, pp. 29–30. [Google Scholar]
  • Chafetz HS, Folk RL. 1984. Travertines; depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Research 54: 289–316. [Google Scholar]
  • Chafetz HS, Guidry SA. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sedimentary Geology 126: 57–74. [Google Scholar]
  • Chafetz H, Barth J, Cook M, Guo X, Zhou J. 2018. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sedimentary Geology 365: 21–33. [Google Scholar]
  • Chateauneuf JJ. 1972. Contribution à l’étude de l’Aquitanien. La coupe de Carry-le-Rouet (Bouches-du-Rhône, France). Ve Congrès du Néogène méditerranéen. Volume III, Étude palynologique. Bulletin Bureau de Recherches Géologiques et Minières 4: 59–65. [Google Scholar]
  • Chazot G, Mergoil-Daniel J. 2012. Co-eruption of carbonate and silicate magmas during volcanism in the Limagne graben (French Massif Central). Lithos 154: 130–146. [Google Scholar]
  • Chidsey TC, Vanden Berg MD, Eby DE. 2015. Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin’s Eocene Green River Formation in Utah, USA. Geological Society, London, Special Publications 418: 261–286. [Google Scholar]
  • Christ N, Maerz S, Kutschera E, Kwiecien O, Mutti M. 2018. Palaeoenvironmental and diagenetic reconstruction of a closed-lacustrine carbonate system – The challenging marginal setting of the Miocene Ries Crater Lake (Germany). Sedimentology 65: 235–262. [Google Scholar]
  • Cohen AS, Talbot MR, Awramik SM, Dettman DL, Abell P. 1997. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geol. Soc. Am. Bull. 109: 444–460. [Google Scholar]
  • Coussement C, Gente P, Rolet J, Tiercelin JJ, Wafula M, Buku S. 1994. The North Tanganyika hydrothermal fields, East African Rift system: Their tectonic control and relationship to volcanism and rift segmentation. Tectonophysics 237: 155–173. [Google Scholar]
  • Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T. 2009. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region − Neotectonic connections and implications for groundwater systems. GSA Bulletin 121: 1034–1053. [Google Scholar]
  • Cukur D, Krastel S, Cağatay MN, Damcı E, Meydan AF, Kim S-P. 2015. Evidence of extensive carbonate mounds and sublacustrine channels in shallow waters of Lake Van, eastern Turkey, based on high-resolution chirp subbottom profiler and multibeam echosounder data. Geo-Mar. Lett. 35: 329–340. [Google Scholar]
  • D’Halloy JJ. 1812. Sur le gisement du calcaire d’eau douce dans les départements du Cher, de l’Allier et de la Nièvre. Journal des mines 32: 43–64. [Google Scholar]
  • Dangeard L. 1931. Algues inférieures dans le calcaire concrétionné de la Limagne. Compte Rendus Académie des Sciences Paris 192: 172–174. [Google Scholar]
  • Davison I. 2007. Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society, London, Special Publications 272: 345–359. [Google Scholar]
  • De Boever E, Brasier AT, Foubert A, Kele S. 2017. What do we really know about early diagenesis of non-marine carbonates? Sedimentary Geology 361: 25–51. [Google Scholar]
  • De Lary L, Loschetter A, Gal F, Vanoudheusden E, Rocher P, Burnol A, et al. 2016. Risques liés aux émissions naturelles de CO2 dans l’agglomération de Clermont-Ferrand. In: Envirorisk forum. [Google Scholar]
  • De Wet CB, Godfrey L, De Wet AP. 2015. Sedimentology and stable isotopes from a lacustrine-to-palustrine limestone deposited in an arid setting, climatic and tectonic factors: Miocene–Pliocene Opache Formation, Atacama Desert, Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 426: 46–67. [Google Scholar]
  • Della Porta G. 2015. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geological Society, London, Special Publications 418: 17–68. [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. [Google Scholar]
  • Donsimoni M. 1975. Étude des calcaires concrétionnés lacustres de l’Oligocène supérieur et de l’Aquitanien du bassin de Limagne (Massif Central, France). Thèse de 3e cycle, Paris VI, 197 p. [Google Scholar]
  • Donsimoni M, Giot D. 1977. Les calcaires concrétionnés lacustres de l’Oligocène supérieur et de l’Aquitanien de Limagne (Massif central). Bulletin du BRGM 2: 131–169. [Google Scholar]
  • Dromart G, Gaillard C, Jansa LF. 1994. Deep-marine microbial structures in the Upper Jurassic of Western Tethys. In: Bertrand-Sarfati J, Monty C, eds. Phanerozoic Stromatolites II. Dordrecht: Springer Netherlands, pp. 295–318. [Google Scholar]
  • Dunagan SP, Driese SG. 1999. Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition; Catskill Magnafacies, New York, USA. Journal of Sedimentary Research 69: 772–783. [Google Scholar]
  • Dupraz C, Visscher PT. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13: 429–38. [Google Scholar]
  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96: 141–162. [Google Scholar]
  • Dupraz C, Reid RP, Visscher P. 2011. Microbialites, modern. In: Reitner J, Thiel V, eds. Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht, The Netherlands: Springer Netherlands, University of Göttingen, pp. 617–635. [Google Scholar]
  • Dupraz C, Fowler A. Tobias C, Visscher PT. 2013. Stromatolitic knobs in Storr’s Lake (San Salvador, Bahamas): A model system for formation and alteration of laminae. Geobiology 11: 527–548. [Google Scholar]
  • Duwiquet H, Arbaret L, Guillou-Frottier L, Heap MJ, Bellanger M. 2019. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geothermal Energy 7: 33. [Google Scholar]
  • Eardley AJ. 1938. Sediments of Great Salt Lake, Utah. AAPG Bulletin 22: 1305–1411. [Google Scholar]
  • Farias F, Szatmari P, Bahniuk A, França AB. 2019. Evaporitic carbonates in the pre-salt of Santos Basin – Genesis and tectonic implications. Marine and Petroleum Geology 105: 251–272. [Google Scholar]
  • Fedorchuk ND, Dornbos SQ, Corsetti FA, Isbell JL, Petryshyn VA, Bowles JA, et al. 2016. Early non-marine life: Evaluating the biogenicity of Mesoproterozoic fluvial-lacustrine stromatolites. Precambrian Research 275: 105–118. [Google Scholar]
  • Flügel E. 2004. Microfacies of carbonate rocks: Analysis interpretation and application. Berlin: Springer, 976 p. [Google Scholar]
  • Folk RL. 1999. Nannobacteria and the precipitation of carbonate in unusual environments. Sediment. Geol. 126: 47–55. [Google Scholar]
  • Fouke BW. 2011. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 58: 170–219. [Google Scholar]
  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns RW, et al. 2000. Depositional facies and aqueous-solid geochemuistry and travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J. Sed. Res. A70: 565–585. [Google Scholar]
  • Freytet P. 1998. Non-marine, Permian to Holocene algae from France and adjacent countries. Annales de Paléontologie 84: 3–51. [Google Scholar]
  • Freytet P. 2000. Distribution and palaeoecology of non marine algae and stromatolites: II, the limagne of allier Oligo-Miocene lake (central France). Annales de Paléontologie 86: 3–57. [Google Scholar]
  • Freytet P, Plet A. 1996. Modern freshwater microbial carbonates: the Phormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France). Facies 34: 219–238. [Google Scholar]
  • Freytet P, Verrecchia EP. 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45: 535–563. [Google Scholar]
  • Gal F, Brach M, Braibant G, Bény C, Michel K. 2012. What can be learned from natural analogue studies in view of CO2 leakage issues in carbon capture and storage applications? Geochemical case study of Sainte-Marguerite area (French Massif Central). International Journal of Greenhouse Gas Control 10: 470–485. [Google Scholar]
  • Galloway W. 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional system. Society of Economic Paleontologists and Mineralogist (SEPM), Special Publication 31: 127–156. [Google Scholar]
  • Garrett P. 1970. Phanerozoic stromatolites: Noncompetitive ecologic restriction by grazing and burrowing animals. Science 169: 171–173. [Google Scholar]
  • Genter A, Giot D, Lieutenant N, Nehlig P, Rocher P, Roig J-Y, et al. 2003. Méthodologie de l’inventaire géothermique des Limagnes : projet COPGEN. Compilation des données. BRGM/RP-52644-FR. Orléans, France : BRGM. [Google Scholar]
  • Ginsburg RN. 1991. Controversies about stromatolites: Vices and virtues. In: Müller DW, McKenzie JA, Weissert H, eds. Controversies in Modern Geology. London, UK: Academic Press, pp. 25–36. [Google Scholar]
  • Ginsburg RN, Planavsky NJ. 2008. Diversity of Bahamian microbialite substrates. In: Dilek Y, Furnes H, Muehlenbachs K, eds. Links between Geological Processes, Microbial Activities & Evolution of Life, 4. Dordrecht: Springer Netherlands, pp. 177–195. [Google Scholar]
  • Giot D, Gentilhomme P, Bouiller R, Clozier L, Fleury R, Gagnière G, et al. 1976. Notice de la carte géologique 1/50 000e, Saint Pourçain sur Sioule. BRGM 16. [Google Scholar]
  • Goër de Hervé A. 2000. Peperites from the Limagne Trench (Auvergne, French Massif Central): A distinctive facies of phreatomagmatic pyroclastic. History of a semantic drift. In: Leyrit H, Montenant C, eds. Volcaniclastic Rocks from Magmas to Sediments. Amsterdam: Gordon and Breach Science Publishers, pp. 91–110. [Google Scholar]
  • Gomes JP, Bunevich RB, Tedeschi LR, Tucker ME, Whitaker FF. 2020. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Marine and Petroleum Geology 113: 104176. [Google Scholar]
  • Gong E, Xu J, Wang T, Liang Y, Gao F. 2017. Microbial–caddisfly bioherms in the Early Cretaceous Yixian Formation in the Yixian Basin, Western Liaoning, China. Cretaceous Research 78: 127–138. [Google Scholar]
  • Gorin G. 1975. Étude palynostratigraphique des sédiments paléogènes de la Grande Limagne (Massif central, France) : avec applications de la statistique et de l’informatique. Bulletin du BRGM, 147–181. [Google Scholar]
  • Gradziński M. 2010. Factors controlling growth of modern tufa: Results of a field experiment. Geological Society, London, Special Publications 336: 143–191. [Google Scholar]
  • Grolier J, Tchimichkian G. 1963. Connaissances nouvelles sur la geologie du socle de la Limagne d’apres les sondages de la Regie autonome des petroles. Bulletin de la Société Géologique de France S7-V: 930–937. [Google Scholar]
  • Guo X, Chafetz HS. 2012. Large tufa mounds, Searles Lake, California. Sedimentology 59: 1509–1535. [Google Scholar]
  • He X, Chen Z-Q, Lu Z, Li J, Hu W, Li S, Xu Z. 2015. Exceptionally preserved caddisfly larval cases (Insecta) from the lower Cretaceous of the Liupanshan basin, Western China. Journal of Earth Science 26: 192–202. [Google Scholar]
  • Herlinger R Jr, Zambonato EE, De Ros LF. 2017. Influence of diagenesis on the quality of Lower Cretaceous pre-salt lacustrine carbonate reservoirs from Northern Campos Basin, Offshore Brazil. Journal of Sedimentary Research 87: 1285–1313. [Google Scholar]
  • Hines ME, Visscher PT, Teske AP, Devereux R. 2007. Sulfur cycling. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD, eds. Manual of Environmental Microbiology. Washington DC: ASM Press, pp. 618–639. [Google Scholar]
  • Hugueney M. 1984. Évolution du paléoenvironnement dans le tertiaire de Limagne (Massif Central, France) à partir des faunes de mammifères. Geobios 17: 385–391. [Google Scholar]
  • Hugueney M. 1997. Biochronologie mammalienne dans le Paléogène et le Miocène inférieur du Centre de la France : synthèse réactualisée. In: Aguilar J-P, Legendre S, Michaux J, eds. Actes du Congrès BiochroM’97, 21. Mémoires et Travaux de l’ Institut de Montpellier de l’École Pratique des Hautes Études, Montpellier, pp. 417–430. [Google Scholar]
  • Hugueney M, Tachet H, Escuillié F. 1990. Caddisfly pupae from the Miocene indusial limestone of Saint-Gérand-le-Puy, France. Paleontology 33: 495–502. [Google Scholar]
  • Hugueney M, Poidevin J-L, Bodergat A-M, Caron J-B, Guérin C. 1999. Des mammifères de l’Aquitanien inférieur à La Roche-Blanche-Gergovie (Puy-de-Dôme, France), révélateurs de l’activité post-oligocène du rift en Limagne de Clermont. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 328: 847–852. [Google Scholar]
  • Hugueney M, Berthet D, Bodergat A-M, Escuillié F, Mourer-Chauviré C, Wattinne A. 2003. La limite Oligocène-Miocène en Limagne : changements fauniques chez les mammifères, oiseaux et ostracodes des différents niveaux de Billy-Créchy (Allier, France). Geobios 36: 719–731. [Google Scholar]
  • Hurst P, Judge S, Werthmann E, Sheban M, Luna E, Reynolds R. 2018. An analysis of caddisfly larval cases from domal bioherms in the Upper Green River formation, White Hill Cuesta, Ephraim, Utah. In: AAPG ACE. AAPG Datapages. [Google Scholar]
  • Hutchinson MF. 1988. Calculation of hydrologically sound digital elevation models. In: Proceedings of the Third International Symposium on Spatial Data Handling, 133, International Geographical Union Sydney. [Google Scholar]
  • Hutchinson MF. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211–232. [Google Scholar]
  • Hyžný M, Šimo V, Starek D. 2015. Ghost shrimps (Decapoda: Axiidea: Callianassidae) as producers of an Upper Miocene trace fossil association from sublittoral deposits of Lake Pannon (Vienna Basin, Slovakia). Palaeogeography, Palaeoclimatology, Palaeoecology 425: 50–66. [Google Scholar]
  • Janecke SU, Evans JP. 2016. The Great Salt Lake fault and its microbial mounds. In: Presentations for the annual Utah Fault Parameters Working Group (UQFPWG), Feb 10, 2016, pp. 239–274. Available from http://files.geology.utah.gov/ghp/workgroups/pdf/uqfpwg/UQFPWG-2016_Presentations.pdf. [Google Scholar]
  • Janecke SU, Evans JP. 2017. Revised structure and correlation of the East Great Salt Lake, North Promontory, Rozel and Hansel Valley fault zones revealed by the 2015–2016 low stand of Great Salt Lake. In: Lund WL, Emerman SH, Wang W, Zanazzi A, eds. Geology and Resources of the Wasatch: Back to Front. Utah Geol. Assoc. Publ., Vol. 46, pp. 295–360. [Google Scholar]
  • Javor BJ, Castenholz RW. 1984. Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico. In: Cohen Y, Castenholz RW, Halvorsen HO, eds. Microbial Mats-Stromatolites. New York: Allan R. Liss, pp. 149–170. [Google Scholar]
  • Jones WJ, Stugard CE, Jannasch HW. 1989. Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch. Microbiol. 151: 314–319. [Google Scholar]
  • Kano A, Matsuoka J, Kojo T, Fujii H. 2003. Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 243–262. [Google Scholar]
  • Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A. 1991. Largest known microbialites discovered in Lake Van. Nature 349: 605–608. [Google Scholar]
  • Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake–the role of climate, vegetation, and land-use history. Journal of Paleolimnology 30: 307–320. [Google Scholar]
  • Kreuser T. 1995. Tectonic and climatic controls of lacustrine sedimentation in pre-rift and rift settings in the Permian-Triassic of East Africa. Journal of Paleolimnology 13: 3–19. [Google Scholar]
  • Lang J. 1984. Un environnement carbonaté palustro-lacustre et hydrothermal : le barrage quaternaire du Dragon (Bassin de Bamyan – Afghanistan Central). Geobios 17: 251–260. [Google Scholar]
  • Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD, et al. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nature Geoscience 9: 145–149. [Google Scholar]
  • Leggitt VL, Cushman RA. 2001. Complex caddisfly-dominated bioherms from the Eocene Green River Formation. Sedimentary Geology 145: 377–396. [Google Scholar]
  • Leggitt VL, Biaggi RE, Buchheim HP. 2007. Palaeoenvironments associated with caddisfly-dominated microbial-carbonate mounds from the Tipton Shale Member of the Green River Formation: Eocene Lake Gosiute. Sedimentology 54: 661–699. [Google Scholar]
  • Lima BEM, De Ros LF. 2019. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology 383: 55–81. [Google Scholar]
  • Loewen MA, Leggitt VL, Buchheim HP. 1999. Caddisfly (Trichoptera) larval cases from Eocene Fossil Lake, Fossil Butte National Monument. NPS/NRGRD/GRDTR-99/03, National Park Service Paleontological Research, United States Department of the Interior National Parks Service, Geological Resource Division Lakewood, CO, USA. [Google Scholar]
  • Mackay RJ, Wiggins GB. 1979. Ecological diversity in Trichoptera. Annual Review of Entomology 24: 185–208. [Google Scholar]
  • Madsen DB, Rhode D, Grayson DK, Broughton JM, Livingston SD, Hunt J, et al. 2001. Late Quaternary environmental change in the Bonneville basin, Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 167: 243–271. [Google Scholar]
  • Mallard E. 1890. Sur la lussatite, nouvelle variété minérale cristallisée de silice. Bulletin de Minéralogie 13: 63–66. [Google Scholar]
  • Manzo E, Perri E, Tucker ME. 2012. Carbonate deposition in a fluvial tufa system: processes and products (Corvino Valley-southern Italy): Carbonate fluvial tufa deposition, processes and products. Sedimentology 59: 553–577. [Google Scholar]
  • Megonigal JP, Hines ME, Visscher PT. 2003. Anaerobic metabolism and production of trace gases. In: Holland HD, Turekian KK, eds. Treatise on Geochemistry, Vol. 8. Elsevier, pp. 317–424. [Google Scholar]
  • Mello MR, De Azambuja Filho NC, Bender AA, Barbanti SM, Mohriak W, Schmitt P, et al. 2013. The Namibian and Brazilian southern South Atlantic petroleum systems: are they comparable analogues? Geological Society, London, Special Publications 369: 249–266. [Google Scholar]
  • Merle O, Michon L. 2001. The formation of the West European Rift; a new model as exemplified by the Massif Central area. Bulletin de la Société Géologique de France 172(2): 213–221. [Google Scholar]
  • Merle O, Michon L, Camus G, de Goer A. 1998. L’extension oligocène sur la transversale septentrionale du rift du Massif Central. Bulletin de la Société Géologique de France 169: 615–626. [Google Scholar]
  • Merz-Preiß M, Riding R. 1999. Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sedimentary Geology 126(1-4): 103–124 [Google Scholar]
  • Michon L. 2000. Dynamique de l’extension continentale : application au Rift Ouest-Européen par l’étude de la province du Massif Central. PhD Thesis, Université Blaise Pascal, Clermont-Ferrand II, 266 p. [Google Scholar]
  • Michon L, Merle O. 2001. The evolution of the Massif Central Rift; spatio-temporal distribution of the volcanism. Bulletin de la Société Géologique de France 172: 201–211. [Google Scholar]
  • Middleton V, Coniglio M, Hardie LA, Longstaffe FJ. 2005. Encyclopedia of sediments and sedimentary rocks, pp. 928. [Google Scholar]
  • Morange A, Heritier F, Villemin J. 1971. Contribution de l’exploration pétrolière à la connaissance structurale et sédimentaire de la Limagne, dans le Massif Central. In: Géologie, géomorphologie et structure profonde du Massif Central français. Symp. J. Jung, Clermont-Ferrand, pp. 295–308. [Google Scholar]
  • Mtelela C, Roberts EM, Downie R, Hendrix MS. 2016. Interplay of structural, climatic, and volcanic controls on late quaternary lacustrine–deltaic sedimentation patterns in the Western Branch of the East African Rift System, Rukwa Rift Basin, Tanzania. Journal of Sedimentary Research 86: 1179–1207. [Google Scholar]
  • Muniz MC, Bosence DWJ. 2015. Pre-salt microbialites from the Campos Basin (offshore Brazil): image log facies, facies model and cyclicity in lacustrine carbonates. Geological Society, London, Special Publications 418: 221–242. [Google Scholar]
  • Olariu C, Bhattacharya JP. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research 76: 212–233. [Google Scholar]
  • Owen RB, Crossley R. 1992. Spatial and temporal distribution of diatoms in sediments of lake Malawi, central Africa, and ecological implications. Journal of Paleolimnology 7: 55–71. [Google Scholar]
  • Pace A, Bourillot R, Bouton A, Vennin E, Galaup S, Bundeleva I, et al. 2016. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Scientific Reports 6: 31495. [Google Scholar]
  • Pace A, Bourillot R, Bouton A, Vennin E, Braissant O, Dupraz C, et al. 2018. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis. Geobiology 16: 378–398. [Google Scholar]
  • Pache M, Reitner J, Arp G. 2001. Geochemical evidence for the formation of a large miocene “travertine” mound at a sublacustrine spring in a soda lake (Wallerstein castle rock, nördlinger ries, Germany). Facies 45: 211–230. [Google Scholar]
  • Paik IS. 2005. The oldest record of microbial-caddisfly bioherms from the Early Cretaceous Jinju Formation, Korea: occurrence and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 218: 301–315. [Google Scholar]
  • Payandi-Rolland D, Roche A, Vennin E, Visscher PT, Amiotte-Suchet P, Thomas C, et al. 2019. Carbonate precipitation in mixed cyanobacterial biofilms forming freshwater microbial tufa. Minerals 9(7): 409. [Google Scholar]
  • Pedley HM. 1990. Classification and environmental models of cool freshwater tufas. Sed. Geol. 68: 143–154. [Google Scholar]
  • Pedley M. 1992. Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation. Sed. Geol. 79: 255–274. [Google Scholar]
  • Pedley M. 2014. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments. Sedimentology 61: 22–40. [Google Scholar]
  • Pelletier H. 1972. Notes géologiques sur la Limagnes. Revue des sciences naturelles d’Auvergne 38: 7–19. [Google Scholar]
  • Pentecost A. 2005. Travertine. Berlin: Springer-Verlag, 445 p. [Google Scholar]
  • Perri E, Manzo E, Tucker ME. 2012. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa. Sediment. Geol. 263-264: 16–29. [Google Scholar]
  • Perrier G, Ruegg JC. 1973. Structure profonde du Massif Central français. Ann. Geophys. 29: 435–502. [Google Scholar]
  • Pettijohn FJ, Potter PE, Siever R. 2012. Sand and sandstone. Berlin: Springer-Verlag, 618 p. [Google Scholar]
  • Platt NH. 1989. Climatic and tectonic controls on sedimentation of a Mesozoic lacustrine sequence: The purbeck of the Western Cameros Basin, Northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 187–197. [Google Scholar]
  • Platt NH, Wright VP. 1991. Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadon P, Cabrera L, Kelts K, eds. Lacustrine Facies Analysis. Oxford, UK: Blackwell Publishing Ltd, pp. 57–74. [Google Scholar]
  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, et al. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992. [Google Scholar]
  • Reis OM. 1921. Erläuterungen zu dem Blatte Donnersberg (Nr. XXI) der Geognostische Karte von Bayern: 1: 100 000. Piloty & Loehle, 320 p. [Google Scholar]
  • Renaut RW, Owen RB, Ego JK. 2017. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes. Journal of African Earth Sciences 129: 623–646. [Google Scholar]
  • Rey R. 1964. L’Oligocène et le Miocène inférieur de la Limagne Bourbonnaise. Revue scientifique du Bourbonnais, 56–81. [Google Scholar]
  • Rey R. 1971. Biostratigraphie des bassins tertiaires du Massif Central. In: Géologie, géomorphologie et structure profonde du Massif Central. Symp. J. Jung. Clermont-Ferrand, pp. 309–330. [Google Scholar]
  • Riding R. 1979. Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany. Sedimentology 26: 645–680. [Google Scholar]
  • Riding R. 2008. Abiogenic, microbial and hybrid authigenic crusts: Components of Precambrian stromatolites. Geologica Croatica 61: 105–111. [Google Scholar]
  • Riding R. 2011. Microbialites, stromatolites, and thrombolites. In: Encyclopedia of Geobiology. Springer, pp. 635–654. [Google Scholar]
  • Riding R, Virgogne A. 2020. Hybrid Carbonates: in situ abiotic, microbial and skeletal co-precipitates. Earth Sciences Review 208: 1–23. [Google Scholar]
  • Rieger T. 1992. Calcareous tufa formations. Searles Lake and Mono Lake: California Geology 45: 99–109. [Google Scholar]
  • Rihs S, Condomines M, Poidevin J-L. 2000. Long-term behaviour of continental hydrothermal systems: U-series study of hydrothermal carbonates from the French Massif Central (Allier Valley). Geochimica et Cosmochima Acta 64: 3189–3199. [Google Scholar]
  • Riveline J, Giot D, Farjanel G, Pacquet A. 1988. Mise en évidence de dépôts Eocène moyen (Lutétien supérieur) à la base des formations Tertiaires du bassin de Moulins (Allier, France) : implications tectoniques. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 306: 55–62. [Google Scholar]
  • Roche A, Vennin E, Bouton A, Olivier N, Wattinne A, Bundeleva I, et al. 2018. Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central). Palaeogeography, Palaeoclimatology, Palaeoecology 504: 34–59. [Google Scholar]
  • Roche A, Vennin E, Bundeleva I, Bouton A, Payandi-Rolland D, Amiotte-Suchet P, et al. 2019. The role of the substrate on the mineralization potential of microbial mats in a modern freshwater river (Paris Basin, France). Minerals 9: 359. [Google Scholar]
  • Rodríguez-Berriguete Á, Alonso-Zarza AM. 2019. Controlling factors and implications for travertine and tufa deposition in a volcanic setting. Sedimentary Geology 381: 13–28. [Google Scholar]
  • Ronchi P, Cruciani F. 2015. Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy. AAPG Bulletin 99(4): 711–734. [Google Scholar]
  • Rosen MR, Arehart GB, Lico MS. 2004. Exceptionally fast growth rate of < 100-yr-old tufa, Big Soda Lake, Nevada: Implications for using tufa as a paleoclimate proxy. Geology 32(5): 409–412. [Google Scholar]
  • Rosenfeld WD. 1947. Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria. Journal of Bacteriology 54: 664–665. [Google Scholar]
  • Rowland JV, Sibson RH. 2004. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4: 259–283. [Google Scholar]
  • Saint Martin JP, Saint Martin S. 2016. Calcareous microbialites and associated biota in the mediterranean coastal lagoons and ponds of southern france: a key for ancient bioconstructions? Geo-Eco-Marina 55. [Google Scholar]
  • Scherer CMS, Lavina ELC, Dias Filho DC, Oliveira FM, Bongiolo DE, Aguiar ES. 2007. Stratigraphy and facies architecture of the fluvial–aeolian–lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sedimentary Geology 194: 169–193. [Google Scholar]
  • Scherler L, Mennecart B, Hiard F, Becker D. 2013. Evolutionary history of hoofed mammals during the Oligocene–Miocene transition in Western Europe. Swiss J. Geosci. 106: 349–369. [Google Scholar]
  • Schlager W. 2000. Carbonate depositional systems − From factories to sequences. Mitt. Ges. Geol. Bergbaustud. Österr 43: 119–121. [Google Scholar]
  • Schlager W. 2003. Benthic carbonate factories of the Phanerozoic. Int. J. Earth Sci. (Geol. Rundsch.) 92: 445–464. [Google Scholar]
  • Schnurrenberger D, Russell J, Kelts K. 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29: 141–154. [Google Scholar]
  • Schuster M, Nutz A. 2018. Lacustrine wave-dominated clastic shorelines: modern to ancient littoral landforms and deposits from the Lake Turkana Basin (East African Rift System, Kenya). Journal of Paleolimnology 59: 221–243. [Google Scholar]
  • Seard C, Camoin G, Rouchy J-M, Virgone A. 2013. Composition, structure and evolution of a lacustrine carbonate margin dominated by microbialites: Case study from the Green River formation (Eocene; Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 381-382: 128–144. [Google Scholar]
  • Serra H, Petelet-Giraud E, Négrel P. 2003. Inventaire du potentiel géothermique de la Limagne (COPGEN). Synthèse bibliographique de la géochimie des eaux thermales. In: Rap. BRGM/RP-52587-FR. [Google Scholar]
  • Shapiro RS. 2000. A comment on the systematic confusion on thrombolites. Palaios 15: 166–169. [Google Scholar]
  • Sissingh W. 2001. Tectonostratigraphy of the West Alpine Foreland: Correlation of tertiary sedimentary sequences, changes in eustatic sea-level and stress regimes. Tectonophysics 333: 361–400. [Google Scholar]
  • Skilling IP, White JDL, McPhie J. 2002. Peperite: A review of magma–sediment mingling. Journal of Volcanology and Geothermal Research 114: 1–17. [Google Scholar]
  • Sobolev SV, Zeyen H, Granet M, Achauer U, Bauer C, Werling F, et al. 1997. Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics 275: 143–164. [Google Scholar]
  • Souza RS, Arienti LM, Viana SM, Falcão LC, Cuglieri MA, Silva Filho RP, et al. 2018. Petrology of the hydrothermal and evaporitic continental cretaceous (Aptian) pre-salt carbonates and associated rocks, South Atlantic Santos Basin, Offshore Brazil. In: AAPG ACE 2018. [Google Scholar]
  • Swirydczuk K, Wilkison BH, Smith GR. 1979. The Pliocene Glenns Ferry Oolite: Lake-margin Carbonate Deposition in the Southwestern Snake River Plain. SEPM Journal of Sedimentary Research 49. [Google Scholar]
  • Szatmari P, Milani EJ. 2016. Tectonic control of the oil-rich large igneous-carbonate-salt province of the South Atlantic rift. Marine and Petroleum Geology 77: 567–596. [Google Scholar]
  • Taylor MP, Drysdale RN, Carthew KD. 2004. The formation and environmental significance of calcite rafts in tropical tufa depositing rivers of northern Australia. Sedimentology 51: 1089–1101. [Google Scholar]
  • Teboul PA, Durlet C, Gaucher EC, Virgone A, Girard JP, Curie J, et al. 2016. Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers. Sedimentary Geology 334: 97–114. [Google Scholar]
  • Tinsley BE, Grubbs SA, Yates JM, Meier AJ. 2016. Notes on the ecological roles of Podostemum ceratophyllum Michx, 1803 and Cladophora glomerata (L.) Kütz, 1843 in the habitat and diet of riverine hydropsychid caddisflies (Trichoptera). Aquatic Insects 37: 225–239. [Google Scholar]
  • Tucker ME, Wright VP. 1990. Carbonate sedimentology. Oxford, UK: Blackwell Publishing Ltd. [Google Scholar]
  • Utescher T, Mosbrugger V, Ashraf AR. 2000. Terrestrial climate evolution in north-west Germany over the last 25 million years. Palaios 15: 430–449. [Google Scholar]
  • Vanden Berg MD. 2019. Domes, rings, ridges, and polygons: characteristics of microbialites from Utah’s Great Salt Lake. The Sedimentary Record 17(1): 4–10. [Google Scholar]
  • Vasconcelos C, McKenzie JA. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research 67: 378–390. [Google Scholar]
  • Vennin E, Bouton A, Bourillot R, Pace A, Roche A, Brayard A, et al. 2019. The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology 66: 165–204. [Google Scholar]
  • Visscher PT, Stolz JF. 2005. Microbial mats as bioreactors: populations, processes, and products. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 87–100. [Google Scholar]
  • Visscher PT, Beukema J, van Gemerden H. 1991. In situ characterization of sediments: Measurements ofoxygen and sulfide profiles with a novel combined needle electrode. Limnology and Oceanography 36: 1476–1480. [Google Scholar]
  • Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA. 1998. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling. American Mineralogist 83: 1482–1493. [Google Scholar]
  • Visscher PT, Reid RP, Bebout BM. 2000. Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922. [Google Scholar]
  • Wasson MS, Saller A, Andres M, Self D, Lomando A. 2012. Lacustrine microbial carbonate facies in core from the lower Cretaceous Toca Formation, Block 0, offshore Angola. In: American Association of Petroleum Geologists, Hedberg Conference: Microbial Carbonate Reservoir Characterization. [Google Scholar]
  • Wattinne A. 2004. Évolution d’un environnement carbonate lacustre à bioconstructions, en limagne bourbonnaise (Oligo-Miocène, Massif Central, France). Paris : Muséum national d’histoire naturelle, 195 p. [Google Scholar]
  • Wattinne A, Vennin E, De Wever P. 2003. Evolution d’un environnement carbonaté lacustre à stromatolithes, par l’approche paléo-écologique (carrière de Montaigu-le-Blin, bassin des Limagnes, Allier, France). Bulletin de la Société Géologique de France 174: 243–260. [Google Scholar]
  • Wattinne A, Lécuyer C, Vennin E, Chateauneuf JJ, Martineau F. 2018. Environmental changes around the Oligocene/Miocene boundary in the Limagne graben, Massif Central, France. Bulletin de la Société Géologique de France, 189, 1–19. [Google Scholar]
  • Wilks M, Kendall JM, Nowacki A, Biggs J, Wookey J, Birhanu Y, et al. 2017. Seismicity associated with magmatism, faulting and hydrothermal circulation at Aluto Volcano, Main Ethiopian Rift. Journal of Volcanology and Geothermal Research 340: 52–67. [Google Scholar]
  • Winsborough BM, Seeler JS, Golubic S, Folk RL, Maguire B. 1994. Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from Northeastern Mexico. In: Bertrand-Sarfati J, Monty C, eds. Phanerozoic Stromatolites II. Dordrecht: Springer Netherlands, pp. 71–100. [Google Scholar]
  • Wright VP. 2021. The mantle, CO2 and the giant Aptian chemogenic lacustrine carbonate factory of the South Atlantic: Some carbonates are made, not born. Sedimentology. https://doi.org/10.1111/sed.12835. [Google Scholar]
  • Wright VP, Barnett AJ. 2015. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. Geological Society, London, Special Publications 418: 209–219. [Google Scholar]
  • Yemane K, Siegenthaler C, Kelts K. 1989. Lacustrine environment during Lower Beaufort (Upper Permian) Karoo deposition in Northern Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 165–178. [Google Scholar]
  • Zachos J. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693. [Google Scholar]
  • Zeyen H, Novak O, Landes M, Prodehl C, Driad L, Hirn A. 1997. Refraction-seismic investigations of the northern Massif Central (France). Tectonophysics 275: 99–117. [Google Scholar]
  • Zhu X, Li S, Wu D, Zhu S, Dong Y, Zhao D, et al. 2017. Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. Journal of Petroleum Science and Engineering 149: 591–602. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.