Issue
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 43
Number of page(s) 36
DOI https://doi.org/10.1051/bsgf/2021029
Published online 18 October 2021
  • Airaghi L, Bellahsen N, Dubacq B, Chew D, Rosenberg C, Janots E, et al. 2020. Pre-orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees. J Metamorph Geol 38(2): 183–204. [Google Scholar]
  • Albarède F, Michard-Vitrac A. 1978a. Age and significance of the North Pyrenean metamorphism. Earth Planet Sci Lett 40: 327–332. [Google Scholar]
  • Albarède F, Michard-Vitrac A. 1978b. Datation du metamorphisme des terrains secondaires des Pyrenees par les methodes (super 39) Ar- (super 40) Ar et (super 87) Rb- (super 87) Sr; ses relations avec les peridotites associees. Dating Metamorph Mesoz Terrains 20: 681–687. [Google Scholar]
  • Allen PA, Allen JR. 2013. Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. [Google Scholar]
  • Angrand P, Ford M, Ducoux M, de Saint Blanquat M. 2021. Extension and early orogenic inversion along the basal detachment of a hyper-extended rifted margin: an example from the Central Pyrenees (France). J Geol Soc. [Google Scholar]
  • Arche A, López-Gómez J. 1996. Origin of the Permian-Triassic Iberian basin, central-eastern Spain. Tectonophysics 266(1–4): 443–464. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleopassive margin, western Pyrenees (France). Tectonics 38(5): 1666–1693. [Google Scholar]
  • Autran A, Cogne EJ. 1980. La zone interne de l’orogène varisque dans l’Ouest de la France et sa place dans le développement de la chaîne hercynienne. In: Cogne J, Slansky M, eds. Géologie de l’Europe. Mémoires du BRGM 108: 90–111. [Google Scholar]
  • Azambre B, Rossy M. 1976. Le magmatisme alcalin d’age cretace, dans les Pyrenees occidentales et l’Arc basque; ses relations avec le metamorphisme et la tectonique. Bull Soc Geol Fr S7-XVIII: 1725–1728. https://doi.org/10.2113/gssgfbull.S7-XVIII.6.1725. [Google Scholar]
  • Azambre B, Rossy M, Albarede F. 1992. Petrology of the alkaline magmatism from the Cretaceous North-Pyrenean rift zone (France and Spain). Eur J Miner 4: 813–834. [Google Scholar]
  • Bahnan AE, Carpentier C, Pironon J, Ford M, Ducoux M, Barre G, et al. 2020, Impact of geodynamics on fluid circulation and diagenesis of carbonate reservoirs in a foreland basin: Example of the Upper Lacq reservoir (Aquitaine basin, SW France). Mar Pet Geol 111: 676–694. [Google Scholar]
  • Barale L, Bertok C, Talabani NS, D’Atri A, Martire L, Piana F, et al. 2016. Very hot, very shallow hydrothermal dolomitization: An example from the Maritime Alps (north-west Italy-south-east France). Sedimentology 63: 2037–2065. https://doi.org/10.1111/sed.12294. [Google Scholar]
  • Barker CE, Pawlewicz MJ. 1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures: A comparison of methods. In: Mukhopadhyay PK, Dow WG, eds. Vitrinite Reflectance as a Maturity Parameter (Vol. 570). Washington, DC: American Chemical Society, pp. 216–229. https://doi.org/10.1021/bk-1994-0570.ch014. [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35: 2015TC004019. https://doi.org/10.1002/2015TC004019. [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from acomparison of observations and geodynamical models, J Geophys Res 105(B4): 8121–8145. https://doi.org/10.1029/1999JB900390. [Google Scholar]
  • Bellahsen N, Bayet L, Denele Y, Waldner M, Airaghi L, Rosenberg C, et al. 2019. Shortening of the axial zone, pyrenees: Shortening sequence, upper crustal mylonites and crustal strength. Tectonophysics 766: 433–452. [Google Scholar]
  • Beltrando M, Frasca G, Compagnoni R, Vitale Brovarone A. 2012. The Valaisan controversy revisited: multi-stage folding of a Mesozoic hyper-extended margin in the Petit St. Bernard pass area (Western Alps). Tectonophysics 579: 17–36. https://doi.org/10.1016/j.tecto.2012.02.010. [Google Scholar]
  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Brovarone AV, Masini E. 2014. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: the Alpine case study. Earth Sci Rev 131: 88–115. https://doi.org/10.1016/j.earscirev.2014.01.001. [Google Scholar]
  • Bernoulli D, Desmurs L, Manatschal G, Muentener O. 2003. Mantle exhumation, ophicalcites and incipient magmatism in an alpine ocean-continent-transition. GeoActa 2(Suppl.): 13–17. [Google Scholar]
  • Bernus-Maury C. 1984. Étude des paragenèses caractéristiques du métamorphisme mésozoïque dans la partie orientale des Pyrénées (French). Paris 6. [Google Scholar]
  • Beyssac O, Goffé B, Chopin C, Rouzaud JN. 2002a. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20: 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x. [Google Scholar]
  • Beyssac O, Rouzaud J-N., Goffé B, Brunet F, Chopin C. 2002b. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contrib Miner Petrol 143: 19. [Google Scholar]
  • Beyssac O, Bollinger L, Avouac JP, Goffé B. 2004. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet Sci Lett 225(1–2): 233–241. [Google Scholar]
  • Biteau JJ, Le Marrec A, Le Vot M, Masset JM. 2006. The aquitaine basin. Petrol Geosci 12(3): 247–273. [Google Scholar]
  • Blackwell DD, Steele JL. 1989. Thermal Conductivity of Sedimentary Rocks: Measurement and Significance. In: Naeser ND, McCulloh TH, eds. Thermal History of Sedimentary Basins. New York: Springer. http://link.springer.com.biblioplanets.gate.inist.fr/chapter/10.1007/978-1-4612-3492-0_213–36. [Google Scholar]
  • Boillot G, Dupeuble PA, Malod J. 1979. Subduction and Tectonics on the continental margin off northern Spain. Mar Geol 32: 53–70. [Google Scholar]
  • Boillot G. 1984. Le Golfe de Gascogne et les Pyrénées. In: Boillot G, Montadert L, Lemoine M, Biju-Duval B, eds. Les marges continentales actuelles et fossiles autour de la France. Paris: Masson, pp. 249–334. [Google Scholar]
  • Bois C, Gariel O. 1994. Deep seismic investigation in the Parentis Basin (Southwestern France). In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France. Berlin, Heidelberg: Springer. Spec Publ Eur Assoc Petrol Geosci 4: 173–186. [Google Scholar]
  • Bollinger L, Avouac JP, Beyssac O, Catlos EJ, Harrison TM, Grove M, et al. 2004. Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23(5). [Google Scholar]
  • Boulvais P, de Parseval P, D’Hulst A, Paris P. 2006. Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Miner Petrol 88: 499–526. https://doi.org/10.1007/s00710-006-0124-x. [Google Scholar]
  • Boulvais P, Ruffet G, Cornichet J, Mermet M. 2007. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93: 89–106. https://doi.org/10.1016/j.lithos.2006.05.001. [Google Scholar]
  • Boulvais P. 2016. Fluid generation in the Boucheville Basin as a consequence of the North Pyrenean metamorphism. C R Geosci 348(From rifting to mountain building: the Pyrenean Belt): 301–311. https://doi.org/10.1016/j.crte.2015.06.013. [Google Scholar]
  • Brovarone AV, Beltrando M, Malavieille J, Giuntoli F, Tondella E, Groppo C, et al. 2011. Inherited ocean-continent transition zones in deeply subducted terranes: insights from Alpine Corsica. Lithos 124(3–4): 273–290. [Google Scholar]
  • Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV. 2014. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Commun 5: 4014. [Google Scholar]
  • Brunet MF. 1984. Subsidence history of the Aquitaine Basin determined from the subsidence curves, Geol Mag 121(5): 421–428. [Google Scholar]
  • Buck WR, Martinez F, Steckler MS, Cochran JR. 1988. Thermal consequences of lithospheric extension: pure and simple. Tectonics 7: 213–234. [Google Scholar]
  • Cadenas P, Fernández-Viejo G, Pulgar JA, Tugend J, Manatschal G, Minshull TA. 2018. Constraints imposed by rift inheritance on the compressional reactivation of a hyperextended margin: mapping rift domains in the North Iberian margin and in the Cantabrian Mountains. Tectonics 37. https://doi.org/10.002/2016TC004454. [Google Scholar]
  • Cadenas P, Manatschal G, Fernández-Viejo G. 2020, Unravelling the architecture and evolution of the inverted multi-stage North Iberian-Bay of Biscay rift. Gondwana Res 88: 67–87. [Google Scholar]
  • Caldera N, Teixell A, Griera A, Labaume P, Lahfid A. 2021. Recumbent folding in the Upper Cretaceous Eaux-Chaudes massif: A Helvetic-type nappe in the Pyrenees? Terra Nova 00: 1–0. https://doi.org/10.1111/ter.12517. [Google Scholar]
  • Callies M, Filleaudeau PY, Dubille M, Lorant F. 2018. How to predict thermal stress in hyperextended margins: Application of a new lithospheric model on the Iberia margin. AAPG Bull 102(4): 563–585. [Google Scholar]
  • Canérot J. 1988. Manifestations de l’halocinèse dans les chaînons béarnais (zone Nord-Pyrénéenne) au Crétacé inférieur. C R Acad Sci. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 306: 1099–1102. [Google Scholar]
  • Canérot J. 1989. Early Cretaceous rifting and salt tectonics on the Iberian margin of the Western Pyrenees (France). Struct Conseq 13: 87–99. [Google Scholar]
  • Canérot J, Lenoble JL. 1993. Diapirisme crétacé sur la marge ibérique des Pyrénées occidentales: Exemple du Pic de Lauriolle, comparaisons avec l’Aquitaine, les Pyrénées centrales et orientales. Bull Soc Géol Fr 164: 719–726. [Google Scholar]
  • Canérot J, Hudec MR, Rockenbauch K. 2005. Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bull 89(2): 211–229. [Google Scholar]
  • Cardott BJ, Lambert MW. 1985. Thermal maturation by vitrinite reflectance of Woodford Shale, Anadarko basin, Oklahoma. AAPG Bull 69(11): 1982–1998. [Google Scholar]
  • Casas-Sainz AM, Gil-Imaz A. 1998. Extensional subsidence, contractional folding and thrust inversion of the eastern Cameros Basin, northern Spain. Geologische Rundschau 86(4): 802–818. [Google Scholar]
  • Casquet C, Galindo Francisco M, González Casado JM, Alonso Millán Á. 1992. El metamorfismo en la cuenca de los Cameros. Geocronología e implicaciones tectónicas. Geogaceta 11: 22–25. [Google Scholar]
  • Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, et al. 2016. Tectonics, tectonophysics: New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). C R Géosci 348(3–4): 312–321. https://doi.org/10.1016/j.crte.2015.11.008. [Google Scholar]
  • Chenin P, Manatschal G, Picazo S, Müntener O, Karner G, Johnson C, et al. 2017. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13(2): 559–576. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Sci Rep 8(1): 1–8. [Google Scholar]
  • Choukroune P. 1976. Strain patterns in the Pyrenean Chain. Philos Trans R Soc Lond Ser Math Phys Sci 283: 271–280. [Google Scholar]
  • Choukroune P. 1972. Relations entre tectonique et metamorphisme dans les terrains secondaires de la zone nord-pyreneenne centrale et orientale. Relatsh Tecton Metamorph Mesoz Terrains Cent Orient North Pyr 14: 3–11. [Google Scholar]
  • Choukroune P, ECORS Team. 1989. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012, Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol Fr 183(5): 443–459. [Google Scholar]
  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2013. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci 103: 141–163. https://doi.org/10.1007/s00531-013-0927-z. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 2013TC003471. https://doi.org/10.1002/2013TC003471. [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Geol Fr 183: 443–459. [Google Scholar]
  • Clerc C, Lahfid A, Monie P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. https://doi.org/10.5194/se-6-643-2015. [Google Scholar]
  • Clerc C, Ringenbach JC, Jolivet L, Ballard JF. 2018. Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Res 53: 20–40. [Google Scholar]
  • Cloix A. 2017. Bréchification de la série prérift Nord-Pyrénéenne: Mécanismes tectoniques ou/et sédimentaires et place dans l’histoire tectono-métamorphique de la marge extensive crétacée et de son inversion pyrénéenne (Chaînons Béarnais, Zone Nord-Pyrénéenne). Master Géosciences, Mémoire de Master 2. Université de Montpellier. http://rgf.brgm.fr/sites/default/files/upload/documents/productionscientifique/Masters/rgf_amipyr2016_ma12_memoire_cloix.pdf. [Google Scholar]
  • Coltat R, Branquet Y, Gautier P, Boulvais P, Manatschal G. 2020. The nature of the interface between basalts and serpentinized mantle in oceanic domains: Insights from a geological section in the Alps. Tectonophysics 797: 228646. [Google Scholar]
  • Conand C, Mouthereau F, Ganne J, Lin AT-S, Lahfid A, Daudet M, et al. 2020. Strain partitioning and exhumation in oblique Taiwan collision: Role of rift architecture and plate kinematics. Tectonics 38. https://doi.org/10.1029/2019TC005798. [Google Scholar]
  • Corre B. 2017. La bordure nord de la plaque ibérique à l’Albo-Cénomanien: architecture d’une marge passive de type ductile (Chaînons Béarnais, Pyrénées Occidentales). Doctoral dissertation. Rennes 1. [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Miner Petrol 1–24. [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: new constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). C R Géosci 348(3–4): 279–289. [Google Scholar]
  • Dauteuil O, Ricou LE. 1989. Une circulation de fluides de haute-temperature a l’origine du metamorphisme cretace nord-pyreneen. Circ High-Temp Fluids Orig North Pyrenean Cretac Metamorph 3: 237–250. [Google Scholar]
  • Debroas EJ. 1990. Le flysch noir albo-cenomanien temoin de la structuration albienne a senonienne de la Zone nord-pyreneenne en Bigorre (Hautes-Pyrenees, France). Bull Soc Géol Fr 6: 273–285. [Google Scholar]
  • Debroas EJ, Canérot J, Billote M. 2010. Les brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconien-cénomanien inférieur (Zone Nord Pyrénéenne, Pyrénées Atlantiques, France). Géol Fr 2: 53–65. [Google Scholar]
  • Decandia FA, Elter P. 1972. La “zona” ofiolitifera del Bracco nel settore compreso fra Levento e la Val Graveglia (Appenino ligure). Mem Soc Geol Ital 11: 503–530. [Google Scholar]
  • Decarlis A, Fellin MG, Maino M, Ferrando S, Manatschal G, Gaggero L, et al. 2017. Tectono-thermal Evolution of a Distal Rifted Margin: Constraints From the Calizzano Massif (Prepiedmont-Briançonnais Domain, Ligurian Alps). Tectonics 36(12): 3209–3228. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem Geophys Geosyst n/a-n/a. https://doi.org/10.1002/2016GC006690. [Google Scholar]
  • DeFelipe Martín I, Álvarez Pulgar FJ, Pedreira Rodríguez D. 2018. Crustal structure of the Eastern Basque-Cantabrian Zone-western Pyrenees: from the Cretaceous hyperextension to the Cenozoic inversion. Revista de la Sociedad Geológica de España 31(2). [Google Scholar]
  • Déregnaucourt D, Boillot G. 1982. New structural map of the Bay of Biscay (In). C R Acad Sci 294: 219–222. [Google Scholar]
  • de Saint Blanquat M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: new constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). C R Géosci 348(3–4): 268–278. [Google Scholar]
  • Desegaulx P, Brunet MF. 1990. Tectonic subsidence of the Aquitaine basin since Cretaceous times. Bull Soc Géol Fr 8: 295–306. [Google Scholar]
  • Dielforder A, Frasca G, Brune S, Ford M. 2019. Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochem Geophy Geosyst 20(5): 2395–2417. [Google Scholar]
  • Dow WG. 1977. Kerogen studies and geological interpretations. J Geochem Explor 7: 79–99. [Google Scholar]
  • Ducoux M. 2017. Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées. Thèse de Doctorat, Université d’Orléans. [Google Scholar]
  • Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics 38. https://doi.org/10.1029/2018TC005348. [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021a. Basement-cover decoupling during the inversion of a hyperextended basin: insights from the Eastern Pyrenees. Tectonics 40: e2020TC006512. https://doi.org/10.1029/2020TC006512. [Google Scholar]
  • Ducoux M, Masini E, Tugend J, Gómez-Romeu J, Calassou S. 2021b. Basement-decoupled hyperextension rifting: the tectono-stratigraphic record of the salt-rich Pyrenean necking zone (Arzacq Basin, SW France). GSA Bull. https://doi.org/10.1130/B35974.1. [Google Scholar]
  • Dumont T, Lemoine M, Tricart P. 1984. Tectonique synsédimentaire triasico-jurassique et rifting téthysien dans l’unité prépiémontaise de Rochebrune au Sud-Est de Briançon. Bull Soc Géol Fr 7(5): 921–933. [Google Scholar]
  • Duretz T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, et al. 2020. Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Res 32(4): 652–667. [Google Scholar]
  • Elders WA, Rex RW, Robinson PT, Biehler S, Meidav T. 1972. Crustal spreading in Southern California: The Imperial Valley and the Gulf of California formed by the rifting apart of a continental plate. Science 178(4056): 15–24. [Google Scholar]
  • Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764: 25–45. [Google Scholar]
  • Etheve N, Mohn G, Frizon de Lamotte D, Roca E, Tugend J, et al. 2018. Extreme Mesozoic Crustal Thinning in the Eastern Iberia Margin: The Example of the Columbrets Basin (Valencia Trough). Tectonics 37(2): 636–662. [Google Scholar]
  • Ewing TA, Hermann J, Rubatto D. 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Miner Petrol 165(4): 757–779. [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C. 1991. Evolution of the Upper Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. J Petrol Special_Volume: 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55. [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier J-L. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292: 145–167. https://doi.org/10.1016/S0040-1951(98)00055-9. [Google Scholar]
  • Fallourd S, Poujol M, Boulvais P, Paquette J-L, de Saint Blanquat M, Remy P. 2014. In situ LA-ICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts: the North Pyrenean example. Int J Earth Sci 103: 667–682. https://doi.org/10.1007/s00531-013-0978-1. [Google Scholar]
  • Ferrer O, Roca E, Benjumea B, Muñoz JA, Ellouz N, MARCONI Team. 2008. The deep seismic reflection MARCONI-3 profile: role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Mar Pet Geol 25: 714–730. https://doi.org/10.1016/j.marpetgeo.206.002. [Google Scholar]
  • Ferrer O, Roca E, Jackson MPA, Muñoz JA. 2009. Effects of Pyrenean contraction on salt structures of the offshore Parentis Basin (Bay of Biscay). Trabajos de Geología 29(29). [Google Scholar]
  • Florineth D, Froitzheim N. 1994. Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubunden, Switzerland): evidence for early Cretaceous opening of the Valais Ocean. Schweiz Mineral Petrogr Mitt 74: 437–448. [Google Scholar]
  • Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. J Geol Soc 173: 419–437. https://doi.org/10.1144/jgs2015-129. [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the western “Chainons béarnais”(French Pyrenees): Structural and paleogeographical pattern. Tectonophysics 129(1–4): 81–98. [Google Scholar]
  • Froitzheim N, Manatschal G. 1996. Kinematics of Jurassic rifting, mantle exhumation, and passive-margin in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108: 1120–1133. [Google Scholar]
  • Gabalda S, Beyssac O, Jolivet L, Agard P, Chopin C. 2009. Thermal structure of a fossil subduction wedge in the Western Alps. Terra Nova 21(1): 28–34. [Google Scholar]
  • García-Mondéjar J. 1996. Plate reconstruction of the Bay of Biscay. Geology 24: 635–638. [Google Scholar]
  • García-Senz J. 2002. Cuencas extensivas del Cretacico Inferior en los Pireneos Centrales − formacion y subsecuente inversion. PhD thesis. Barcelona: University of Barcelona. [Google Scholar]
  • García-Senz J, Pedrera A, Ayala C, Ruiz-Constán A, Robador A, Rodríguez-Fernández LR. 2019. Inversion of the north Iberian hyperextended margin: the role of exhumed mantle indentation during continental collision. In: Hammerstein JA, ed. Fold and Thrust Belts: Structural Style, Evolution and Exploration. Geol Soc Lond Spec Publ: 490. https://doi.org/10.1144/SP490-2019-112. [Google Scholar]
  • Garrido-Megias A, Rios Aragues LM. 1972. Sintesis geologica del Secundario y Terciario entre los rios Cinca y Segre (Pirineo Central de la vertiente sur pirenaica, provincias de Huesca y Lerida). Summ Mesoz Tert Geol Cinca Segre Rivers Souther 83: 1–47. [Google Scholar]
  • Golberg JM, Maluski H, Leyreloup AF. 1986. Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics 129: 275–290. https://doi.org/10.1016/0040-1951(86)90256-8. [Google Scholar]
  • Golberg JM. 1987. Le métamorphisme mésozoique dans la partie orientale des Pyrénées ; relations avec l’évolution de la chaîne au crétacé. Montpellier, France: Université des Sciences et Techniques du Languedoc, Centre Géologique et Géophysique. [Google Scholar]
  • Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib Miner Pet 104: 194–207. https://doi.org/10.1007/BF00306443. [Google Scholar]
  • Golberg JM, Maluski H. 1988. Donnees nouvelles et mise au point sur l’age du metamorphisme pyreneen. New Data Discuss Age Pyrenean Metamorph 306: 429–435. [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. [Google Scholar]
  • González-Acebrón L, Goldstein R, Mas R, Arribas J. 2011. Criteria for recognition of localization and timing of multiple events of hydrothermal alteration in sandstones illustrated by petrographic, fluid inclusion, and isotopic analysis of the Tera Group, Northern Spain. Int J Earth Sci 100(8): 1811–1826. https://doi.org/10.1007/s00531-010-0606-2. [Google Scholar]
  • Gorini C, Le Marrec A, Mauffret A. 1993. Contribution to the structural and sedimentary history of the Gulf of Lions (western Mediterranean), from the ECORS profiles, industrial seismic pro-files and weIl data. Bull Geol Soc. Fr 164: 353–363. [Google Scholar]
  • Gorini C, Mauffret A, Guennoc P, Le Marrec A. 1994. Structure of the Gulf of Lions (Northwestern Mediterranean Sea): a review. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France. Springer-Verlag, pp. 223–243. [Google Scholar]
  • Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights into the crustal-scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: A case study of the eastern Pyrenees. Tectonics 37(2): 450–476. [Google Scholar]
  • Hantschel T, Kauerauf AI. 2009. Fundamentals of Basin and Petroleum Systems Modeling. https://doi.org/10.1007/978-3-540-72318-9. [Google Scholar]
  • Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 36: 1103–1128. https://doi.org/10.1002/2016TC004365. [Google Scholar]
  • Hermann J, Müntener O. 1996. Exhumation-related structures in the Malenco- Margna system: implications for paleogeography and its consequences for rifting and Alpine tectonics. Schweizerische Mineralogische und Petrographische Mittei-lungen 76: 501–520. [Google Scholar]
  • Hogan PJ, Burbank KDW. 1996. Evolution of the Jaca piggy-back basin and emergence of the External Sierras, southern Pyrenees. In: Friend PF, Dabrio CJ, eds. Tertiary Basins of Spain. Cambridge, UK: Cambridge Univ. Press, pp. 153–160. [Google Scholar]
  • Incerpi N, Manatschal G, Martire L, Bernasconi SM, Gerdes A, Bertok C. 2020a. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees). Int J Earth Sci 1–23. [Google Scholar]
  • Incerpi N, Martire L, Manatschal G, Bernasconi SM, Gerdes A, Czuppon G, et al. 2020b. Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre-to post-rift sedimentary sequence (SE Switzerland, N ITALY). Basin Res 32(1): 91–115. [Google Scholar]
  • Izquierdo-Llavall E, Menant A, Aubourg C, Callot JP, Hoareau G, Camps P, et al. 2020. Preorogenic folds and syn-orogenic basement tilts in an inverted hyperextended margin: The Northern Pyrenees case study. Tectonics 39(7): e2019TC005719. [Google Scholar]
  • Jagoutz O, Müntener O, Manatschal G, Rubatto D, Péron-Pinvidic G, Turrin BD, et al. 2007. The rift-to-drift transition in the North Atlantic: a stuttering start of the MORB machine? Geology 35: 1087–1090. https://doi.org/10.1130/G23613A.1. [Google Scholar]
  • James V, Canerot J. 1999. Diapirisme et structuration post-triasique des Pyrénées occidentale et de l’Aquitaine méridionale (France). Eclogae Geologicae Helvetiae 63. https://doi.org/10.5169/seals-168647. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28: TC4012. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Jammes S, Lavier L, Manatschal G. 2010a. Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochem Geophys Geosyst 11: Q10016. https://doi.org/10.1029/2010GC003218. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L. 2010b. Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bull 94(7): 957–975. [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010c. 3D architecture of a complex transcurrent rift system: the example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489(1–4): 210–226. [Google Scholar]
  • Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26: TC5007. https://doi.org/10.1029/2006TC002080. [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: Late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776: 228312. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth Planet Sci Lett 512: 89–99. [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 785: 228451. [Google Scholar]
  • Labaume P, Meresse F, Jolivet M, Teixell A, Lahfid A. 2016. Tectonothermal history of an exhumed thrust-sheet-top basin: an example from the south Pyrenean thrust belt. Tectonics 35: 1280–1313. https://doi.org/10.1002/2016TC004192. [Google Scholar]
  • Lagabrielle Y, Cannat M. 1990. Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18: 319–322. [Google Scholar]
  • Lagabrielle Y, Bodinier J-L. 2008. Submarine reworking of exhumed subcontinental mantle rocks; field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). C R Geosci 348(From rifting to mountain building: the Pyrenean Belt): 290–300. https://doi.org/10.1016/j.crte.2015.11.004. [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teixell A, et al. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth-Science Reviews 201: 103071. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019a. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France) Exhumation du manteau au pied des marges passives pauvres en magma. Partie 1. Architecture 3D et évolution métasomatique du domaine fossile à manteau exhumé (lherzolite d’Urdach, Pyrénées NW, France). Bull Soc Géol Fr 190(1). [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Labaume P, Uzel J, et al. 2019b. Mantle exhumation at magma–poor passive continental margins. Part II: Tectonic and metasomatic evolution of large–displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). Bull Soc Géol Fr 190(1). [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29: TC4012. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lahfid A, Beyssac O, Deville E, Negro F, Chopin C, Goffe B. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22: 354–360. https://doi.org/10.1111/j.1365-3121.2010.00956.x. [Google Scholar]
  • Larsen HC, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, et al. 2018. Rapid transition from continental breakup to ig-neous oceanic crust in the South China Sea. Nat Geosci 11: 782–789. https://doi.org/10.1038/s41561-018-0198-1. [Google Scholar]
  • Lavier L, Manatschal G. 2006. A Mechanism to Thin the Continental Lithosphere at Magma-Poor Margins. Nature 440: 324–328. https://doi.org/10.1038/nature04608. [Google Scholar]
  • Lavier LL, Ball PJ, Manatschal G, Heumann MJ, MacDonald J, Matt VJ, et al. 2019. Controls on the Thermomechanical Evolution of Hyperextended Lithosphere at Magma-Poor Rifted Margins: The Example of Espirito Santo and the Kwanza Basins. Geochem Geophys Geosyst 20(11): 5148–5176. [Google Scholar]
  • Lemoine M, Trümpy R. 1987. Pre-oceanic rifting in the Alps. Tectonophysics 133: 305–320. [Google Scholar]
  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, et al. 1986. The continental margin of the Mesozoic Tethys in the Western Alps. Mar Pet Geol 3: 179–199. [Google Scholar]
  • Lemoine M, Tricart P, Boillot G. 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines). In search of a genetic model. Geology 15: 622–625. [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modelling and Pyrenean field observations. Geochem Geophys Geosyst 20(10): 4567–4587. https://doi.org/10.1029/2019gc008600. [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. Bull Soc Géol Fr 191(1). [Google Scholar]
  • Lister GS, Etheridge MA, Symonds PA. 1986. Detachment faulting and the evolution of passive continental margins. Geology 14(3): 246–250. [Google Scholar]
  • López-Mir B, Muñoz JA, Senz JG. 2014. Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. J Struct Geol 69: 147–162. [Google Scholar]
  • Lucazeau F, Le Douaran S. 1985. The blanketing effect of sediments in basins formed by extension: A numerical model. Application to the Gulf of Lion and Viking graben. Earth Planet Science Lett 74(1): 92–102. https://doi.org/10.1016/0012-821X(85)90169-4. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new southern North Atlantic isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous. J Geophys Res Solid Earth 122: 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
  • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93: 432–466. https://doi.org/10.1007/s00531-004-0394-7. [Google Scholar]
  • Manatschal G, Nievergelt P. 1997. A continent-Ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclog Geol Helv 90: 3–28. [Google Scholar]
  • Manatschal G, Bernoulli D. 1999. Architecture and tectonic evolution of nonvolcanic margins: Present-day Galicia and ancient Adria. Tectonics 18(6): 1099–1119. [Google Scholar]
  • Manatschal G, Froitzheim N, Rubenach M, Turrin BD. 2001. The role of detachment faulting in the formation of an ocean-continent transition; insights from the Iberia abyssal plain. Geol Soc Lond Spec Publ 187: 405–428. [Google Scholar]
  • Mantilla Figueroa LC, Galindo C, Mas R, Casquet C. 2002. El metamorfismo hidrotermal cretácico y paleógeno en la cuenca de Cameros (Cordillera Ibérica, España). Zubía 14: 143–154. [Google Scholar]
  • Marroni M, Molli G, Montanini A, Tribuzio R. 1998. The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent-ocean transition in the Western Tethys. Tectonophysics 292: 43–66. [Google Scholar]
  • Martinez-Torres LM. 1989. El Manto de los Marmoles (Pirineo occidental): geologia estructural y evolucion geodinamica. Thesis. Leioa: Universidad del Pais Vasco. [Google Scholar]
  • Masini E, Manatschal G, Mohn G, Unternehr P. 2012. Anatomy and tectono-sedimentary evolution of a rift-related detachment system: The example of the Err detachment (central Alps, SE Switzerland). Bulletin 124(9–10): 1535–1551. [Google Scholar]
  • Masini E, Manatschal G, Mohn G. 2013. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60(1): 174–196. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin; the example of the Arzacq-Mauleon rift system (western Pyrenees, SW France). Int J Earth Sci Geol Rundsch 103: 1569–1596. https://doi.org/10.1007/s00531-014-1023-8. [Google Scholar]
  • Mauffret A, Pascal G, Maillard A, Gorini C. 1995. Tectonics and deep structure of the north-western Mediterranean basin. Mar Pet Geol 12: 645–666. [Google Scholar]
  • Mauffret A, Durand de Grossouvre B, Dos Reis AT, Gorini C, Nercessian A. 2001. Structural geometry in the eastern Pyrenees and western Gulf of Lion (Western Mediterranean). J Struct Geol 23: 1701–1726. [Google Scholar]
  • McCarthy A, Chelle-Michou C, Müntener O, Arculus R, Blundy J. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc. Geology 46(12): 1059–1062. [Google Scholar]
  • McCarthy A, Tugend J, Mohn G, Candioti L, Chelle-Michou C, Arculus R, et al. 2020. A case of Ampferer-type subduction and consequences for the Alps and the Pyrenees. Am J Sci 320(4): 313–372. [Google Scholar]
  • McClay K, Munoz J-A, Garcia-Senz J. 2004. Extensional salt tectonics in a contractional orogen; a newly identified tectonic event in the Spanish Pyrenees. Geol Boulder 32: 737–740. https://doi.org/10.1130/G20565.1. [Google Scholar]
  • McDowell SD, Elders WA. 1980. Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea Geothermal Field, California, USA. Contrib Miner Pet 74: 293–310. https://doi.org/10.1007/BF00371699. [Google Scholar]
  • McDowell SD, Elders WA. 1983. Allogenic layer silicate minerals in borehole Elmore Salton Sea geothermal field, California. Am Miner 68: 1146–1159. [Google Scholar]
  • McKenzie D. 1978. Some remarks on the formation of sedimentary basins. Earth Planet Sci Lett 40: 25–32. [Google Scholar]
  • Mendia MS. 1987. Estudio petrológico de las rocas metamórfica prealpinas asociadas a la Falla de Leiza (Navarra). Tesis de Licenciatura. Universidad del País Vasco, UPV/EHU. [Google Scholar]
  • Mendia MS, Gil Ibarguchi JI. 1991. High-grade metamorphic rocks and peridotites along the Leiza Fault (Western Pyrenees, Spain). Geol Rundsch 80: 93–107. [Google Scholar]
  • Millán Garrido H. 2006. Estructura y cinemática del frente de cabalgamiento surpirenaico en las Sierras Exteriores aragonesas. In: Colección de Estudios Altoaragoneses, vol. 53. Huesca, Spain: Instituto de Estudios Altoaragoneses. [Google Scholar]
  • Millán Garrido H, Pueyo Morer EL, Aurell Cardona M, Aguado Luzón A, Oliva Urcia B, Martínez Peña MB, et al. 2000. Actividad tectonica registrada en los depósitos terciarios del frente meridional del Pirineo central. Rev Soc Geol Esp 13: 279–300. [Google Scholar]
  • Mohn G, Manatschal G, Müntener O, Beltrando M, Masini E. 2010. Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int J Earth Sci 99: 75–101. https://doi.org/10.1007/s00531-010-0566-6. [Google Scholar]
  • Molli G. 1996. Pre-orogenic tectonic framework of the northern Appennine ophiolites. Eclogae Geologicae Helveticae 89/1: 163–180. [Google Scholar]
  • Monchoux P. 1970. Les Lherzolites pyrénéennes: contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations. Doctoral dissertation. Toulouse: Universite Paul Sabatier. [Google Scholar]
  • Montadert L, Roberts DG, De Charpal O, Guennoc P. 1979. Rifting and subsidence of the northern continental margin of the Bay of Biscay. In: Montardet L, Roberts DG, et al., eds. Initial Reports of the Deep Sea Drilling Project, 48. Washington, DC: US Government Printing Office, pp. 1025–1060. [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar study of Cretaceous magmatism and metamorphism in the Pyrenees; age and length of rotation of the Iberian Peninsula. Tectonophysics 129: 257–273. [Google Scholar]
  • Motte G, Hoareau G, Callot JP, Révillon S, Piccoli F, Calassou S, et al. 2021. Rift and salt-related multi-phase dolomitization: example from the northwestern Pyrenees. Mar Pet Geol 126: 104932. [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Muffler LJP, White DE. 1969. Active Metamorphism of Upper Cenozoic Sediments in the Salton Sea Geother mal Field and the Salton Trough, Southeastern California. Geol Soc Am Bull 80: 157–182. https://doi.org/10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2. [Google Scholar]
  • Mukonzo JN, Boiron MC, Lagabrielle Y, Cathelineau M, Quesnel B. 2021. Fluid-rock interactions along detachment faults during continental rifting and mantle exhumation: the case of the Urdach lherzolite body (North Pyrenees). J Geol Soc 178(2). [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt; ECORS-Pyrenees crustal balanced cross-section. In: McClay KR, ed. Thrust tectonics. London, United Kingdom: Chapman & Hall, pp. 235–246. [Google Scholar]
  • Muñoz JA. 2002. The Pyrenees. In: Gibbons W, Moreno T, eds. The Geology of Spain. The Geological Society of London, pp. 370–385. [Google Scholar]
  • Müntener O, Hermann J, Trommsdorff V. 2000. Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). J Petrol 41: 175–200. [Google Scholar]
  • Neres M, Miranda JM, Font E. 2013. Testing Iberian kinematics at Jurassic-Cretaceous times. Tectonics 32: 1312–1319. https://doi.org/10.1002/tect.20074. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia–Newfoundland: implications for plate reconstructions. Terra Nova 29(1): 20–28. [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics 37(1): 89–118. [Google Scholar]
  • Nirrengarten M, Mohn G, Schito A, Corrado S, Gutiérrez-García L, Bowden SA, et al. 2020. The thermal imprint of continental breakup during the formation of the South China Sea. Earth Planet Sci Lett 531: 115972. [Google Scholar]
  • Nunn JA, Lin G. 2002. Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark Plateau. Basin Res 14: 129–145. https://doi.org/10.1046/j.1365-2117.2002.00172.x. [Google Scholar]
  • Olivet J-L. 1996. La cinematique de la plaque Iberique. Bull Cent Rech Explor Prod Elf-Aquitaine 20: 131–195. [Google Scholar]
  • Oliva-Urcia B, Beamud E, Garcés M, Arenas C, Soto R, Pueyo EL, et al. 2015. New magnetostratigraphic dating in the Palaeogene syntectonic sediments of the west-central Pyrenees: Tectonostratigraphic implications. In: Pueyo EL, ed. Palaeomagnetism in Fold and Thrust Belts: New Perpectives. Geol Soc Spec Publ 425. https://doi.org/10.1144/SP425.5. [Google Scholar]
  • Omodeo-Salé S, Salas R, Guimerà J, Ondrak R, Mas R, Arribas J, et al. 2017. Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-central Spain) affected by very low-to low-grade metamorphism. Basin Res 29: 156–174. [Google Scholar]
  • Ortiz A, Guillocheau F, Lasseur E, Briais J, Robin C, Serrano O, et al. 2020. Sediment routing system and sink preservation during the post-orogenic evolution of a retro-foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Mar Pet Geol 112: 104085. [Google Scholar]
  • Osmundsen PT, Péron-Pinvidic G, Ebbing J, Erratt D, Fjellanger E, Bergslien D, et al. 2016. Extension, hyperextension and mantle exhumation offshore Norway: a discussion based on 6 crustal transects. Nor J Geol 96: 343–372. https://doi.org/10.17850/njg96-4-05. [Google Scholar]
  • Pasteris J, Wopenka B. 1991. Raman-Spectra of Graphite as Indicators of Degree of Metamorphism. Can Miner 29: 1–9. [Google Scholar]
  • Pasteris JD. 1989. In situ analysis in geological thin-sections by laser Raman microprobe spectroscopy; a cautionary note. Appl Spectrosc 567–570. [Google Scholar]
  • Peace A, McCaffrey K, Imber J, Hobbs R, van Hunen J, Gerdes K. 2017. Quan-tifying the influence of sill intrusion on the thermal evolution of organic-rich sedimentary rocks in nonvolcanic passive margins: an example from ODP 210–1276, offshore Newfoundland, Canada. Basin Res 29: 249–265. https://doi.org/10.1111/bre.12131. [Google Scholar]
  • Pedrera A, García-Senz J, Ayala C, Ruiz-Constán A, Rodríguez-Fernández LR, Robador A, et al. 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal-scale 3-D gravity inversion and geological cross section. Tectonics 36. https://doi.org/10.1002/2017TC004716. [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. J Geophys Res Solid Earth 112: B12405. https://doi.org/10.1029/2007JB005021. [Google Scholar]
  • Pérez-Gussinyé M, Ranero CR, Reston TJ, Sawyer D. 2003. Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. Journal of Geophysical Research: Solid Earth 108(B5). [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int J Earth Sci 98: 1581–1597. https://doi.org/10.1007/s00531-008-0337-9. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2019. Rifted margins: State of the art and future challenges. Front Earth Sci 7: 218. [Google Scholar]
  • Péron-Pinvidic G, Osmundsen PT. 2016. Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: Insights from the Rån-Gjallar ridges system. Mar Pet Geol 77: 280–299. https://doi.org/10.1016/j.marpetgeo.2016.06.014. [Google Scholar]
  • Picazo S, Müntener O, Manatschal G, Bauville A, Karner G, Johnson C. 2016. Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos 266: 233–263. [Google Scholar]
  • Pin C, Paquette JL, Monchoux P, Hammouda T. 2001. First fieldscale occurrence of Si-Al-Na-rich low-degree partial melts from the upper mantle. Geology 29: 451–454 [Google Scholar]
  • Pin C, Monchoux P, Paquette J-L, Azambre B, Wang RC, Martin RF. 2006. Igneous albitite dikes in orogenic lherzolites, Western Pyrenees, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terrenes. II. Geochemical and petrogenetic considerations. Can Miner 44:843–856 [Google Scholar]
  • Pinet B, Montadert L, Curnelle R, Cazes M, Marillier F, Rolet J, et al. 1987. Crustal thinning on the Aquitaine shelf Bay of Biscay, from deep seismic data. Nature 325: 513–516. [Google Scholar]
  • Pinto VH, Manatschal G, Karpoff AM, Viana A. 2015. Tracing mantle-reacted fluids in magma-poor rifted margins: the example of Alpine Tethyan rifted margins. Geochem Geophys Geosyst 16: 3271–3308. https://doi.org/10.1002/2015GC005830. [Google Scholar]
  • Pollack HN, Cercone KR. 1994. Anomalous thermal maturities caused by carbonaceous sediments. Basin Res 6: 47–51. [Google Scholar]
  • Poprawski Y, Basile C, Agirrezabala LM, Jaillard E, Gaudin M, Jacquin T. 2014. Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain). Basin Res 26(6): 746–766. https://doi.org/10.1111/bre.12062. [Google Scholar]
  • Poprawski Y, Basile C, Jaillard E, Gaudin M, Lopez M. 2016. Halokinetic sequences in carbonate systems: An example from the middle Albian Bakio breccias formation (Basque Country, Spain). Sediment Geol 334: 34–52. https://doi.org/10.1016/j.sedgeo.2016.01.013. [Google Scholar]
  • Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J Geol Soc 167: 751–767. https://doi.org/10.1144/0016-76492009-144. [Google Scholar]
  • Pross J, Pletsch T, Shillington DJ, Ligouis B, Schellenberg F, Kus J. 2007. Ther-mal alteration of terrestrial palynomorphs in mid-Cretaceous organic-rich mud-stones intruded by an igneous sill (Newfoundland Margin, ODP Hole 1276A). Int J Coal Geol 70: 277–291. https://doi.org/10.1016/j.coal.2006.06.005. [Google Scholar]
  • Quesnel B, Boiron MC, Cathelineau M, Truche L, Rigaudier T, Bardoux G, et al. 2019. Nature and origin of mineralizing fluids in hyperextensional systems: The case of cretaceous Mg metasomatism in the Pyrenees. Geofluids 2019. [Google Scholar]
  • Rat P. 1988. The Basque-Cantabrian Basin between the Iberian and European plates, some facts but still many problems. Rev Soc Geol Esp 1: 327–348. [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal evolution of the Cameros basin: Implications for tectonics of North Iberia. Tectonics 38(2): 440–469. [Google Scholar]
  • Ravier J. 1959. Le metamorphisme des terrains secondaires des Pyrenees. Mem Soc Geol Fr Nouv Ser 38. [Google Scholar]
  • Renard S, Pironon J, Sterpenich J, Carpentier C, Lescanne M, Gaucher EC. 2019. Diagenesis in Mesozoic carbonate rocks in the North Pyrénées (France) from mineralogy and fluid inclusion analysis: Example of Rousse reservoir and caprock. Chem Geol 508: 30–46. [Google Scholar]
  • Reston TJ, Pennell J, Stubenrauch A, Walker I, Pérez-Gussinyé M. 2001. Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology 29(7): 587–590. [Google Scholar]
  • Revelli N. 2013. Structuration de la Zone Nord-Pyrénéenne dans la région de Bessède de Sault, Pyrénées Orientales. Master Sciences de la Terre et de l’Environnement, Mémoire de Master 2. Université d’Orléans. [Google Scholar]
  • Ribes C, Ghienne JF, Manatschal G, Dall’Asta N, Stockli DF, Galster F, et al. 2020. The Grès Singuliers of the Mont Blanc region (France and Switzerland): stratigraphic response to rifting and crustal necking in the Alpine Tethys. Int J Earth Sci 109(7): 2325–2352. [Google Scholar]
  • Robert P. 1971. Étude petrographique des matieres organiques insolubles par la mesure de leur pouvoir reflecteur; contribution a l’exploration petroliere et a la connaissance des bassins sedimentaires. Petrogr Insoluble Org Mater Based It 26: 105–135. [Google Scholar]
  • Roca E, Sans M, Cabrera L, Marzo M. 1999. Oligocene to Middle Miocene evolution of the central Catalan margin (northwestern Mediterranean). Tectonophysics 315: 209–229. https://doi.org/10.1016/S0040-1951(99)00289-9. [Google Scholar]
  • Roca E. 2001. The Northwest Mediterranean Basin (Valencia Trough, gulf of Lions and Liguro-Provençal basins): structure and geodynamic evolution. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, eds. Peri-Tethys Memoir 6: Pery-Tethyan Rift/Wrench Basins and Passive Margins. Paris: Mémoires Muséum National d’Histoire Naturelle 186, pp. 671–706. [Google Scholar]
  • Roca E, Muñoz JA, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30: TC2001. https://doi.org/10.1029/2010TC002735. [Google Scholar]
  • Roest WR, Srivastava S. 1991. Kinematics of the plate boundaries between Eurasia, Iberia and Africa in the North Atlantic from the late Cretaceous to the present. Geology 19: 613–616. [Google Scholar]
  • Roigé M, Gómez-Gras D, Stockli DF, Teixell A, Boya S, Remacha E. 2019. Detrital zircon U-Pb insights into the timing and provenance of the South Pyrenean Jaca basin. J Geol Soc 176(6): 1182–1190. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. https://doi.org/10.1016/S0040-1951(02)00442-0. [Google Scholar]
  • Rossetti P, Barale L, Bertok C, D’Atri AR, Gerdes A, Martire L, et al. 2015. Metamorphic recrystallization related to the circulation of CO2-rich hydrothermal fluids: the case of the Valdieri marbles (Maritime Alps). In: Il Pianeta Dinamico: sviluppi e prospettive a 100 anni da Wegener Congresso congiunto SIMP-AIV-SoGeI-SGI (Vol. 35, No. 2), pp. 116–116. [Google Scholar]
  • Rossy M, Azambre B, Albarède F. 1992. REE and Sr/1bNd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chem Geol 97: 33–46. https://doi.org/10.1016/0009-2541(92)90134-Q. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader AG. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. C R Geosci 348(3–4): 224–235. [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, et al. 1989. ECORS deep seismic data and balanced cross sections; geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. https://doi.org/10.1029/TC008i001p00041. [Google Scholar]
  • Royden L, Sclater JG, von Herzen RP. 1980. Continental margin subsidence and heat flow: important parameters in formation of petroleum hydrocarbons. Am Assoc Pet Geol Bull 64: 173–187. https://doi.org/10.1306/2F91894B-16CE-11D7-8645000102C1865D. [Google Scholar]
  • Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C. 2017. Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: example of Mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Mar Pet Geol 80:563–586 [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020. Paleogeothermal Gradients across an Inverted Hyperextended Rift System: Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics 39(10): e2020TC006206. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. [Google Scholar]
  • Saura E, Ardèvol i Oró L, Teixell A, Vergés J. 2016. Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics 35(3): 638–662. [Google Scholar]
  • Scharf A, Handy MR, Ziemann MA, Schmid SM. 2013. Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps); a study with Raman microspectroscopy on carbonaceous material (RSCM). J Metamorph Geol 31: 863–880. https://doi.org/10.1111/jmg.12048. [Google Scholar]
  • Sclater JG, Jaupart C, Galson D. 1980. The heat flow through oceanic and conti-nental crust and the heat loss of the Earth. Rev. Geophys 18: 269–311. https://doi.org/10.1029/RG018i001p00269. [Google Scholar]
  • Seymour NM, Stockli DF, Beltrando M, Smye AJ. 2016. Tracing the thermal evolution of the Corsican lower crust during Tethyan rifting. Tectonics 35: 2439–2466. https://doi.org/10.1002/2016TC004178. [Google Scholar]
  • Sibuet J-C, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. J Geophys. Res Solid Earth 109: B08104. https://doi.org/10.1029/2003JB002514. [Google Scholar]
  • Srivastava SP, Sibuet JC, Cande S, Roest WR, Reid ID. 2000. Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet Sci Lett 182: 61–76. [Google Scholar]
  • Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosystems 14: 2575–2597. https://doi.org/10.1002/ggge.20135. [Google Scholar]
  • Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth Sci Rev 187: 314–337. [Google Scholar]
  • Taylor GH, Teichmüller M, Davis A, Diessel C, Littke R, Robert P. 1998. Organic petrology. Stuttgart, Germany: Gebriider Borntraeger, 704 p. [Google Scholar]
  • Teixell A. 1996. The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. J Geol Soc 153: 301–310. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17: 395–406. https://doi.org/10.1029/98TC00561. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. C R Géosci 348: 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724: 146–170. [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics 38: 1308–1336. https://doi.org/10.1029/2018TC005254. [Google Scholar]
  • Tissot BP, Welte DH. 1984. From kerogen to petroleum. In Petroleum formation and occurrence. Berlin, Heidelberg: Springer, pp. 160–198. [Google Scholar]
  • Tomassino A, Marillier F. 1997. Processing and interpretation in the tau-p domain of the ECORS Bay of Biscay expanding spread profiles. Mem Soc Geol Fr 171: 31–43. [Google Scholar]
  • Trümpy R. 1949. Der Lias der Glarner Alpen. Denkschr. Schweiz. Nat. forsch. Ges., E.T.H. Zuerich, Switzerland, 193 p. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43(1): 15–18. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems; insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33: 1239–1276. https://doi.org/10.1002/2014TC003529. [Google Scholar]
  • Ungerer P, Burrus J, Doligez B, Chenet PY, Bessis F. 1990. Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. In: AAPG Bulletin. USA: American Association of Petroleum Geologists. http://www.osti.gov/scitech/servlets/purl/6990099. [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth Planet Sci Lett 408: 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [Google Scholar]
  • Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, et al. 2013. Pre-orogenic exhumation of the north Pyrenean Agly Massif (eastern Pyrenees, France). Tectonics 32: 95–106. https://doi.org/10.1002/tect.20015. [Google Scholar]
  • Vergés J, García-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. In: Ziegler PA, et al., eds. Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoire, pp. 187–212. [Google Scholar]
  • Vergés J, Fernàndez M, Martìnez A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. Journal of the Virtual Explorer 8: 55–74. [Google Scholar]
  • Vergés J, Millán H, Roca E, Muñoz JA, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections. Mar Pet Geol Integr Basin Stud 12: 903–915. https://doi.org/10.1016/0264-8172(95)98854-X. [Google Scholar]
  • Villard J. 2016. Déformation et thermicité de la couverture mésozoïque dans une structure salifère des Chaînons Béarnais (Zone Nord Pyrénéenne). Master Géosciences, Mémoire de Master 2. Université de Montpellier. http://rgf.brgm.fr/sites/default/files/upload/documents/productionscientifique/Masters/rgf_amipyr2015_ma7_memoire_villard.pdf. [Google Scholar]
  • Vissers RLM. 1992. Variscan extension in the Pyrenees. Tectonics 11(6): 1369–1384. [Google Scholar]
  • Vissers RLM, Meijer PT. 2012. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth Sci Rev 110: 93–110. https://doi.org/10.1016/j.earscirev.2011.11.001. [Google Scholar]
  • Vissers RL, van Hinsbergen DJ, Meijer PT, Piccardo GB. 2013. Kinematics of Jurassic ultra-slow spreading in the Piemonte Ligurian ocean. Earth Planet Sci Lett 380: 138–150. [Google Scholar]
  • Vissers RL, van Hinsbergen DJ, van der Meer DG, Spakman W. 2016. Cretaceous slab break-off in the Pyrenees: Iberian plate kinematics in paleomagnetic and mantle reference frames. Gondwana Research 34: 49–59. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44(6): 475–478. [Google Scholar]
  • Wangen M. 1995. The blanketing effect in sedimentary basins. Basin Res 7: 283–298. [Google Scholar]
  • Watremez L, Prada M, Minshull T, O’Reilly B, Chen C, Reston T, et al. 2018. Deep structure of the Porcupine Basin from wide-angle seismic data. In: Geological Society, London, Petroleum Geology Conference series (Vol. 8, No. 1). Geological Society of London, pp. 199–209. [Google Scholar]
  • Winnock E. 1974. Le Bassin d’Aquitaine. In: Debelmas J, ed., Géologie de la France - Vieux massifs et grands bassins sédimentaires. Paris, France: Doin, v. 1, pp. 255–293. [Google Scholar]
  • Wopenka B, Pasteris JD. 1993. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Miner 78: 533–557. [Google Scholar]
  • Ziegler PA, Dèzes P. 2006. Crustal evolution of Western and Central Europe. In: Gee DG, Stephenson RA, eds. European Lithosphere Dynamics 32: 43–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.