Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 42
Number of page(s) 44
DOI https://doi.org/10.1051/bsgf/2021031
Published online 18 October 2021
  • Advokaat EL, van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, et al. 2014. Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth and Planetary Science Letters 401: 183–195. https://doi.org/10.1016/j.epsl.2014.06.012. [Google Scholar]
  • Agirrezabala LM. 2015. Syndepositional forced folding and related fluid plumbing above a magmatic laccolith: Insights from outcrop (Lower Cretaceous, Basque-Cantabrian Basin, western Pyrenees. GSA Bulletin 127(7-8): 982–1000. [Google Scholar]
  • Albarède F, Michard-Vitrac A. 1978. Age and significance of the North Pyrenean metamorphism. Earth and Planetary Science Letters 40(3): 327–332. https://doi.org/10.1016/0012-821X(78)90157-7. [Google Scholar]
  • Aldega L, Viola G, Casas-Sainz A, Marcén M, Román-Berdiel T, van der Lelij R. 2019. Unraveling multiple thermotectonic events accommodated by crustal-scale faults in northern Iberia, Spain: Insights from K-Ar dating of clay gouges. Tectonics 38(10): 3629–3651. https://doi.org/10.1029/2019TC005585. [Google Scholar]
  • Algarra AM. 1987. Evolucion geologica alpina del contacto entre las zonas internas y las zonas externas de la cordillera Bética (sector centro-occidental). Universidad de Granada. [Google Scholar]
  • Alonso A, Mas JR. 1993. Control tectónico e influencia del eustatismo en la sedimentación del Cretácico inferior de la cuenca de Los Cameros. [Google Scholar]
  • Alonso J, Pulgar J, García-Ramos J, Barba P. 1996. In: Friend PF, Dabrio CJ, eds. W5 Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain. Tertiary Basins of Spain): The stratigraphic record of crustal kinematics, pp. 214–227. [Google Scholar]
  • Amaru ML. 2007. Global travel time tomography with 3-D reference models (Vol. 274). Utrecht University. [Google Scholar]
  • Anadón P, Rera LCAB, Guimera J. 1985. The southeastern margin of the Ebro Basin. [Google Scholar]
  • Anadón P, Cabrera L, Julià R, Roca E, Rosell L. 1989. Lacustrine oil-shale basins in Tertiary grabens from NE Spain (Western European rift system). Palaeogeography, Palaeoclimatology, Palaeoecology 70(1-3):7–28. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. https://doi.org/10.1002/2017TC004670. [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth 11(4): 1313–1332. https://doi.org/10.5194/se-11-1313-2020. [Google Scholar]
  • Angrand P, Ford M, Ducoux M, De Saint Blanquat M. 2021. Extension and early orogenic inversion along the basal detachment of a hyper-extended rifted margin: An example from the Central Pyrenees (France). Journal of the Geological Society. https://doi.org/10.1144/jgs2020-003. [Google Scholar]
  • Arche A, López Gómez J. 1996. Origin of the Permian-Triassic Iberian Basin, central-eastern Spain. Tectonophysics 266(1-4): 443–464. [Google Scholar]
  • Augier R, Agard P, Monié P, Jolivet L, Robin C, Booth-Rea G. 2005. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P-T-d-t paths for the Nevado-Filabride complex. Journal of Metamorphic Geology 23(5): 357–381. [Google Scholar]
  • Aurell M, Fregenal-Martínez M, Bádenas B, Muñoz-García MB, Élez J, Meléndez N, et al. 2019a. Middle Jurassic–Early Cretaceous tectono-sedimentary evolution of the southwestern Iberian Basin (central Spain): Major palaeogeographical changes in the geotectonic framework of the Western Tethys. Earth-Science Reviews 199(July): 102983. https://doi.org/10.1016/j.earscirev.2019.102983. [Google Scholar]
  • Aurell M, Fregenal-Martínez M, Bádenas B, Muñoz-García MB, Élez J, Meléndez N, et al. 2019b. Middle Jurassic-Early Cretaceous tectono-sedimentary evolution of the southwestern Iberian Basin (central Spain): Major palaeogeographical changes in the geotectonic framework of the Western Tethys. Earth-Science Reviews 199(October): 102983. https://doi.org/10.1016/j.earscirev.2019.102983. [Google Scholar]
  • Azambre B, Rossy M, Lago M. 1987. Caractéristiques pétrologiques des dolérites tholéiitiques d’âge triasique ( ophites) du domaine pyrénéen. Bulletin de Minéralogie 110(4), 379–396. [Google Scholar]
  • Azema J. 1977. Nouvelles donnees micropaleontologiques, stratigraphiques et paleogeographiques sur le portlandien et le neocomien de sardaigne. [Google Scholar]
  • Balanyá JC, García-Dueñas V, Azañón JM, Sánchez-Gómez M. 1997. Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics). Gibraltar Arc. Tectonics 16(2): 226–238. [Google Scholar]
  • Ballèvre M, Martínez Catalan JR, López-Carmona A, Pitra P, Abati J, Fernández RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French-Spanish project. Geological Society Special Publication 405(1): 77–113. https://doi.org/10.1144/SP405.13. [Google Scholar]
  • Ballèvre M, Manzotti P, Dal Piaz GV. 2018. Pre-alpine (Variscan) inheritance: A key for the location of the future Valaisan Basin (Western Alps). Tectonics 37(3): 786–817. https://doi.org/10.1002/2017TC004633. [Google Scholar]
  • Barca S, Costamagna LG. 2010. New stratigraphic and sedimentological investigations on the Middle Eocene-Early Miocene continental successions in southwestern Sardinia (Italy): Paleogeographic and geodynamic implications. Comptes Rendus Geoscience 342(2): 116–125. [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35(8): 1843–1862. https://doi.org/10.1002/2015TC004019. [Google Scholar]
  • Barnett-Moore N, Müller DR, Williams S, Skogseid J, Seton M. 2018. A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research 30: 160–185. https://doi.org/10.1111/bre.12214. [Google Scholar]
  • Bartrina MT, Cabrera L, Jurado MJ, Guimerà J, Roca E. 1992. Evolution of the central Catalan margin of the Valencia trough (western Mediterranean). Tectonophysics 203(1-4): 219–247. [Google Scholar]
  • Baudrimont A, Dubois P. 1977. Un bassin Mésogéen du domaine Peri-Alpin : le Sud-Est de la France. Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine 1: 261–308. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720381078. [Google Scholar]
  • Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, et al. 2011. Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Research 23(3): 309–331. https://doi.org/10.1111/j.1365-2117.2010.00492.x. [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth 105(B4): 8121–8145. https://doi.org/10.1029/1999jb900390. [Google Scholar]
  • Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33(6): 1055–1088. [Google Scholar]
  • Bellon H, Brousse R. 1977. Le magmatisme periméditerraneen occidental ; essai de synthèse. Bulletin de La Société Géologique de France 7(3): 469–480. [Google Scholar]
  • Bellon H, Coulon C, Edel J-B. 1977. Le déplacement de la Sardaigne ; synthèse des données géochronologiques, magmatiques et paléomagnetiques. Bulletin de La Société Géologique de France 7(4): 825–831. [Google Scholar]
  • Beltrando M, Rubatto D, Compagnoni R, Lister G. 2007. Was the Valaisan basin floored by oceanic crust? Evidence of Permian magmatism in the Versoyen Unit (Valaisan domain, NW Alps). Ofioliti 32(2): 85–99. [Google Scholar]
  • Berástegui XA, García-Senz JM, Losantos M. 1990. Tecto-sedimentary evolution of the Organyà extensional basin (central south Pyrenean unit, Spain) during the Lower Cretaceous. Bulletin de La Société Géologique de France 6(2): 251–264. [Google Scholar]
  • Bergerat F. 1987. Stress fields in the European platform at the time of Africa-Eurasia collision. Tectonics 6(2): 99–132. [Google Scholar]
  • Bestani L, Espurt N, Lamarche J, Floquet M, Philip J, Bellier O, et al. 2015. Structural style and evolution of the Pyrenean-Provence thrust belt, SE France. Bulletin de La Société Géologique de France 186(4-5): 223–241. https://doi.org/10.2113/gssgfbull.186.4-5.223. [Google Scholar]
  • Bestani L, Espurt N, Lamarche J, Bellier O, Hollender F. 2016. Reconstruction of the Provence chain evolution, southeastern France. Tectonics 35(6): 1506–1525. https://doi.org/10.1002/2016TC004115. [Google Scholar]
  • Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H. 2001. Radiolarite ages in Alpine-Mediterranean ophiolites: Constraints on the oceanic spreading and the Tethys-Atlantic connection. Bulletin of the Geological Society of America 113(1): 129–143. https://doi.org/10.1130/0016-7606(2001)113<0129:RAIAMO>2.0.CO;2. [Google Scholar]
  • Billi A, Faccenna C, Bellier O, Minelli L, Neri G, Piromallo C, et al. 2011. Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bulletin de La Societe Geologique de France 182(4): 279–303. https://doi.org/10.2113/gssgfbull.182.4.279. [Google Scholar]
  • Bois C. 1993. Initiation and evolution of the Oligo-Miocene rift basins of southwestern Europe: Contribution of deep seismic reflection profiling. Tectonophysics 226(1-4): 227–252. [Google Scholar]
  • Bois C, Ecors Scientific Party. 1990. Major geodynamic processes studied from the ECORS deep Seismic profiles in France and adjacent areas. Tectonophysics 173(1-4): 397–410. https://doi.org/10.1016/0040-1951(90)90233-X. [Google Scholar]
  • Bouillin J-P, Durand-Delga M, Olivier P. 1986. Betic-Rifian and Tyrrhenian Arcs: Distinctive features, genesis and development stages. Developments in Geotectonics 21: 281–304. https://doi.org/10.1016/B978-0-444-42688-8.50017-5. [Google Scholar]
  • Bouillin J-P, Mouterde R, Olivier P, Majesté-Menjoulas C. 1988. Le Jurassique de Longobucco (Calabre, Italie), a la jonction de la Tethys ligure et de la Tethys maghrebine. Bulletin de La Société Géologique de France 4(1): 93–103. [Google Scholar]
  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, Munschy M. 2011. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience 4(8), 549–553. https://doi.org/10.1038/nphys1201. [Google Scholar]
  • Bruguier O, Becq-Giraudon JF, Clauer N, Maluski H. 2003. From late Visean to Stephanian: Pinpointing a two-stage basinal evolution in the Variscan belt. A case study from the Bosmoreau basin (French Massif Central) and its geodynamic implications. International Journal of Earth Sciences 92(3): 338–347. [Google Scholar]
  • Brunet C, Monié P, Jolivet L, Cadet J-P. 2000. Migration of compression and extension in the Tyrrhenian Sea: Insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321(1): 127–155. https://doi.org/10.1016/S0040-1951(00)00067-6. [Google Scholar]
  • Brunet M-F. 1986. The influence of the evolution of the Pyrenees on adjacent basins. Tectonophysics 129(1-4): 343–354. https://doi.org/10.1016/0040-1951(86)90260-X. [Google Scholar]
  • Brunet M-F. 1994. Subsidence in the Parentis Basin (Aquitaine, France): Implications of the thermal evolution. In: Hydrocarbon and Petroleum Geology of France. Heidelberg, Berlin: Springer Berlin Heidelberg, pp. 187–198. https://doi.org/10.1007/978-3-642-78849-9_14. [Google Scholar]
  • Butler RWH. 1985. The restoration of thrust systems and displacement continuity around the Mont Blanc massif, NW external Alpine thrust belt. Journal of Structural Geology 7(5): 569–582. https://doi.org/10.1016/0191-8141(85)90029-X. [Google Scholar]
  • Cámara P. 2017. Salt and strike-slip tectonics as main drivers in the structural evolution of the Basque-Cantabrian Basin, Spain. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, pp. 371–393. [Google Scholar]
  • Caron J.-M. 1994. Metamorphism and deformation in Alpine Corsica. Schweizerische Mineralogische Und Petrographische Mitteilungen 74(1): 105–114. [Google Scholar]
  • Casas-Sainz AM, Gil-Imaz A. 1998. Extensional subsidence, contractional folding and thrust inversion of the eastern Cameros basin, northern Spain. International Journal of Earth Sciences 86(4): 802–818. [Google Scholar]
  • Casquet C, Galindo Francisco M, González Casado JM, Alonso Millán Á. 1992. El metamorfismo en la cuenca de los Cameros. Geocronología e implicaciones tectónicas. Geogaceta 11: 22–25. [Google Scholar]
  • Cassinis G, Perotti CR, Ronchi A. 2012. Permian continental basins in the southern Alps (Italy) and peri-mediterranean correlations. International Journal of Earth Sciences 101(1): 129–157. [Google Scholar]
  • Cavazza W, DeCelles PG, Fellin MG, Paganelli L. 2007. The Miocene Saint-Florent Basin in northern Corsica: stratigraphy, sedimentology, and tectonic implications. Basin Research 19(4): 507–527. [Google Scholar]
  • Cerbiá JM, López-Ruiz J, Doblas M, Martins LT, Munha J. 2003. Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain): Implications on the origin of the Central Atlantic Magmatic Province. Journal of Petrology 44(3): 547–568. https://doi.org/10.1093/petrology/44.3.547. [Google Scholar]
  • Chalouan A, Michard A. 1990. The Ghomarides nappes, Rif coastal range, Morocco: A variscan chip in the Alpine belt. Tectonics 9(6): 1565–1583. [Google Scholar]
  • Channell JET, Kozur HW. 1997. How many oceans? Meliata, Vardar, Pindos oceans in Mesozoic Alpine paleogeography. Geology 25(2): 183–186. https://doi.org/10.1130/0091-7613(1997)025<0183:HMOMVA>2.3.CO;2. [Google Scholar]
  • Cheilletz A, Ruffet G, Marignac C, Kolli O, Gasquet D, Féraud G, et al. 1999. 40Ar/39Ar dating of shear zones in the Variscan basement of Greater Kabylia (Algeria). Evidence of an Eo-Alpine event at 128 Ma (Hauterivian-Barremian boundary): Geodynamic consequences. Tectonophysics 306(1): 97–116. [Google Scholar]
  • Cherchi A. 1976. Présence de galets du Vraconien supérieur-Cénomanien basal de provenance ibérique dans le Paléogène continental du sud-ouest de la Sardaigne. Bulletin de La Société Géologique de France 18(5): 1217–1219. [Google Scholar]
  • Cherchi A, Montadert L. 1982. Oligo-Miocene rift of Sardinia and the early history of the western Mediterranean basin. Nature 298(5876): 736–739. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8(1): 1–8. https://doi.org/10.1038/s41598-018-27889-x. [Google Scholar]
  • Choukroune P, Mediavila F, Vauthier A, Munoz JA, Servei CP. 1989. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of and orogenic belt. Tectonics 8(1): 23–39. [Google Scholar]
  • Choukroune P, Roure F, Pinet B, Ecors Pyrenees Team. 1990. Main results of the ECORS Pyrenees profile. Tectonophysics 173(1-4). https://doi.org/10.1016/0040-1951(90)90234-Y. [Google Scholar]
  • Christophoul F, Soula JC, Brusset S, Elibana B, Roddaz M, Bessiere G, et al. 2003. Time, place and mode of propagation of foreland basin systems as recorded by the sedimentary fill: Examples of the Late Cretaceous and Eocene retro-foreland basins of the north-eastern Pyrenees. Geological Society Special Publication 208(1995): 229–252. https://doi.org/10.1144/GSL.SP.2003.208.01.11. [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6(2): 643–668. https://doi.org/10.5194/se-6-643-2015. [Google Scholar]
  • Comas MC, García-Dueñas V, Jurado MJ. 1992. Neogene tectonic evolution of the Alboran Sea from MCS data. Geo-Marine Letters 12(2-3): 157–164. [Google Scholar]
  • Conway-Jones BW, Roberts GG, Fichtner A, Hoggard M. 2019. Neogene Epeirogeny of Iberia. Geochemistry, Geophysics, Geosystems 20(2): 1138–1163. https://doi.org/10.1029/2018GC007899. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North Pyrenean Zone). Comptes Rendus – Geoscience 348(3-4): 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [Google Scholar]
  • Costamagna LG. 2016. The Middle Jurassic Alpine Tethyan unconformity and the eastern Sardinia-Corsica Jurassic high: A sedimentary and regional analysis. [Google Scholar]
  • Costamagna LG, Barca S, Lecca L. 2007. The Bajocian–Kimmeridgian Jurassic sedimentary cycle of eastern Sardinia: Stratigraphic, depositional and sequence interpretation of the new “Baunei Group”. Comptes Rendus Geoscience 339(9): 601–612. [Google Scholar]
  • Crespo-Blanc A, de Lamotte DF. 2006. Structural evolution of the external zones derived from the Flysch trough and the South Iberian and Maghrebian paleomargins around the Gibraltar arc: A comparative study. Bulletin de La Société Géologique de France 177(5): 267–282. [Google Scholar]
  • Cuevas J, Tubía JM. 1999. The discovery of scapolite marbles in the Biscay Synclinorium (Basque-Cantabrian basin, Western Pyrenees): Geodynamic implications. Terra Nova 11(6): 259–265. [Google Scholar]
  • Curnelle R. 1983. Evolution structuro-sedimentaire du Trias et de l’Infra-Lias d’Aquitaine. Bulletin des Centres de Recherches Exploration-Production Elf- Aquitaine 7(1): 69–99. [Google Scholar]
  • Curnelle R, Dubois P. 1986. Évolution mésozoique des grands bassins sédimentaires Français ; bassins de Paris, d’Aquitaine et du Sud-Est. Bulletin de La Société Géologique de France 2(4): 529–546. [Google Scholar]
  • Curry ME, van der Beek P, Huismans RS, Wolf SG, Muñoz JA. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters 515: 26–37. https://doi.org/10.1016/j.epsl.2019.03.009. [Google Scholar]
  • Danišík M, Kuhlemann J, Dunkl I, Székely B, Frisch W. 2007. Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics 26(1). [Google Scholar]
  • Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the Western Betic Flysch: Implications for the geodynamics of South Iberian Margin and Alboran Domain. Tectonics 39(7): 1–29. https://doi.org/10.1029/2020TC006093. [Google Scholar]
  • de Graciansky PC, Lemoine M. 1988. Early Cretaceous extensional tectonics in the southwestern French Alps; A consequence of North Atlantic rifting during Tethyan spreading. Bulletin de La Société Géologique de France 4(5): 733–737. [Google Scholar]
  • De Vicente G, Vegas R, Muñoz-Martín A, Van Wees JD, Casas-Sáinz A, Sopeña A, et al. 2009. Oblique strain partitioning and transpression on an inverted rift: The Castilian Branch of the Iberian Chain. Tectonophysics 470(3-4): 224–242. https://doi.org/10.1016/j.tecto.2008.11.003. [Google Scholar]
  • De Vicente G, Cloetingh S, Van Wees JD, Cunha PP. 2011. Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics 502(1-2): 38–61. https://doi.org/10.1016/j.tecto.2011.02.007. [Google Scholar]
  • Debelmas J. 2001. La zone subbriançonnaise et la zone valaisanne savoyarde dans le cadre de la tectonique des plaques. Géologie Alpine 77: 3–8. [Google Scholar]
  • Decarlis A, Maino M, Dallagiovanna G, Lualdi A, Masini E, Seno S, et al. 2014. Salt tectonics in the SW Alps (Italy-France): From rifting to the inversion of the European continental margin in a context of oblique convergence. Tectonophysics 636: 293–314. https://doi.org/10.1016/j.tecto.2014.09.003. [Google Scholar]
  • Decarlis A, Beltrando M, Manatschal G, Ferrando S, Carosi R. 2017. Architecture of the distal Piedmont-Ligurian rifted margin in NW Italy: Hints for a flip of the Rift System Polarity. Tectonics 36(11): 2388–2406. https://doi.org/10.1002/2017TC004561. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North Pyrenean Zone (Urdach and Lherz). Geochemistry, Geophysics, Geosystems 18(2): 631–652. https://doi.org/10.1002/2016GC006690. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Van der Beek PA, Bernet M, Pik R. 2019. Unraveling the Mesozoic and Cenozoic tectonothermal evolution of the eastern Basque-Cantabrian zone–western Pyrenees by low-temperature thermochronology. Tectonics 38(9): 3436–3461. [Google Scholar]
  • Del Río P, Barbero L, Stuart FM. 2009. Exhumation of the Sierra de Cameros (Iberian Range, Spain): Constraints from low-temperature thermochronology. Geological Society, London, Special Publications 324(1): 153–166. [Google Scholar]
  • Denèle Y, Paquette JL, Olivier P, Barbey P. 2012. Permian granites in the Pyrenees: The Aya pluton (Basque Country). Terra Nova 24(2): 105–113. https://doi.org/10.1111/j.1365-3121.2011.01043.x. [Google Scholar]
  • Dercourt J, Vrielynck B. 1993. Atlas Tethys paleoenvironmental maps. Gauthier-Villars. [Google Scholar]
  • Dercourt J, Gaetani M, Vrielynck B. 2000. Atlas Peri-Tethys palaeogeographical maps. CCGM. [Google Scholar]
  • Dewey JF, Pitman WC, Ryan WBF, Bonnin J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84(10): 3137–3180. [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389(1-2): 1–33. https://doi.org/10.1016/j.tecto.2004.06.011. [Google Scholar]
  • Dieni I, Massari F, Médus J. 2008. Age, depositional environment and stratigraphic value of the Cuccuru’e Flores Conglomerate: insight into the Palaeogene to Early Miocene geodynamic evolution of Sardinia. Bulletin de La Société Géologique de France 179(1): 51–72. [Google Scholar]
  • Ducoux M, Jolivet L, Callot JP, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal evolution of a fossil hyperextended Rift Basin. Tectonics 38(11): 3881–3915. https://doi.org/10.1029/2018TC005348. [Google Scholar]
  • Durand-Delga M, Rossi P, Olivier P, Puglisi D. 2000. Situation structurale et nature ophiolitique de roches basiques jurassiques associees aux flyschs maghrebins du Rif (Maroc) et de Sicile (Italie). Comptes Rendus de l’Academie de Sciences – Serie IIa: Sciences de la Terre et des Planetes 331(1): 29–38. https://doi.org/10.1016/S1251-8050(00)01378-1. [Google Scholar]
  • Edel J-B, Casini L, Oggiano G, Rossi P, Schulmann K. 2014. Early Permian 90° clockwise rotation of the Maures-Estérel-Corsica-Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geological Society Special Publication 405(1): 1–29. https://doi.org/10.1144/SP405.10. [Google Scholar]
  • Edel J-B, Schulmann K, Lexa O, Diraison M, Géraud Y. 2015. Permian clockwise rotations of the Ebro and Corso-Sardinian blocks during Iberian-Armorican oroclinal bending: Preliminary paleomagnetic data from the Catalan Coastal Range (NE Spain). Tectonophysics 657: 172–186. https://doi.org/10.1016/j.tecto.2015.07.002. [Google Scholar]
  • Edel JB, Schulmann K, Lexa O, Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Science Reviews 177(November 2017): 589–612. https://doi.org/10.1016/j.earscirev.2017.12.007. [Google Scholar]
  • Espurt N, Hippolyte J-C, Saillard M, Bellier O. 2012. Geometry and kinematic evolution of a long-living foreland structure inferred from field data and cross-section balancing, the Sainte-Victoire System, Provence, France. Tectonics 31(4): n/a–n/a. https://doi.org/10.1029/2011TC002988. [Google Scholar]
  • Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019a. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764(December 2018), 25–45. https://doi.org/10.1016/j.tecto.2019.04.026. [Google Scholar]
  • Espurt N, Wattellier F, Philip J, Hippolyte J-C, Bellier O, Bestani L. 2019b. Mesozoic halokinesis and basement inheritance in the eastern Provence fold-thrust belt, SE France. Tectonophysics 766: 60–80. [Google Scholar]
  • Etheve N, de Lamotte DF, Mohn G, Martos R, Roca E, Blanpied C. 2016. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting. Tectonophysics 682: 35–55. [Google Scholar]
  • Etheve N, Mohn G, Frizon De Lamotte D, Roca E, Tugend J, Gómez-Romeu J. 2018. Extreme mesozoic crustal thinning in the Eastern Iberia Margin: The example of the Columbrets Basin (Valencia Trough). Tectonics 37(2): 636–662. https://doi.org/10.1002/2017TC004613. [Google Scholar]
  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, et al. 2014. Mantle dynamics in the Mediterranean. Reviews of Geophysics 52(3): 283–332. [Google Scholar]
  • Fellin MG, Zattin M, Picotti V, Reiners PW, Nicolescu S. 2005. Relief evolution in northern Corsica (western Mediterranean): Constraints on uplift and erosion on long-term and short-term timescales. Journal of Geophysical Research: Earth Surface 110(F1). [Google Scholar]
  • Fernandez L, Bosch D, Bruguier O, Hammor D, Caby R, Arnaud N, et al. 2020. Vestiges of a fore-arc oceanic crust in the Western Mediterranean: Geochemical constraints from North-East Algeria. Lithos 370: 105649. [Google Scholar]
  • Fernández O. 2019. The Jurassic evolution of the Africa-Iberia conjugate margin and its implications on the evolution of the Atlantic-Tethys triple junction. Tectonophysics 750(December 2018): 379–393. https://doi.org/10.1016/j.tecto.2018.12.006. [Google Scholar]
  • Ferrandini J, Gattacceca J, Ferrandini M, Deino A, Janin M-C. 2003. Chronostratigraphie et paléomagnétisme des dépôts oligo-miocènes de Corse: implications géodynamiques pour l’ouverture du bassin liguro-provençal. Bulletin de La Société Géologique de France. [Google Scholar]
  • Filleaudeau P-Y, Mouthereau F, Pik R. 2012. Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: Insights from detrital zircon U/Pb and (U-Th)/He thermochronometry. Basin Research 24(4): 401–417. https://doi.org/10.1111/j.1365-2117.2011.00535.x. [Google Scholar]
  • Fillon C, Pedreira D, van der Beek P, Huismans RS, Barbero L, Pulgar JA. 2016. Alpine exhumation of the central Cantabrian mountains, northwest Spain. Tectonics 35(2): 339–356. [Google Scholar]
  • Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, et al. 2021. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. Journal of the Geological Society 178(2): jgs2020-079. https://doi.org/10.1144/jgs2020-079. [Google Scholar]
  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters 173(3): 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3. [Google Scholar]
  • Flinch JF, Soto JI. 2017. Allochthonous Triassic and Salt Tectonic Processes in the Betic-Rif Orogenic Arc. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, pp. 417–446. https://doi.org/10.1016/B978-0-12-809417-4.00020-3. [Google Scholar]
  • Ford M, Lickorish WH. 2004. Foreland basin evolution around the western Alpine arc. Geological Society Special Publication 221: 39–63. https://doi.org/10.1144/GSL.SP2004.221.01.04. [Google Scholar]
  • Ford M, Duchêne S, Gasquet D, Vanderhaeghe O. 2006. Two-phase orogenic convergence in the external and internal SW Alps. Journal of the Geological Society 163(5): 815–826. https://doi.org/10.1144/0016-76492005-034. [Google Scholar]
  • Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. Journal of the Geological Society 173(3): 419–437. https://doi.org/10.1144/jgs2015-129. [Google Scholar]
  • Fournier M, Jolivet L, Goffé B, Dubois R. 1991. Alpine Corsica metamorphic core complex. Tectonics 10(6): 1173–1186. [Google Scholar]
  • Frasca G, Dielforder A, Ford M, Vergés J. 2017. Cretaceous to Tertiary paleogeographic reconstructions of the Alps-Pyrenees linking zone. In: EGU General Assembly Conference Abstracts, 7021. https://ui.adsabs.harvard.edu/abs/2017EGUGA.19.7021F. [Google Scholar]
  • Frizon De Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau J-C, Blanpied C, Ringenbach J-C. 2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 30(3): n/a–n/a. https://doi.org/10.1029/2010TC002691. [Google Scholar]
  • Frizon De Lamotte D, Fourdan B, Leleu S, Leparmentier F, De Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics 34(5): 1009–1029. https://doi.org/10.1002/2014TC003760. [Google Scholar]
  • Gaina C, Roest WR, Müller RD. 2002. Late Cretaceous Cenozoic deformation of northeast Asia. Earth and Planetary Science Letters 197: 273–286. [Google Scholar]
  • Galán-Abellán B, López-Gómez J, Barrenechea JF, Marzo M, De la Horra R, Arche A. 2013. The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sedimentary Geology 296: 86–102. https://doi.org/10.1016/j.sedgeo.2013.08.006. [Google Scholar]
  • Gallastegui J, Pulgar JA, Gallart J. 2002. Initiation of an active margin at the North Iberian continent-ocean transition. Tectonics 21(4): 15-1-15-14. https://doi.org/10.1029/2001TC901046. [Google Scholar]
  • Garcés M, López-Blanco M, Valero L, Beamud E, Muñoz JA, Oliva-Urcia B, et al. 2020. Paleogeographic and sedimentary evolution of the South Pyrenean foreland basin. Marine and Petroleum Geology 113: 104105. https://doi.org/10.1016/j.marpetgeo.2019.104105. [Google Scholar]
  • García-Dueñas V, Martinez Martinez JM, Orozco M, Soto JI. 1988. Plis-nappes, cisaillements syn-à post-métamorphiques et cisaillement ductiles-fragiles en distension dans les Nevado-Filábrides (Cordillères Bétiques, Espagne). Comptes Rendus de l’Académie Des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de La Terre 307(11): 1389–1395. [Google Scholar]
  • García-Lasanta C, Casas-Sainz A, Villalaín JJ, Oliva-Urcia B, Mochales T, Speranza F. 2017. Remagnetizations used to unravel large-scale fold kinematics: A case study in the Cameros Basin (Northern Spain). Tectonics 36(4): 714–729. https://doi.org/10.1002/2016TC004459. [Google Scholar]
  • García-Mondéjar J, Agirrezabala LM, Aranburu A, Fernández-Mendiola PA, Gómez-Pérez I, López-Horgue M, et al. 1996. Aptian-Albian tectonic pattern of the Basque-Cantabrian Basin (northern Spain). Geological Journal 31(1): 13–45. https://doi.org/10.1002/(SICI)1099-1034(199603)31:1<13::AID-GJ689>3.0.CO;2-Y. [Google Scholar]
  • García-Senz J, Ja RA, Pedrera A. 2019. 5.2 The North Iberian Continental Margin. In: The Geology of Iberia: A Geodynamic Approach: Volume 3: The Alpine Cycle. Springer, p. 171. [Google Scholar]
  • Gaspar-Escribano JM, Garcia-Castellanos D, Roca E, Cloetingh SAPL. 2004. Cenozoic vertical motions of the Catalan Coastal Ranges (NE Spain): The role of tectonics, isostasy, and surface transport. Tectonics 23(1): n/a–n/a. https://doi.org/10.1029/2003TC001511. [Google Scholar]
  • Gattacceca J, Deino A, Rizzo R, Jones DS, Henry B, Beaudoin B, et al. 2007. Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth and Planetary Science Letters 258(3-4): 359–377. https://doi.org/10.1016/j.epsl.2007.02.003. [Google Scholar]
  • Gibson M, Sinclair HD, Lynn GJ, Stuart FM. 2007. Late- to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Research 19(3): 323–334. https://doi.org/10.1111/j.1365-2117.2007.00333.x. [Google Scholar]
  • Gimeno-Vives O, Mohn G, Bosse V, Haissen F, Zaghloul MN, Atouabat A, et al. 2019. The Mesozoic margin of the Maghrebian Tethys in the Rif belt (Morocco): Evidence for polyphase rifting and related magmatic activity. Tectonics 38(8): 2894–2918. [Google Scholar]
  • Gimeno-Vives O, Frizon De Lamotte D, Leprêtre R, Haissen F, Atouabat A, Mohn G. 2020. The structure of the Central-Eastern External Rif (Morocco); Poly-phased deformation and role of the under-thrusting of the North-West African paleo-margin. Earth-Science Reviews 205(May): 103198. https://doi.org/10.1016/j.earscirev.2020.103198. [Google Scholar]
  • Girod M, Girod N. 1977. Contribution de la pétrologie à la connaissance de l’évolution de la Méditerranée occidentale depuis l’Oligocène. Bulletin de La Société Géologique de France 7(3): 481–488. [Google Scholar]
  • Glennie KW, Higham J, Stemmerik L. 2003. Permian. In Evans D, Graham C, Armour A, Bathurst P, eds. The Millennium Atlas; Petroleum Geology of the Central and Northern North Sea. Geological Society of London, pp. 91–103. [Google Scholar]
  • Goldsmith PJ, Hudson G, Van Veen P. 2003. Triassic. In: Evans D, Graham C, Armour A, Bathurst P, eds. The Millennium Atlas; Petroleum Geology of the Central and northern North Sea. Geological Society of London, pp. 105–127. [Google Scholar]
  • Gómez JJ, Fernández-López SR. 2006. The Iberian Middle Jurassic carbonate-platform system: Synthesis of the palaeogeographic elements of its eastern margin (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 236(3-4): 190–205. https://doi.org/10.1016/j.palaeo.2005.11.008. [Google Scholar]
  • Gómez-Paccard M, López-Blanco M, Costa E, Garcés M, Beamud E, Larrasoaña JC. 2012. Tectonic and climatic controls on the sequential arrangement of an alluvial fan/fan-delta complex (Montserrat, Eocene, Ebro Basin, NE Spain. Basin Research 24(4): 437–455. [Google Scholar]
  • Gómez-Pugnaire MT, Ulmer P, López-Sánchez-Vizcaíno V. 2000. Petrogenesis of the mafic igneous rocks of the Betic Cordilleras: A field, petrological and geochemical study. Contributions to Mineralogy and Petrology 139(4): 436–457. https://doi.org/10.1007/s004100000148. [Google Scholar]
  • Gorini C, Le Marrec A, Mauffret A. 1993. Contribution to the structural and sedimentary history of the Gulf of Lions (western Mediterranean) from the ECORS profiles, industrial seismic profiles and well data. Bulletin de La Société Géologique de France 164(3): 353–363. [Google Scholar]
  • Gretter N, Ronchi A, López-Gómez J, Arche A, De la Horra R, Barrenechea J, et al. 2015. The Late Palaeozoic-Early Mesozoic from the Catalan Pyrenees (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan palaeogeography. Earth-Science Reviews 150: 679–708. https://doi.org/10.1016/j.earscirev.2015.09.001. [Google Scholar]
  • Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights into the crustal-scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: A case study of the eastern Pyrenees. Tectonics 37(2): 450–476. https://doi.org/10.1002/2017TC004731. [Google Scholar]
  • Guerrera F, Martín-Martín M. 2014. Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys). Bulletin de La Société Géologique de France 185(5): 329–341. https://doi.org/10.2113/gssgfbull.185.5.329. [Google Scholar]
  • Guerrera F, Martín-Martín M, Perrone V, Tramontana M. 2005. Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean): Consequences for Western Mediterranean geodynamics. Terra Nova 17(4): 358–367. https://doi.org/10.1111/j.1365-3121.2005.00621.x. [Google Scholar]
  • Guerrera F, Mancheño MA, Martín-Martín M, Raffaelli G, Rodríguez-Estrella T, Serrano F. 2014. Paleogene evolution of the External Betic Zone and geodynamic implications. Geologica Acta 12(3): 171–192. [Google Scholar]
  • Guerrera F, Martín-Martín M, Tramontana M. 2019. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. International Geology Review 00(00): 1–22. https://doi.org/10.1080/00206814.2019.1706056. [Google Scholar]
  • Guimerà J, Salas R, Vergés J, Casas A. 1996. Mesozoic extension and Tertiary compressive inversion in the Iberian Chain: results from the analysis of a gravity profile. Geogaceta 20(7): 1691–1694. [Google Scholar]
  • Guimerà J, Mas R, Alonso Á. 2004. Intraplate deformation in the NW Iberian Chain: Mesozoic extension and Tertiary contractional inversion. Journal of the Geological Society 161(2): 291–303. https://doi.org/10.1144/0016-764903-055. [Google Scholar]
  • Guiraud M, Seguret M. 1985. A releasing solitary overstep model for the late Jurassic-Early Cretaceous (Wealdian) Soria strike-slip basin (Northern Spain). [Google Scholar]
  • Handy MR, Schmid S, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102(3-4): 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002. [Google Scholar]
  • Handy MR, Ustaszewski K, Kissling E. 2015. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. International Journal of Earth Sciences 104(1): 1–26. https://doi.org/10.1007/s00531-014-1060-3. [Google Scholar]
  • Hanne D, White N, Lonergan L. 2003. Subsidence analyses from the Betic Cordillera, southeast Spain. Basin Research 15(1): 1–21. https://doi.org/10.1046/j.1365-2117.2003.00192.x. [Google Scholar]
  • Heeremans M, Timmerman MJ, Kirstein LA, Faleide JI. 2004. New constraints on the timing of Late Carboniferous-Early Permian volcanism in the central North Sea. Geological Society Special Publication 223(1): 177–194. https://doi.org/10.1144/GSL.SP2004.223.01.08. [Google Scholar]
  • Heine C, Zoethout J, Müller RD. 2013. Kinematics of the South Atlantic rift. Solid Earth 4(2): 215–253. https://doi.org/10.5194/se-4-215-2013. [Google Scholar]
  • Huyghe D, Mouthereau F, Emmanuel L. 2012. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees. Earth and Planetary Science Letters 345-348: 131–141. https://doi.org/10.1016/j.epsl.2012.06.035. [Google Scholar]
  • Huyghe D, Mouthereau F, Segalen L, Furió M. 2020. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ18O) paleo-altimetry in eastern Pyrenees. Scientific Reports 10(1): 1–8. [Google Scholar]
  • Iribarren L, Vergés J, Fernàndez M. 2009. Sediment supply from the Betic-Rif orogen to basins through Neogene. Tectonophysics 475(1): 68–84. https://doi.org/10.1016/j.tecto.2008.11.029. [Google Scholar]
  • Jabaloy-Sánchez A, Talavera C, Rodríguez-Peces MJ, Vázquez-Vílchez M, Evans NJ. 2021. U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): Implications for Carboniferous-Permian paleogeography of Pangea. Gondwana Research 90: 135–158. https://doi.org/10.1016/j.gr.2020.10.013. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4): 1–24. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, Van Den Driessche J, et al. 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador. Terra Nova 29(2): 91–97. https://doi.org/10.1111/ter.12252. [Google Scholar]
  • Jolivet L, Faccenna C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19(6): 1095–1106. [Google Scholar]
  • Jolivet L, Daniel J-M, Fournier M. 1991. Geometry and kinematics of extension in Alpine Corsica. Earth and Planetary Science Letters 104(2-4): 278–291. https://doi.org/10.1016/0012-821X(91)90209-Z. [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, et al. 1998. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea. Journal of Geophysical Research: Solid Earth 103(B6): 12123–12160. https://doi.org/10.1029/97JB03616. [Google Scholar]
  • Jolivet L, Faccenna C, D’Agostino N, Fournier M, Worrall D. 1999. The kinematics of back-arc basins: Examples from the Tyrrhenian, Aegean and Japan Seas. Geological Society, London, Special Publications 164(1): 21–53. https://doi.org/10.1144/GSL.SP1999.164.01.04. [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: Late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776(December 2019): 228312. https://doi.org/10.1016/j.tecto.2019.228312. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, May D. 2020. Modes of propagation of continental break-up and associated oblique rift structures. Journal of Geophysical Research: Solid Earth 125(9): 1–27. https://doi.org/10.1029/2020JB019906. [Google Scholar]
  • Kerckhove C. 1969. La « zone du Flysch »dans les nappes de l’Embrunais-Ubaye (Alpes occidentales. Géologie Alpine 45: 5–204. [Google Scholar]
  • Kley J, Voigt T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36(11): 839–842. https://doi.org/10.1130/G24930A.1. [Google Scholar]
  • Kneller EA, Johnson CA, Karner GD, Einhorn J, Queffelec TA. 2012. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic. Computers and Geosciences 49: 217–230. https://doi.org/10.1016/j.cageo.2012.06.019. [Google Scholar]
  • Labails C, Olivet JL, Aslanian D, Roest WR. 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297(3-4): 355–368. https://doi.org/10.1016/j.epsl.2010.06.024. [Google Scholar]
  • Lacombe O, Jolivet L. 2005. Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 24(1): n/a–n/a. https://doi.org/10.1029/2004TC001673. [Google Scholar]
  • Lacombe O, Mouthereau F. 2002. Basement-involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees). Tectonics 21(4): 12-1-12–22. https://doi.org/10.1029/2001TC901018. [Google Scholar]
  • Lacombe O, Angelier J, Laurent P. 1992. Determining paleostress orientations from faults and calcite twins: a case study near the Sainte-Victoire Range (southern France). Tectonophysics 201(1-2): 141–156. https://doi.org/10.1016/0040-1951(92)90180-E. [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1): 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [Google Scholar]
  • Lagabrielle Y, Labaume P, De Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4): 1–26. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lahondère J-C, Lahondère D. 1988. Organisation structurale des « schistes lustrés » du Cap Corse (Haute Corse). Comptes Rendus de l’Académie Des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de La Terre 307(9): 1081–1086. [Google Scholar]
  • Laubscher HP. 1971. Das Alpen-Dinariden-Problem und die Palinspastik der südlichen tethys. Geologische Rundschau 60(3): 813–833. [Google Scholar]
  • Le Breton E, Handy MR, Molli G, Ustaszewski K. 2017. Post-20 Ma motion of the Adriatic Plate: New constraints from surrounding orogens and implications for crust-mantle decoupling. Tectonics 36(12): 3135–3154. https://doi.org/10.1002/2016TC004443. [Google Scholar]
  • Le Breton E, Brune S, Ustaszewski K, Zahirovic S, Seton M, Müller RD. 2021. Kinematics and extent of the Piemont-Liguria Basin – Implications for subduction processes in the Alps. Solid Earth 12(4): 885–913. https://doi.org/10.5194/se-12-885-2021. [Google Scholar]
  • Leleu S, Hartley AJ, van Oosterhout C, Kennan L, Ruckwied K, Gerdes K. 2016. Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic rift system of the Central Atlantic Domain. Earth-Science Reviews 158: 89–124. https://doi.org/10.1016/j.earscirev.2016.03.008. [Google Scholar]
  • Lemoine M. 1985. Structuration jurassique des Alpes occidentales et palinspastique de la Tethys ligure. Bulletin de La Société Géologique de France I(1): 127–137. https://doi.org/10.2113/gssgfbull.I.1.127. [Google Scholar]
  • Leprêtre R, Frizon De Lamotte D, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF – Earth Sciences Bulletin 189(2). https://doi.org/10.1051/bsgf/2018009. [Google Scholar]
  • Lonergan L, White N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16(3): 504–522. [Google Scholar]
  • López-Blanco M. 2002. Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain). Sedimentary Geology 146(1-2): 133–154. https://doi.org/10.1016/S0037-0738(01)00170-1. [Google Scholar]
  • López-Gómez J, Alonso-Azcárate J, Arche A, Arribas J, Barrenechea JF, Borruel-Abadía V, et al. 2019. Permian-Triassic rifting stage. In: The Geology of Iberia: A Geodynamic Approach. Springer, pp. 29–112. [Google Scholar]
  • Loreto MF, Zitellini N, Ranero CR, Palmiotto C, Prada M. 2020. Extensional tectonics during the Tyrrhenian back-arc basin formation and a new morpho-tectonic map. Basin Research August 2019, 1–21. https://doi.org/10.1111/bre.12458. [Google Scholar]
  • Lucas C. 1985. Le grès rouge du versant nord des Pyrénées : essai sur la géodynamique de dépôts continentaux du Permien et du Trias. Université de Toulouse. [Google Scholar]
  • Maaté A, Martín-Algarra A, Martín-Martín M, Serra-Kiel J. 2000. Nouvelles donnéessur le Paléocène-Éocène des zones internes bético-rifaines. Geobios 33(4): 409–418. https://doi.org/10.1016/S0016-6995(00)80074-1. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new southern North Atlantic Isochron map: Insights into the drift of the Iberian Plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
  • Maillard A, Mauffret A, Watts AB, Torné M, Pascal G, Buhl P, et al. 1992. Tertiary sedimentary history and structure of the Valencia trough (western Mediterranean). Tectonophysics 203(1-4): 57–75. [Google Scholar]
  • Maillard A, Jolivet L, Lofi J, Thinon I, Couëffé R, Canva A, et al. 2020. Transfer zones and associated volcanic province in the eastern Valencia Basin: Evidence for a hot rifted margin? Marine and Petroleum Geology 119(May): 104419. https://doi.org/10.1016/j.marpetgeo.2020.104419. [Google Scholar]
  • Malusà MG, Faccenna C, Garzanti E, Polino R. 2011. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth and Planetary Science Letters 310(1-2): 21–32. https://doi.org/10.1016/j.epsl.2011.08.002. [Google Scholar]
  • Malusà MG, Danišík M, Kuhlemann J. 2016. Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Research 31: 135–149. [Google Scholar]
  • Manatschal G, Müntener O. 2009. A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473(1-2): 4–19. [Google Scholar]
  • Mancilla F de L, Booth-Rea G, Stich D, Pérez-Peña JV, Morales J, Azañón JM, et al. 2015. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics 663: 225–237. https://doi.org/10.1016/j.tecto.2015.06.028. [Google Scholar]
  • Manzotti P, Ballèvre M, Zucali M, Robyr M, Engi M. 2014. The tectonometamorphic evolution of the Sesia-Dent Blanche nappes (internal Western Alps): Review and synthesis. Swiss Journal of Geosciences 107(2-3): 309–336. [Google Scholar]
  • Marroni M, Meneghini F, Pandolfi L. 2017. A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional Western Tethys: Evidence from the Northern Apennines. Tectonics 36(10): 2227–2249. https://doi.org/10.1002/2017TC004627. [Google Scholar]
  • Martí J, Mitjavila J, Roca E, Aparicio A. 1992. Cenozoic magmatism of the valencia trough (western mediterranean): Relationship between structural evolution and volcanism. Tectonophysics 203(1-4): 145–165. [Google Scholar]
  • Martín-Chivelet J, Chacón B. 2007. Event stratigraphy of the upper Cretaceous to lower Eocene hemipelagic sequences of the Prebetic Zone (SE Spain): Record of the onset of tectonic convergence in a passive continental margin. Sedimentary Geology 197(1-2): 141–163. https://doi.org/10.1016/j.sedgeo.2006.09.007. [Google Scholar]
  • Martín-Chivelet J, López-Gómez J, Aguado R, Arias C, Arribas J, Arribas ME, et al. 2019. The Late Jurassic–Early Cretaceous rifting. In: The Geology of Iberia: A Geodynamic Approach. Springer, pp. 169–249. [Google Scholar]
  • Martín-Martín M, Mamoune B El, Martín-Algarra A, Serra-Kiel J. 1997. La formation As, datée de l’Oligocène, est impliquée dans les charriages des unités malaguides supérieures de la Sierra Espuña (zones internes bétiques, province de Murcie, Espagne. Comptes Rendus de l’Académie Des Sciences – Series IIA – Earth and Planetary Science 325(11): 861–868. https://doi.org/10.1016/S1251-8050(99)80186-4. [Google Scholar]
  • Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace A, Perrone V, et al. 2009. Triassic continental rifting of Pangaea: direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. Journal of the Geological Society 166(3): 447–458. [Google Scholar]
  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284(5414): 616–618. https://doi.org/10.1126/science.284.5414.616. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences 103(6): 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [Google Scholar]
  • Masse J-P, Allemann J. 1982. Relations entre les séries carbonatées de plate-forme provençale et sarde au Crétacé inférieur. Cretaceous Research 3(1-2): 19–33. [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196(3-4): 309–337. [Google Scholar]
  • Maury P, Ricou LE. 1983. Le décrochement subbriançonnais: une nouvelle interprétation de la limite interne-externe des Alpes franco-italiennes. Revue de Géologie Dynamique et de Géographie Physique Paris 24 (1): 3–22. [Google Scholar]
  • McHone JG. 2000. Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophysics 316(3-4): 287–296. https://doi.org/10.1016/S0040-1951(99)00260-7. [Google Scholar]
  • Mencos J, Carrera N, Muñoz JA. 2015. Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees. Tectonics 34(7): 1452–1474. [Google Scholar]
  • Merle O, Michon L. 2001. The formation of the West European Rift; a new model as exemplified by the Massif Central area. Bulletin de La Societe Geologique de France 172(2): 213–221. https://doi.org/10.2113/172.2.213. [Google Scholar]
  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz J-A. 2009. Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters 287(3-4): 488–503. https://doi.org/10.1016/j.epsl.2009.08.036. [Google Scholar]
  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R, et al. 2006. Pressure-temperature-time constraints on the Maghrebide mountain building: Evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Geoscience 338(1-2): 92–114. https://doi.org/10.1016/j.crte.2005.11.011. [Google Scholar]
  • Milia A, Torrente MM. 2014. Early-stage rifting of the Southern Tyrrhenian region: The Calabria-Sardinia breakup. Journal of Geodynamics 81: 17–29. https://doi.org/10.1016/j.jog.2014.06.001. [Google Scholar]
  • Mohn G, Manatschal G, Beltrando M, Haupert I. 2014. The role of rift-inherited hyper-extension in Alpine-type orogens. Terra Nova 26(5): 347–353. https://doi.org/10.1111/ter.12104. [Google Scholar]
  • Mohn G, Karner GD, Manatschal G, Johnson CA. 2015. Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: A quantitative modelling approach. Geological Society Special Publication 413(1): 53–89. https://doi.org/10.1144/SP413.9. [Google Scholar]
  • Molli G, Brogi A, Caggianelli A, Capezzuoli E, Liotta D, Spina A, et al. 2020. Late Palaeozoic tectonics in Central Mediterranean: A reappraisal. Swiss Journal of Geosciences 113(1): 1–32. https://doi.org/10.1186/s00015-020-00375-1. [Google Scholar]
  • Monié P, Galindo-Zaldivar J, Lodeiro FG, Goffe B, Jabaloy A. 1991. 40Ar/39Ar geochronology of Alpine tectonism in the Betic Cordilleras (southern Spain). Journal of the Geological Society 148(2): 289–297. [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar study of cretaceous magmatism and metamorphism in the pyrenees: Age and length of rotation of the Iberian Peninsula. Tectonophysics 129(1-4): 257–273. https://doi.org/10.1016/0040-1951(86)90255-6. [Google Scholar]
  • Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33(12): 2283–2314. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Mouthereau F, Angrand P, Jourdon A, Ternois S, Fillon C, Calassou S, et al. 2021. Cenozoic mountain building and topographic evolution in Western Europe: Impact of billion years of lithosphere evolution and plate kinematics. BSGF – Earth Sciences Bulletin, this volume. [Google Scholar]
  • Müller RD, Royer JY, Cande SC, Roest WR, Maschenkov S. 1999. New constraints on the Late Cretaceous/Tertiary plate tectonic evolution of the Caribbean. In: Sedimentary Basins of the World (Vol. 4, pp. 33–59). Elsevier. [Google Scholar]
  • Müller DR, Cannon J, Qin X, Watson RJ, Gurnis M, Williams S, et al. 2018. GPlates: building a virtual earth through deep time. Geochemistry, Geophysics, Geosystems 19(7): 2243–2261. https://doi.org/10.1029/2018GC007584. [Google Scholar]
  • Müller DR, Zahirovic S, Williams SE, Cannon J, Seton M, Bower DJ, et al. 2019. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38(6): 1884–1907. https://doi.org/10.1029/2018TC005462. [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR, ed. Thrust Tectonics. Springer Netherlands, pp. 235–246. https://doi.org/10.1007/978-94-011-3066-0_21. [Google Scholar]
  • Murillas J, Mougenot D, Boillot G, Comas MC, Banda E, Mauffret A. 1990. Structure and evolution of the Galicia Interior Basin (Atlantic western Iberian continental margin. Tectonophysics 184: 297–319. [Google Scholar]
  • Muttoni G, Garzanti E, Alfonsi L, Cirilli S, Germani D, Lowrie W. 2001. Motion of Africa and Adria since the Permian: Paleomagnetic and paleoclimatic constraints from northern Libya. Earth and Planetary Science Letters 192(2): 159–174. https://doi.org/10.1016/S0012-821X(01)00439-3. [Google Scholar]
  • Neumann E-R, Olsen KH, Baldridge WS, Sundvoll B. 1992. The Oslo rift: A review. Tectonophysics 208(1-3): 1–18. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia-Newfoundland: implications for plate reconstructions. Terra Nova 29(1): 20–28. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2018. Kinematic evolution of the Southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics 37(1): 89–118. https://doi.org/10.1002/2017TC004495. [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 20(1): 131–195. [Google Scholar]
  • Olsen PE. 1997. Stratigraphic record of the Early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annual Review of Earth and Planetary Sciences 25(1): 337–401. https://doi.org/10.1146/annurev.earth.25.1.337. [Google Scholar]
  • Omodeo Salè S, Guimerà J, Mas R, Arribas J. 2014. Tectono-stratigraphic evolution of an inverted extensional basin: the Cameros Basin (north of Spain). International Journal of Earth Sciences 103(6): 1597–1620. https://doi.org/10.1007/s00531-014-1026-5. [Google Scholar]
  • Omodeo-Salé S, Salas R, Guimerà J, Ondrak R, Mas R, Arribas J, et al. 2017. Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-Central Spain) affected by very low- to low-grade metamorphism. Basin Research 29: 156–174. https://doi.org/10.1111/bre.12142. [Google Scholar]
  • Ortí F, Pérez-López A, Salvany JM. 2017. Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic-Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 471: 157–180. https://doi.org/10.1016/j.palaeo.2017.01.025. [Google Scholar]
  • Padel M, Clausen S, Álvaro JJ, Casas JM. 2018. Review of the ediacaran-lower ordovician (Pre-sardic) stratigraphic framework of the eastern pyrenees, southwestern Europe. Geologica Acta 16(4): 339–355. https://doi.org/10.1344/GeologicaActa2018.16.4.1. [Google Scholar]
  • Paquette J-L, Ménot R-P, Pin C, Orsini J-B. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: Evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chemical Geology 198(1-2): 1–20. [Google Scholar]
  • Parés JM, Banda E, Santanach P. 1988. Paleomagnetic results from the southeastern margin of the Ebro Basin (northeastern Spain): Evidence for a tertiary clockwise rotation. Physics of the Earth and Planetary Interiors 52(3-4): 267–282. https://doi.org/10.1016/0031-9201(88)90120-3. [Google Scholar]
  • Pastor-Galán D, Gutiérrez-Alonso G, Weil AB. 2020. The enigmatic curvature of Central Iberia and its puzzling kinematics. Solid Earth 11(4): 1247–1273. https://doi.org/10.5194/se-11-1247-2020. [Google Scholar]
  • Peace AL, Phethean J, Franke D, Foulger GR, Schiffer C, Welford JK, et al. 2019a. A review of Pangaea dispersal and large igneous provinces-in search of a causative mechanism. Earth-Science Reviews, November 2018: 102902. https://doi.org/10.1016/j.earscirev.2019.102902. [Google Scholar]
  • Peace AL, Welford JK, Ball PJ, Nirrengarten M. 2019b. Deformable plate tectonic models of the southern North Atlantic. Journal of Geodynamics 128(May): 11–37. https://doi.org/10.1016/j.jog.2019.05.005. [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research: Solid Earth 112(12): 1–19. https://doi.org/10.1029/2007JB005021. [Google Scholar]
  • Pedreira D, Afonso JC, Pulgar JA, Gallastegui J, Carballo A, Fernàndez M, et al. 2015. Geophysical-petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North-Iberian margin: geodynamic implications. Lithos 230: 46–68. https://doi.org/10.1016/j.lithos.2015.04.018. [Google Scholar]
  • Pedrera A, García-Senz J, Ayala C, Ruiz-Constán A, Rodríguez-Fernández LR, Robador A, et al. 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal-scale 3-D gravity inversion and geological cross-section. Tectonics 36(12): 3155–3177. https://doi.org/10.1002/2017TC004716. [Google Scholar]
  • Pedrera A, García-Senz J, Peropadre C, Robador A, López-Mir B, Díaz-Alvarado J, et al. 2020. The Getxo crustal-scale cross-section: Testing tectonic models in the Bay of Biscay-Pyrenean rift system. Earth-Science Reviews, 103429. [Google Scholar]
  • Pedrera A, Ruiz-Constán A, García-Senz J, Azor A, Marín-Lechado C, Ayala C, et al. 2020. Evolution of the South-Iberian paleomargin: From hyperextension to continental subduction. Journal of Structural Geology 138: 104122. [Google Scholar]
  • Pereira R, Alves TM. 2013. Crustal deformation and submarine canyon incision in a Meso-Cenozoic first-order transfer zone (SW Iberia, North Atlantic Ocean). Tectonophysics 601: 148–162. https://doi.org/10.1016/j.tecto.2013.05.007. [Google Scholar]
  • Pereira R, Alves TM, Mata J. 2017. Alternating crustal architecture in West Iberia: A review of its significance in the context of NE atlantic rifting. Journal of the Geological Society 174(3): 522–540. https://doi.org/10.1144/jgs2016-050. [Google Scholar]
  • Perrone V, Martín-Algarra A, Critelli S, Decandia FA, D’errico M, Estevez A, et al. 2006. “Verrucano” and “Pseudoverrucano” in the Central-Western Mediterranean Alpine Chains: palaeogeographical evolution and geodynamic significance. Geological Society, London, Special Publications 262(1): 1–43. [Google Scholar]
  • Philip J, Allemann J. 1982. Comparaison entre les plates-formes du Crétacé supérieur de Provence et de Sardaigne. Cretaceous Research 3(1-2), 35–45. [Google Scholar]
  • Platt JP, Vissers RLM. 1989. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17(6), 540–543. [Google Scholar]
  • Puga E, Fanning M, Díaz de Federico A, Nieto JM, Beccaluva L, Bianchini G, et al. 2011. Petrology, geochemistry and U-Pb geochronology of the Betic Ophiolites: Inferences for Pangaea break-up and birth of the westernmost Tethys Ocean. Lithos 124(3-4): 255–272. https://doi.org/10.1016/j.lithos.2011.01.002. [Google Scholar]
  • Puigdefàbregas C, Souquet P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129(1-4): 173–203. https://doi.org/10.1016/0040-1951(86)90251-9. [Google Scholar]
  • Pulgar JA, Gallart J, Fernández-Viejo G, Pérez-Estaún A, Álvarez-Marrón J, Group E. 1996. Seismic image of the Cantabrian Mountains in the western extension of the Pyrenees from integrated ESCIN reflection and refraction data. Tectonophysics 264(1-4): 1–19. [Google Scholar]
  • Quijada IE, Suárez González P, Benito Moreno MI, Mas Mayoral JR, Alonso Millán Á. 2010. Un ejemplo de llanura fluvio-deltaica influenciada por las mareas: el yacimiento de icnitas de Serrantes (Grupo Oncala, Berriasiense, Cuenca de Cameros N. de España). Geogaceta 49: 15–18. [Google Scholar]
  • Quintana L, Pulgar JA, Alonso JL. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics 663: 378–398. https://doi.org/10.1016/j.tecto.2015.08.046. [Google Scholar]
  • Ramsay JG. 1981. Tectonics of the Helvetic Nappes. Geological Society Special Publication 9: 293–309. https://doi.org/10.1144/GSL.SP1981.009.01.26. [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal evolution of the Cameros Basin: Implications for tectonics of North Iberia. Tectonics 38(2): 440–469. https://doi.org/10.1029/2018TC005294. [Google Scholar]
  • Regis D, Rubatto D, Darling J, Cenki-Tok B, Zucali M, Engi M. 2014. Multiple metamorphic stages within an Eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. Journal of Petrology 55(7): 1429–1456. https://doi.org/10.1093/petrology/egu029. [Google Scholar]
  • Réhault JP, Honthaas C, Guennoc P, Bellon H, Ruffet G, Cotten J, et al. 2012. Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin: Magmatic diversity and slab evolution in the western Mediterranean Sea. Journal of Geodynamics 58: 73–95. [Google Scholar]
  • Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37(3): 247–250. https://doi.org/10.1130/G25451A.1. [Google Scholar]
  • Ricou L-E. 1980. La zone sub-briançonnaise des Alpes occidentales interprétée comme la trace d’un ample décrochement senestre sub-méridien. [Google Scholar]
  • Roca E. 1992. L’estructura de la conca Catalano-Balear: Paper de la compressió i de la distensió en la seva gènesi. PhD Thesis, Universitat de Barcelona. [Google Scholar]
  • Roca E, Desegaulx P. 1992. Analysis of the geological evolution and vertical movements in the Valencia Trough area, western Mediterranean. Marine and Petroleum Geology 9(2): 167–185. [Google Scholar]
  • Roca E, Guimerà J, Salas R. 1994. Mesozoic extensional tectonics in the southeast Iberian Chain. Geological Magazine 131(2): 155–168. https://doi.org/10.1017/S0016756800010694. [Google Scholar]
  • Roca E, Sans M, Cabrera L, Marzo M. 1999. Oligocene to Middle Miocene evolution of the central Catalan margin (northwestern Mediterranean). Tectonophysics 315(1-4): 209–229. https://doi.org/10.1016/S0040-1951(99)00289-9. [Google Scholar]
  • Roca E, Muñoz JA, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30(2): 1–33. https://doi.org/10.1029/2010TC002735. [Google Scholar]
  • Rodríguez-Méndez L, Cuevas J, Tubía JM. 2016. Post-Variscan basin evolution in the central Pyrenees: Insights from the Stephanian-Permian Anayet Basin. Comptes Rendus Geoscience 348(3-4): 333–341. https://doi.org/10.1016/j.crte.2015.11.006. [Google Scholar]
  • Roma M, Ferrer O, Roca E, Pla O, Escosa FO, Butillé M. 2018. Formation and inversion of salt-detached ramp-syncline basins. Results from analog modeling and application to the Columbrets Basin (Western Mediterranean). Tectonophysics 745: 214–228. https://doi.org/10.1016/j.tecto.2018.08.012. [Google Scholar]
  • Romagny A, Jolivet L, Menant A, Bessière E, Maillard A, Canva A, et al. 2020. Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms. BSGF – Earth Sciences Bulletin 191: 37. https://doi.org/10.1051/bsgf/2020040. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002a. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8. https://doi.org/10.3809/jvirtex.2002.00053. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002b. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359(1-2): 117–129. [Google Scholar]
  • Rossetti F, Faccenna C, Goffé B, Monié P, Argentieri A, Funiciello R, et al. 2001. Alpine structural and metamorphic signature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian Arc. Tectonics 20(1): 112–133. [Google Scholar]
  • Rossi P, Oggiano G, Cocherie A. 2009. A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. Comptes Rendus Geoscience 341(2-3): 224–238. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader AG. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. Comptes Rendus – Geoscience 348(3-4): 224–235. https://doi.org/10.1016/j.crte.2015.12.005. [Google Scholar]
  • Roure F, Brun J-P, Colletta B, Van Den Driessche J. 1992. Geometry and kinematics of extensional structures in the Alpine foreland basin of southeastern France. Journal of Structural Geology 14(5): 503–519. [Google Scholar]
  • Rubatto D, Gebauer D, Compagnoni R. 1999. Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters 167(3-4): 141–158. [Google Scholar]
  • Sàbat F, Gelabert B, Rodríguez-Perea A, Giménez J. 2011. Geological structure and evolution of Majorca: Implications for the origin of the Western Mediterranean. Tectonophysics 510(1-2): 217–238. https://doi.org/10.1016/j.tecto.2011.07.005. [Google Scholar]
  • Salas R, Casas A. 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics 228(1-2): 33–55. https://doi.org/10.1016/0040-1951(93)90213-4. [Google Scholar]
  • Salas R, Guimerà J, Mas R, Martín-Closas C, Melendez A, Alonso A. 2001. Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian chain). In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, eds. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Mémoir, Vol. 186, Issue 2, pp. 145–186). [Google Scholar]
  • Sallarès V, Gailler A, Gutscher M-A, Graindorge D, Bartolomé R, Gràcia E, et al. 2011. Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin). Earth and Planetary Science Letters 311(1-2): 112–123. https://doi.org/10.1016/j.epsl.2011.09.003. [Google Scholar]
  • Sallarès V, Martínez-Loriente S, Prada M, Gràcia E, Ranero C, Gutscher MA, et al. 2013. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth and Planetary Science Letters 365: 120–131. https://doi.org/10.1016/j.epsl.2013.01.021. [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. https://doi.org/10.1016/j.tecto.2019.228180. [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020. Paleogeothermal gradients across an inverted hyperextended rift system: Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics 39(10): 1–36. https://doi.org/10.1029/2020TC006206. [Google Scholar]
  • Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Frank M, et al. 2002. The transition from rifting to sea-floor spreading within a magma-poor rifted margin: Field and isotopic constraints. Terra Nova 14(3): 156–162. [Google Scholar]
  • Schettino A, Scotese C. 2002. Global kinematic constraints to the tectonic history of the Mediterranean region and surrounding areas during the Jurassic and Cretaceous. Journal of the Virtual Explorer 8: 149–168. [Google Scholar]
  • Schettino A, Turco E. 2009. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions. Geophysical Journal International 178(2): 1078–1097. https://doi.org/10.1111/j.1365-246X.2009.04186.x. [Google Scholar]
  • Schettino A, Turco E. 2011. Tectonic history of the Western Tethys since the Late Triassic. Bulletin of the Geological Society of America 123(1-2): 89–105. https://doi.org/10.1130/B30064.1. [Google Scholar]
  • Schmid SM, Fügenschuh B, Kissling E, Schuster R. 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97(1): 93–117. [Google Scholar]
  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, et al. 2008. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences 101(1): 139–183. https://doi.org/10.1007/s00015-008-1247-3. [Google Scholar]
  • Schreiber D, Giannerini G, Lardeaux JM. 2011. The Southeast France Basin during Late Cretaceous times: The spatiotemporal link between Pyrenean collision and Alpine subduction. Geodinamica Acta 24(1): 21–35. https://doi.org/10.3166/ga.24.21-35. [Google Scholar]
  • Séranne M. 1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. Geological Society, London, Special Publications 156(1): 15–36. https://doi.org/10.1144/GSL.SP1999.156.01.03. [Google Scholar]
  • Séranne M, Benedicto A, Labaum P, Truffert C, Pascal G. 1995. Structural style and evolution of the Gulf of Lion Oligo-Miocene rifting: Role of the Pyrenean orogeny. Marine and Petroleum Geology 12(8): 809–820. [Google Scholar]
  • Serrano F, Sanz de Galdeano C, Delgado F, López-Garrido AC, Martín-Algarra A. 1995. The Mesozoic and Cenozoic of the Malaguide Complex in the Málaga area: A Paleogene olistostrome-type chaotic complex (Betic Cordillera, Spain). Geologie En Mijnbouw 74: 105. [Google Scholar]
  • Shimabukuro DH, Wakabayashi J, Alvarez W, Chang S. 2012. Cold and old: The rock record of subduction initiation beneath a continental margin, Calabria, southern Italy. Lithosphere 4(6): 524–532. https://doi.org/10.1130/L222.1. [Google Scholar]
  • Sibuet J-C, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research: Solid Earth 109(B8): 1–18. https://doi.org/10.1029/2003JB002514. [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Cottle JM, Law RD. 2020. Transpressive deformation in the Southern European Variscan belt: New insights from the Aiguilles Rouges Massif (Western Alps). Tectonics 39(6): 1–24. https://doi.org/10.1029/2020tc006153. [Google Scholar]
  • Sinclair HD, Gibson M, Naylor M, Morris RG. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science 305(5): 369–406. https://doi.org/10.2475/ajs.305.5.369. [Google Scholar]
  • Sopeña A, López J, Arche A, Pérez-Arlucea M, Ramos A, Virgili C, et al. 1988. Permian and Triassic rift basins of the Iberian Peninsula. In: Developments in Geotectonics (Vol. 22, Issue C, pp. 757–786). https://doi.org/10.1016/B978-0-444-42903-2.50036-1. [Google Scholar]
  • Soto JI, Azanon JM. 1994. Zincian staurolite in metabasites and metapelites from the Betic-Cordillera (SE Spain). Neues Jahrbuch Fur Mineralogie-Abhandlungen 168(2): 109–126. [Google Scholar]
  • Soto R, Casas-Sainz AM, Oliva-Urcia B, García-Lasanta C, Izquierdo-Llavall E, Moussaid B, et al. 2019. Triassic stretching directions in Iberia and North Africa inferred from magnetic fabrics. Terra Nova 31(5): 465–478. https://doi.org/10.1111/ter.12416. [Google Scholar]
  • Spakman W, Wortel R. 2004. A tomographic view on western Mediterranean geodynamics. In: The TRANSMED atlas. The Mediterranean region from crust to mantle (Issue January 2004, pp. 31–52. Springer. https://doi.org/10.1007/978-3-642-18919-7. [Google Scholar]
  • Srivastava SP, Sibuet J-C, Cande S, Roest WR, Reid ID. 2000. Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth and Planetary Science Letters 182(1): 61–76. https://doi.org/10.1016/S0012-821X(00)00231-4. [Google Scholar]
  • Stampfli G.M. 1993. Le Briançonnais, terrain exotique dans les Alpes ? Eclogae Geologicae Helvetiae 86(1): 1–45. [Google Scholar]
  • Stampfli GM, Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196(1-2): 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X. [Google Scholar]
  • Stampfli GM, Hochard C. 2009. Plate tectonics of the Alpine realm. Geological Society, London, Special Publications 327(1): 89–111. https://doi.org/10.1144/SP327.6. [Google Scholar]
  • Stampfli GM, Mosar J, Favre P, Pillevuit A, Vannay J-C. 2001. Permo-Mesozoic evolution of the western Tethyan realm: the Neotethys/East- Mediterranean connection. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, eds. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins (Vol. 186, pp. 51–108). Mémoirs du Muséum d’Histoire Naturelle. [Google Scholar]
  • Suárez González P, Quijada IE, Mas JR, Benito MI. 2010. Nuevas aportaciones sobre la influencia marina y la edad de los carbonatos de la Fm Leza en el sector de Préjano (SE de LaRioja. Cretácico Inferior, Cuenca de Cameros. Geogaceta 49: 7–10. [Google Scholar]
  • Tavani S, Granado P. 2015. Along-strike evolution of folding, stretching and breaching of supra-salt strata in the Plataforma Burgalesa extensional forced fold system (northern Spain). Basin Research 27(4): 573–585. https://doi.org/10.1111/bre.12089. [Google Scholar]
  • Tavani S, Quintà A, Granado P. 2011. Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): The Ubierna Fault System. Tectonophysics 509(3-4): 238–253. https://doi.org/10.1016/j.tecto.2011.06.013. [Google Scholar]
  • Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth-Science Reviews 187(August): 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3): 395–406. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus – Geoscience 348(3-4): 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725(January): 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological Evidence of Early Orogenesis, Eastern Pyrenees, France. Tectonics 38(4): 1308–1336. https://doi.org/10.1029/2018TC005254. [Google Scholar]
  • Trümpy R. 1988. A possible Jurassic-Cretaceous transform system in the Alps and the Carpathians, pp. 93–110. https://doi.org/10.1130/SPE218-p93. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2014a. Characterizing and identifying structural domains at rifted continental margins: Application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society Special Publication 413(1): 171–203. https://doi.org/10.1144/SP413.3. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014b. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33(7): 1239–1276. https://doi.org/10.1002/2014TC003529. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian- European plate boundary. Geology 43(1): 15–18. https://doi.org/10.1130/G36072.1. [Google Scholar]
  • Tugend J, Chamot-Rooke N, Arsenikos S, Blanpied C, Frizon de Lamotte D. 2019. Geology of the Ionian Basin and Margins: A key to the East Mediterranean geodynamics. Tectonics 38(8): 2668–2702. https://doi.org/10.1029/2018TC005472. [Google Scholar]
  • Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP. 2012. Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579: 193–206. [Google Scholar]
  • Ubide T, Wijbrans JR, Galé C, Arranz E, Lago M, Larrea P. 2014. Age of the Cretaceous alkaline magmatism in northeast Iberia: Implications for the Alpine cycle in the Pyrenees. Tectonics 33(7): 1444–1460. [Google Scholar]
  • Upton BGJ, Stephenson D, Smedley PM, Wallis SM, Fitton JG. 2004. Carboniferous and Permian magmatism in Scotland. Geological Society, London, Special Publications 223(1): 195–218. [Google Scholar]
  • Vacherat A. 2014. Inversion d’une marge hyper-amincie : contexte thermo-cinématique et interactions tectonique-érosion au Nord des Pyréńes. Université Pierre et Marie Curie. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics 35(4): 907–933. https://doi.org/10.1002/2015TC004016. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette JL, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth-Science Reviews 172(January): 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004. [Google Scholar]
  • van Hinsbergen DJJ, Vissers RLM, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33(4): 393–419. https://doi.org/10.1002/2013TC003349. [Google Scholar]
  • van Hinsbergen DJJ, Torsvik TH, Schmid SM, Maţenco LC, Maffione M, Vissers RLM, et al. 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research 81: 79–229. https://doi.org/10.1016/j.gr.2019.07.009. [Google Scholar]
  • Van Wees JD, Arche A, Beijdorff CG, López-Gómez J, Cloetingh SAPL. 1998. Temporal and spatial variations in tectonic subsidence in the Iberian Basin (eastern Spain): Inferences from automated forward modelling of high-resolution stratigraphy (Permian-Mesozoic). Tectonophysics 300(1-4): 285–310. https://doi.org/10.1016/S0040-1951(98)00244-3. [Google Scholar]
  • Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, et al. 2000. On the origin of the southern Permian Basin, Central Europe. Marine and Petroleum Geology 17(1): 43–59. [Google Scholar]
  • Vargas H, Gaspar-Escribano JM, López-Gómez J, Van Wees JD, Cloetingh S, de La Horra R, et al. 2009. A comparison of the Iberian and Ebro Basins during the Permian and Triassic, eastern Spain: A quantitative subsidence modelling approach. Tectonophysics 474(1-2): 160–183. https://doi.org/10.1016/j.tecto.2008.06.005. [Google Scholar]
  • Vergés J, Fernàndez M. 2012. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 579: 144–172. https://doi.org/10.1016/j.tecto.2012.08.032. [Google Scholar]
  • Vergés J, Sàbat F. 1999. Constraints on the Neogene Mediterranean kinematic along a 1000 km transect from Iberia to Africa. In: Durand B, Jolivet L, Horváth F, Séranne M, eds. The The Mediterranean Basins: Tertiary extension within the Alpine Orogen. Geological Society of London, pp. 63–80. [Google Scholar]
  • Vergés J, Millán H, Roca E, Muñoz J-A, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections. Marine and Petroleum Geology 12(8): 903–915. https://doi.org/10.1016/0264-8172(95)98854-X. [Google Scholar]
  • Vergés J, Fernàndez M, Martìnez A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. Journal of the Virtual Explorer 8: 55–74. https://doi.org/10.3809/jvirtex.2002.00058. [Google Scholar]
  • Vergés J, Poprawski Y, Almar Y, Drzewiecki PA, Moragas M, Bover-Arnal T, et al. 2020. Tectono-sedimentary evolution of Jurassic-Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research 00, 000–000. https://doi.org/10.1111/bre.12447. [Google Scholar]
  • Villa IM, Hermann J, Müntener O, Trommsdorff V. 2000. 39Ar-40Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contributions to Mineralogy and Petrology 140(3): 363–381. [Google Scholar]
  • Vissers RLM. 1992. Variscan extension in the Pyrenees. Tectonics 11(6): 1369–1384. [Google Scholar]
  • Vissers RLM, Meijer PT. 2012. Iberian plate kinematics and Alpine collision in the Pyrenees. Earth-Science Reviews 114(1-2): 61–83. https://doi.org/10.1016/j.earscirev.2012.05.001. [Google Scholar]
  • Vitale S, Ciarcia S. 2013. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics 583: 164–182. https://doi.org/10.1016/j.tecto.2012.11.004. [Google Scholar]
  • Vitale S, Fedele L, Tramparulo FD, Ciarcia S, Mazzoli S, Novellino A. 2013. Structural and petrological analyses of the Frido Unit (southern Italy): New insights into the early tectonic evolution of the southern Apennines-Calabrian Arc system. Lithos 168-169: 219–235. https://doi.org/10.1016/j.lithos.2013.02.006. [Google Scholar]
  • Vitale S, Ciarcia S, Fedele L, Tramparulo FDA. 2019. The Ligurian oceanic successions in southern Italy: The key to decrypting the first orogenic stages of the southern Apennines-Calabria chain system. Tectonophysics 750(November 2018): 243–261. https://doi.org/10.1016/j.tecto.2018.11.010. [Google Scholar]
  • Vitale Brovarone A, Beyssac O, Malavieille J, Molli G, Beltrando M, Compagnoni R. 2013. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France). Earth-Science Reviews 116(1): 35–56. https://doi.org/10.1016/j.earscirev.2012.10.003. [Google Scholar]
  • Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, et al. 2021. Central Pyrenees mountain building: Constraints from new LT thermochronological data from the Axial Zone. Tectonics 40(3): e2020TC006614. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44(6): 475–478. https://doi.org/10.1130/G37812.1. [Google Scholar]
  • Wehr H, Chevrot S, Courrioux G, Guillen A. 2018. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics 734-735(April), 16–32. https://doi.org/10.1016/j.tecto.2018.03.017. [Google Scholar]
  • Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA. 2011. Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. American Journal of Science 311(5): 442–482. https://doi.org/10.2475/05.2011.03. [Google Scholar]
  • Wortel MJR, Spakman W. 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science 290(5498): 1910–1917. https://doi.org/10.1126/science.290.5498.1910. [Google Scholar]
  • Zarki-Jakni B, van der Beek P, Poupeau G, Sosson M, Labrin E, Rossi P, et al. 2004. Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: Results from apatite fission track thermochronology. Tectonics 23(1). [Google Scholar]
  • Ziegler PA. 1989. Geodynamic model for Alpine intra-plate compressional deformation in Western and Central Europe. In: Cooper MA, Williams GD, eds. Inversion Tectonics (Vol. 3, Issue 44, pp. 63–85. Geological Society Special Publication. [Google Scholar]
  • Ziegler PA. 1990a. Collision related intra-plate compression deformations in Western and Central Europe. Journal of Geodynamics 11(4): 357–388. [Google Scholar]
  • Ziegler PA. 1990b. Geological atlas of western and central Europe. [Google Scholar]
  • Ziegler PA, Dèzes P. 2006. Crustal evolution of Western and Central Europe. Geological Society, London, Memoirs 32(1): 43–56. https://doi.org/10.1144/GSL.MEM2006.032.01.03. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.