BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 47
Number of page(s) 22
Published online 20 October 2021
  • Aki K, Richards PG. 2002. Quantitative seismology. University Science Books. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. [CrossRef] [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? insights from the Northern Iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics 38(5): 1666–1693. [CrossRef] [Google Scholar]
  • Benz HM, Chouet BA, Dawson PB, Lahr JC, Page RA, Hole JA. 1996. Three dimensional P- and S-wave velocity structure of Redoubt volcano, Alaska. Journal of Geophysical Research 101(B4): 8111–8128. [CrossRef] [Google Scholar]
  • Bodet L, van Wijk K, Bitri A, Abraham O, Côte P, Grandjean G, et al. 2005. Surface-wave inversion limitations from laser-doppler physical modeling. Journal of Environmental, Engineering Geophysics 10(2): 151–162. [CrossRef] [Google Scholar]
  • Boillot G, Capdevilla R, Hennequin-Marchand I, Lamboy M, Lepretre JP. 1973. La zone nord-pyrénéenne, ses prolongements sur la marge continentale nord-espagnole et sa signification structurale. Comptes rendus de l’Academie des sciences (Paris) 227: 2629–2632. [Google Scholar]
  • Boissonnas J, Destombes J, Heddebaut C, Le Pochat G, Lorsignol S, Roger P, et al. 1974. Feuille de iholdy (1027). Carte géologique de la France, scale 1/50 000. Bureau de Recherche Géologique et Minières. [Google Scholar]
  • Brocher TM. 2005. Empirical relations between elastic wavespeeds and density in the earth’s crust. Bulletin of the seismological Society of America 95(6): 2081–2092. [CrossRef] [Google Scholar]
  • Canérot J. 2017. The pull apart-type tardets-Mauléon Basin: A key to understand the formation of the Pyrenees. Bull. Soc. géol. Fr. 188(6): 35. [Google Scholar]
  • Canérot J, Majesté-Menjoulas C, Ternet Y. 1999. Le cadre stratigraphique et géodynamique des altérites et des bauxites sur la marge ibérique des pyrénées occidentales (France). Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 328(7): 451–456. [Google Scholar]
  • Casas A, Kearey P, Rivero L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the Western and Eastern Pyrenees. Earth and Planetary Science Letters 150(1-2): 65–78. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Delouis B. 2011. A preliminary catalogue of moment tensors for the Pyrenees. Tectonophysics 510: 239–251. [CrossRef] [Google Scholar]
  • Chevrot S, Villaseñor A, Sylvander M, The Pyrope Team. 2014. High resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J. Geophys. Res. 119(8): 6399–6420. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Ruiz M, Paul A, The PYROPE Working Group. 2015. The Pyrenean architecture as revealed by teleseismic P-to-S converted waves recorded along two dense transects. Geophys. J. Int. 200: 1096–1107. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8(1): 9591. [CrossRef] [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus Geoscience 348(3-4): 279–289. [CrossRef] [Google Scholar]
  • Curnelle R. 1983. Évolution structuro-sedimentaire du trias et de l’infra-lias d’Aquitaine. Bulletin des Centres de recherches exploration-production Elf-Aquitaine 7(1): 69–99. [Google Scholar]
  • Daignières M, Séguret M, Specht M, ECORS Team. 1994. The Arzacq-Mauléon-Western Pyrenees ECORS Deep Seismic Profile. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France, vol. 4, Eur. Assoc. Pet. Geosci. Spec. Publ., pp. 199–208. Academic, USA: Springer-Verlag. [CrossRef] [Google Scholar]
  • Dean S, Minshull T, Whitmarsh R, Louden K. 2000. Deep structure of the ocean-continent transition in the Southern Iberia abyssal plain from seismic refraction profiles: The iam-9 transect at 40 20’ n. Journal of Geophysical Research: Solid Earth 105(B3): 5859–5885. [CrossRef] [Google Scholar]
  • Debroas EJ, Canérot J, Bilotte M. 2010. Les brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconnien-cénomanien inférieur (Zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Géologie de la France 2: 53–63. [Google Scholar]
  • Dorman J, Ewing M. 1962. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania area. Journal of Geophysical Research 67(13): 5227–5241. [CrossRef] [Google Scholar]
  • Ducoux M, Masini E, Tugend J, Gómez-Romeu J, Calassou S. 2021. Basement-decoupled hyper-extension rifting: The tectono-stratigraphic record of the salt-rich pyrenean necking zone (Arzacq Basin, SW France). GSA Bulletin. [Google Scholar]
  • Dumont T, Replumaz A, Rouméjon S, Briais A, Rigo A, Bouillin J-P. 2015. Microseismicity of the béarn range: Reactivation of inversion and collision structures at the northern edge of the Iberian plate. Tectonics 34(5): 934–950. [CrossRef] [Google Scholar]
  • Fang H, Yao H, Zhang H, Huang Y-C, van der Hilst RD. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International 201(3): 1251–1263. [CrossRef] [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the Western “Chaînons Béarnais”? (French Pyrenees): Structural and paleogeographical pattern. Tectonophysics 129(1-4): 81–98. [CrossRef] [Google Scholar]
  • Gassenmeier M, Sens-Schönfelder C, Delatre M, Korn M. 2014. Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal International 200(1): 524–533. [CrossRef] [Google Scholar]
  • Gilbert F, Backus GE. 1966. Propagation matrices in elastic wave and vibration problems. Geophysics 31(2): 326–332. GeoScienceWorld. [CrossRef] [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. [Google Scholar]
  • Gottis M. 1972. Construction d’un modèle géodynamique pyrénéen. Comptes Rendus Académie des Sciences 275. [Google Scholar]
  • Grandjean G. 1994. Etude des structures crustales dans une portion de chaîne et de leur relation avec les bassins sédimentaires. Application aux Pyrénées occidentales. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 18(2): 391–420. [Google Scholar]
  • Hansen PC, O’Leary DP. 1993. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14(6): 1487–1503. [CrossRef] [Google Scholar]
  • Haskell NA. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America 43(1): 17–34. [CrossRef] [Google Scholar]
  • Herrmann RB. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters 84(6): 1081–1088. [CrossRef] [Google Scholar]
  • Issautier B, Saspiturry N, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon Basin (Early Cretaceous Arzacq and Tartas Basins). Marine and Petroleum Geology 118: 104395. [CrossRef] [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the Western Pyrenees. Tectonics 28: TC4012. [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010. 3-D architecture of a complex transcurrent rift system: The example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489(1-4): 210–226. [CrossRef] [Google Scholar]
  • Jia Z, Clayton RW. 2021. Determination of near surface shear-wave velocities in the Central Los Angeles Basin with dense arrays. [Google Scholar]
  • Knopoff L. 1964. A matrix method for elastic wave problems. Bulletin of the Seismological Society of America 54(1): 431–438. [CrossRef] [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean Rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 785: 228451. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4). [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3-D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, North-Western Pyrenees, France). BSGF – Earth Sciences Bulletin 190: 8. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lau KH, Louden KE, Funck T, Tucholke BE, Holbrook WS, Hopper JR, et al. 2006. Crustal structure across the grand banks-newfoundland basin continental margin-i. Results from a seismic refraction profile. Geophysical Journal International 167(1): 127–156. [CrossRef] [Google Scholar]
  • Lehujeur M, Chevrot S. 2020. Eikonal tomography using coherent surface waves extracted from ambient noise by iterative matched filtering-application to the large-n Maupasacq array. Journal of Geophysical Research: Solid Earth 125(6). [CrossRef] [Google Scholar]
  • Lehujeur M, Vergne J, Schmittbuhl J, Zigone D, Le Chenadec A, Team ECORS. 2018. Reservoir imaging using ambient noise correlation from a dense seismic network. Journal of Geophysical Research: Solid Earth 123(8): 6671–6686. [Google Scholar]
  • Leleu S, Hartley AJ, van Oosterhout C, Kennan L, Ruckwied K, Gerdes K. 2016. Structural, stratigraphic and sedimentological characterisation of a wide rift system: The triassic rift system of the central atlantic domain. Earth-Science Reviews 158: 89–124. [CrossRef] [Google Scholar]
  • Lescoutre R. 2019. Formation et réactivation du système de rift pyrénéo-cantabrique : héritage, segmentation et évolution thermique. PhD Thesis, Strasbourg. [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: Example from the Pyrenean-Cantabrian system. BSGF – Earth Sciences Bulletin 191: 18. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: Results from numerical modeling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems 20(10): 4567–4587. [CrossRef] [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz JA. 2021. Nature, origin and evolution of the pyrenean-cantabrian junction. Tectonics n/a(n/a): e2020TC006134. [Google Scholar]
  • Lin FC, Moschetti MP, Ritzwoller MH. 2008. Surface wave tomography of the Western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International 173(1): 281–298. [CrossRef] [Google Scholar]
  • Lomax A, Snieder R. 1994. Finding sets of acceptable solutions with a genetic algorithm with application to surface wave group dispersion in Europe. Geophysical Research Letters 21(24): 2617–2620. _eprint: [CrossRef] [Google Scholar]
  • Lu Y, Stehly L, Paul A. 2018. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophysical Journal International 214(2): 1136–1150. Oxford Academic. [CrossRef] [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new southern north atlantic isochron map: Insights into the drift of the iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. [CrossRef] [Google Scholar]
  • Macquet M, Paul A, Pedersen HA, Villaseñor A, Chevrot S, Sylvander M, et al. 2014. Ambient noise tomography of the Pyrenees and the surrounding regions: Inversion for a 3-D VS model in the presence of a very heterogeneous crust. Geophysical Journal International 199(1): 402–415. [CrossRef] [Google Scholar]
  • Maraschini M, Foti S. 2010. A Monte Carlo multimodal inversion of surface waves. Geophysical Journal International 182(3): 1557–1566. [CrossRef] [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon Rift System (Western Pyrenees, France). Int. J. Earth Sci. 103: 1569–1596. [CrossRef] [Google Scholar]
  • Montagner J, Tanimoto T. 1990. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J. Geophys. Res. 95: 4797–4819. [CrossRef] [Google Scholar]
  • Mordret A, Shapiro N, Singh S, Roux P, Barkved O. 2013. Helmholtz tomography of ambient noise surface wave data to estimate Scholte wave phase velocity at Valhall Life of the field. Geophysics 78(2): WA99–WA109. [CrossRef] [Google Scholar]
  • Mordret A, Landès M, Shapiro NM, Singh SC, Roux P. 2014. Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: Depth inversion witha Neighbourhood Algorithm. Geophysical Journal International 198(3): 1514–1525. Oxford Academic. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the iberia/europe convergence. Tectonics 33(12): 2283–2314. [CrossRef] [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 20(1): 131–195. [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research 112(B12). [CrossRef] [Google Scholar]
  • Planès T, Obermann A, Antunes V, Lupi M. 2019. Ambient-noise tomography of the Greater Geneva Basin in a geothermal exploration context. Geophysical Journal International 220(1): 370–383. [Google Scholar]
  • Podvin P, Lecomte I. 1991. Finite difference computation of travel times in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International 105: 271–284. [CrossRef] [Google Scholar]
  • Polychronopoulou K, Lois A, Martakis N, Chevrot S, Sylvander M, Diaz J, et al. 2018. Broadband, short-period or geophone nodes? Quality assessment of passive seismic signals acquired during the Maupasacq experiment. First Break 36(4): 71–76. [CrossRef] [Google Scholar]
  • Puigdefàbregas C, Souquet P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129(1-4): 173–203. [Google Scholar]
  • Rat P. 1988. The Basque-Cantabrian Basin between the iberian and european plates some facts but still many problems. Revista de la Sociedad geológica de España 1(4): 327–348. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées basques à l’ouest de la transformante de Pamplona, Province du Labourd. PhD Thesis, Bordeaux 3. [Google Scholar]
  • Richard P. 1986. Structure et évolution alpine des massifs paléozoïques du Labourd (Pays Basque Français). Éditions du Bureau de recherches géologiques et minières. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359(1-2): 117–129. [Google Scholar]
  • Sambridge M. 1999. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space. Geophysical Journal International 138(2): 479–494. Oxford Academic. [CrossRef] [Google Scholar]
  • Saspiturry N. 2019. Évolution sédimentaire, structurale et thermique d’un rift hyper-aminci : de l’héritage post-hercynien à l’inversion alpine : exemple du bassin de Mauléon (Pyrénées). PhD Thesis, Bordeaux 3. [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019a. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. [CrossRef] [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019b. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. [CrossRef] [Google Scholar]
  • Saspiturry N, Allanic C, Razin P, Issautier B, Baudin T, Lasseur E, et al. 2020a. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova 32(4): 253–260. [CrossRef] [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020b. Paleogeothermal gradients across an inverted hyperextended rift system: Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics 39(10). [CrossRef] [Google Scholar]
  • Schmandt B, Clayton RW. 2013. Analysis of telesismic P-waves with a 5200-station array in Long Beach, California: Evidence for an abrupt boundary to Inner Borderland rifting. J. Geophys. Res. 118: 1–19 [Google Scholar]
  • Schoeffler J. 1982. Les transversales basco-landaises. Bull. Cent. Rech. ELF-Aquitaine 6: 257–263. [Google Scholar]
  • Shapiro N, Ritzwoller M. 2002. Monte-carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International 151(1): 88–105. [CrossRef] [Google Scholar]
  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307: 1615–1618. [CrossRef] [Google Scholar]
  • Socco LV, Boiero D. 2008. Improved Monte Carlo inversion of surface wave data. Geophysical Prospecting 56(3): 357–371. [CrossRef] [Google Scholar]
  • Souriau A, Pauchet H. 1998. A new synthesis of Pyrenean seismicity and its tectonic implications. Tectonophysics 290: 221–244. [CrossRef] [Google Scholar]
  • Tarantola A, Valette B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics 20(2): 219–232. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience 348(3-4): 257–267. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian Belt: A review and new interpretations from recent concepts and data. Tectonophysics 724: 146–170. [CrossRef] [Google Scholar]
  • Thomson WT. 1950. Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics 21(2): 89–93. American Institute of Physics. [CrossRef] [Google Scholar]
  • Tryggvason A, Rognvaldsson S, Flovenz O. 2002. Three-dimensional imaging of the P-and S-wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International 151(3): 848–866. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33(7): 1239–1276. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir N. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the iberian-european plate boundary. Geology 43(1): 15–18. [CrossRef] [Google Scholar]
  • Vacher P, Souriau A. 2001. A three-dimensional model of the Pyrenean deep structure based on gravity modelling, seismic images and petrological constraints. Geophysical Journal International 145(2): 460–470. [CrossRef] [Google Scholar]
  • Van Hinsbergen DJ, Torsvik TH, Schmid SM, Matenco LC, Maffione M, Vissers RL, et al. 2020. Orogenic architecture of the mediterranean region and kinematic reconstruction of its tectonic evolution since the triassic. Gondwana Research 81: 79–229. [CrossRef] [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of pyrenean lherzolites and granulites. Earth and Planetary Science Letters 67(1): 87–96. [CrossRef] [Google Scholar]
  • Villaseñor A, Chevrot S, Sylvander M, Polychronopoulou K, Martakis N, Collin M, et al. 2019. Crustal architecture of the Mauléon Basin (Western Pyrenees) from high resolution local earthquake tomography using the large-N Maupasacq experiment. Geophysical Research Abstracts, vol. 21, EGU General Assembly. [Google Scholar]
  • Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, et al. 2021. Central Pyrenees Mountain building: Constraints from new lt thermochronological data from the axial zone. Tectonics 40(3): e2020TC006614. [CrossRef] [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the Western Pyrenees revealed by full waveform inversion of teleseismic P-waves. Geology 44(6): 475–478. [CrossRef] [Google Scholar]
  • Xia J, Miller R, Park C. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64(3): 691–700. [CrossRef] [Google Scholar]
  • Zhang X, Curtis A, Galetti E, de Ridder S. 2018. 3-D Monte Carlo surface wave tomography. Geophysical Journal International 215(3): 1644–1658. [CrossRef] [Google Scholar]
  • Zolnaï G. 1975. Sur l’existence d’un réseau de failles de décrochement dans l’avant-pays nord des Pyrénées occidentales. Rev. Géogr. Phys. Géol. Dynam. Fr. 17: 219–238. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.