Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 193, 2022
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/bsgf/2022002 | |
Published online | 14 March 2022 |
- Andreasson FP, Schmitz B. 1996. Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles. Geology 24: 1067–70. https://doi.org/10.1130/0091-7613(1997)025<0957:WASTOT>2.3.CO;2. [CrossRef] [Google Scholar]
- Andreasson FP, Schmitz B. 2000. Temperature seasonality in the early middle Eocene North Atlantic region: evidence from stable isotope profiles of marine gastropod shells. Bulletin of the Geological Society of America 112: 628–40. https://doi.org/10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;2. [CrossRef] [Google Scholar]
- Barnet J. 2021. New forest: Geology and fossils, 1st ed. Ramsbury: The Crowood Press. [Google Scholar]
- Barron JA, Stickley CE, Bukry D. 2015. Paleoceanographic, and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record. Palaeogeography, Palaeoclimatology, Palaeoecology 422: 85–100. https://doi.org/10.1016/j.palaeo.2015.01.015. [CrossRef] [Google Scholar]
- Boulter MC, Hubbard RNLB. 1982. Objective paleoecological and biostratigraphic interpretation of Tertiary palynological data by multivariate statistical analysis. Palynology 6: 55–68. https://doi.org/10.1080/01916122.1982.9989234. [CrossRef] [Google Scholar]
- Bouwer LM, Vermaat JE, Aerts JCJH. 2006. Winter atmospheric circulation and river discharge in northwest Europe. Geophysical Research Letters 33: 2–5. https://doi.org/10.1029/2005GL025548. [CrossRef] [Google Scholar]
- Brugière J-G. 1792. Encyclopédie méthodique ou par orde de matières. Histoire naturelle des vers. Tome Premier. Paris : Panckoucke. [Google Scholar]
- Butterlin J, Vrielynck B, Bignot G, Clermonte J, Colchen M, Dercourt J, et al. 1993. Lutetian (46 to 40 Ma). In: Dercourt J, Ricou LE, Vrielynck B, eds. Atlas Tethys Palaeoenvironmental Maps. Explanatory Notes, pp. 197–209. [Google Scholar]
- Carlier A, Riera P, Amouroux JM, Bodiou JY, Grémare A. 2007. Benthic trophic network in the Bay of Banyuls-Sur-Mer (northwest Mediterranean, France): an assessment based on stable carbon and nitrogen isotopes analysis. Estuarine, Coastal and Shelf Science 72: 1–15. https://doi.org/10.1016/j.ecss.2006.10.001. [CrossRef] [Google Scholar]
- Caze B, Merle D, Saint Martin J-P, Pacaud J-M. 2011. Apport des motifs colorés résiduels dans la caractérisation des espèces de mollusques Cénozoïques (Gastropoda, Bivalvia). Comptes Rendus – Palevol 10: 171–79. https://doi.org/10.1016/j.crpv.2010.10.005. [CrossRef] [Google Scholar]
- Caze B, Merle D, Saint Martin J-P, Pacaud J-M. 2012. Les mollusques Éocènes se dévoilent sous ultraviolets. In: Lebrun P, ed. Les coquillages de l’Eocène du bassin Parisien, pp. 15–56. [Google Scholar]
- Collinson ME. 1996. Plant macrofossils from the Bracklesham Group (Early and Middle Eocene), Bracklesham Bay, West Sussex, England: review and significance in the context of coeval british Tertiary floras. Tertiary Research 16: 175–202. [Google Scholar]
- Collinson ME. 2000. Cenozoic evolution of modern plant communities and vegetation. In: Culver SJ, Rawson PF, eds. Biotic response to global change, pp. 223–243. https://doi.org/10.1017/CBO9780511535505.017. [CrossRef] [Google Scholar]
- Collinson ME, Hooker JJ. 2003. Paleogene vegetation of Eurasia: Framework for mammalian faunas. Deinsea 10: 41–84. [Google Scholar]
- Comas-Bru L, McDermott F, Werner M. 2016. The effect of the east Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Climate Dynamics 47: 2059–2069. https://doi.org/10.1007/s00382-015-2950-1. [CrossRef] [Google Scholar]
- Cossmann M. 1889. Catalogue illustré des coquilles fossiles de l’Éocène des environs de Paris. Annales de la Société royale malacologique de Belgique, 1–385. [Google Scholar]
- Curry D. 1965. The Palaeogene beds of south-east England. Proceedings of the Geologists’ Association 76: 151–173. [CrossRef] [Google Scholar]
- Daley B. 1972. Some problems concerning the early Tertiary climate of southern Britain. Palaeogeography, Palaeoclimatology, Palaeoecology 11: 177–90. [CrossRef] [Google Scholar]
- de Winter NJ, Vellekoop J, Clark AJ, Stassen P, Speijer RP, Claeys P. 2020a. The giant marine gastropod Campanile Giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the Eocene greenhouse world. Geochemistry, Geophysics, Geosystems, 0–2. https://doi.org/10.1029/2019gc008794. [Google Scholar]
- de Winter NJ, Müller I, Kocken I, Thibault N, Ullmann CV, Farnsworth A, et al. 2020b. First absolute seasonal temperature estimates for greenhouse climate from clumped isotopes in bivalve shells. https://doi.org/10.21203/rs.3.rs-39203/v1. [Google Scholar]
- Doi H, Matsumasa M, Toya T, Satoh N, Mizota C, Maki Y, et al. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science 64: 316–22. https://doi.org/10.1016/j.ecss.2005.02.028. [CrossRef] [Google Scholar]
- Dominici S, Zuschin M. 2016. Palaeocommunities, diversity and sea-level change from middle Eocene shell beds of the Paris Basin. Journal of the Geological Society 173: 889–900. https://doi.org/10.1144/jgs2015-150. [CrossRef] [Google Scholar]
- Drupp P, de Carlo EH, Mackenzie FT, Bienfang P, Sabine CL. 2011. Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquatic Geochemistry 17: 473–98. https://doi.org/10.1007/s10498-010-9115-y. [CrossRef] [Google Scholar]
- Dugué O, Auffret J-P, Poupinet N. 2007. Cenozoic shelly sands in the Cotentin (Armorican Massif, Normandy, France): a record of Atlantic transgressions and intraplate Cenozoic deformations. Comptes Rendus – Geoscience 339: 110–20. https://doi.org/10.1016/j.crte.2007.01.001. [CrossRef] [Google Scholar]
- Eiler JM. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30: 3575–88. https://doi.org/10.1016/j.quascirev.2011.09.001. [CrossRef] [Google Scholar]
- Evans D, Sagoo N, Renema W, Cotton LJ, Müller W, Todd JA, et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences 115: 1174–1179. https://doi.org/10.1073/pnas.1714744115. [CrossRef] [Google Scholar]
- Frank PW. 1969. Growth rates and longevity of some gastropod mollusks on the coral reef at Heron Island. Oecologia 2: 232–50. https://doi.org/10.1007/BF00379161. [CrossRef] [Google Scholar]
- Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F. 2006. Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochimica et Cosmochimica Acta 70: 5119–5133. https://doi.org/10.1016/j.gca.2006.07.029. [CrossRef] [Google Scholar]
- Gat JR. 2010. Isotope hydrology: a study of the water cycle, 1st ed. London: Imperial College Press. [CrossRef] [Google Scholar]
- Gentry DK, Sosdian S, Grossman EL, Rosenthal Y, Hicks D, Lear CH. 2008. Stable isotope and Sr/Ca profiles from the marine gastropod Conus ermineus: testing a multiproxy approach for inferring paleotemperature and paleosalinity. Palaios 23: 195–209. https://doi.org/10.2110/palo.2006.p06-112r. [CrossRef] [Google Scholar]
- Gibbard PL, Lewin J. 2003. The history of the major rivers of southern Britain during the Tertiary. Journal of the Geological Society 160: 829–46. https://doi.org/10.1144/0016-764902-137. [CrossRef] [Google Scholar]
- Goikoetxea N, Borja Á, Fontán A, González M, Valencia V. 2009. Trends and anomalies in sea-surface temperature, observed over the last 60 years, within the southeastern Bay of Biscay. Continental Shelf Research 29: 1060–69. https://doi.org/10.1016/j.csr2008.11.014. [CrossRef] [Google Scholar]
- Greenwood DR, Wing SL. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23: 1044–48. https://doi.org/10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2. [CrossRef] [Google Scholar]
- Grossman EL, Ku TL. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience Section 59: 59–74. https://doi.org/10.1016/0168-9622(86)90057-6. [CrossRef] [Google Scholar]
- Guernet C, Huyghe D, Lartaud F, Merle D, Emmanuel L, Gély J-P, et al. 2012. Les ostracodes de la falunière de Grignon (Lutétien du bassin de Paris) : implications stratigraphiques. Geodiversitas 34: 909–59. https://doi.org/10.5252/g2012n4a12. [CrossRef] [Google Scholar]
- Harzhauser M, Piller WE, Müllegger S, Grunert P, Micheels A. 2011. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. Global and Planetary Change 76: 77–84. https://doi.org/10.1016/j.gloplacha.2010.12.003. [CrossRef] [Google Scholar]
- Huber M, Goldner A. 2012. Eocene monsoons. Journal of Asian Earth Sciences 44: 3–23. https://doi.org/10.1016/j.jseaes.2011.09.014. [CrossRef] [Google Scholar]
- Huggett JM, Gale AS. 1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal of the Geological Society 154: 897–912. https://doi.org/10.1144/gsjgs.154.5.0897. [CrossRef] [Google Scholar]
- Huyghe D, Merle D, Lartaud F, Cheype E, Emmanuel L. 2012a. Middle Lutetian climate in the Paris Basin: implications for a marine hotspot of paleobiodiversity. Facies 58: 587–604. https://doi.org/10.1007/s10347-012-0307-3. [CrossRef] [Google Scholar]
- Huyghe D, Mouthereau F, Emmanuel L. 2012b. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees. Earth and Planetary Science Letters 345-348: 131–141. https://doi.org/10.1016/j.epsl.2012.06.035. [CrossRef] [Google Scholar]
- Huyghe D, Lartaud F, Emmanuel L, Merle D, Renard M. 2015. Palaeogene climate evolution in the Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs. Journal of the Geological Society 172: 576–87. https://doi.org/10.1144/jgs2015-016. [CrossRef] [Google Scholar]
- Irie T, Suzuki A. 2020. High temperature stress does not distort the geochemical thermometers based on biogenic calcium carbonate: Stable oxygen isotope values and Sr/Ca ratios of gastropod shells in response to rearing temperature. Geochimica et Cosmochimica Acta 288: 1–15. https://doi.org/10.1016/j.gca.2020.07.044. [CrossRef] [Google Scholar]
- Judd EJ, Wilkinson BH, Ivany LC. 2018. The life and time of clams: derivation of intra-annual growth rates from high-resolution oxygen isotope profiles. Palaeogeography, Palaeoclimatology, Palaeoecology 490: 70–83. https://doi.org/10.1016/j.palaeo.2017.09.034. [CrossRef] [Google Scholar]
- Kanduč T, Medakovíc D, Hamer B. 2011. Mytilus galloprovincialis as a bioindicator of environmental conditions: the case of the eastern coast of the Adriatic Sea. Isotopes in Environmental and Health Studies 47: 42–61. https://doi.org/10.1080/10256016.2011.548866. [CrossRef] [Google Scholar]
- Keith M, Anderson G, Eichler R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta 28: 1757–1786. [CrossRef] [Google Scholar]
- King C. 2016. A revised correlation of Tertiary rocks in the British Isles and adjacent areas of NW Europe, 1st ed. Bath: The Geological Society of London. [Google Scholar]
- Krantz DE, Williams DF, Jones DS. 1987. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology 58: 249–266. [CrossRef] [Google Scholar]
- Kobashi T, Grossman EL, Yancey TE, Dockery III DT. 2001. Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes. Geology 29: 983–986. [CrossRef] [Google Scholar]
- Kobashi T, Grossman EL. 2003. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontological Research 7: 343–55. https://doi.org/10.2517/prpsj.7.343. [CrossRef] [Google Scholar]
- Kobashi T, Grossman EL, Dockery DT, Ivany LC. 2004. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA). Paleoceanography 19. https://doi.org/10.1029/2003pa000934. [Google Scholar]
- Kohn AJ. 1959. The ecology of Conus in Hawaii. Ecological Monographs 29: 47–90. [CrossRef] [Google Scholar]
- Kohn AJ. 1961. Studies on spawning behavior, egg masses, and larval development in the gastropod genus Conus, Part I observations on nine species in Hawaii. Pacific Science XV: 163–79. [Google Scholar]
- Kohn AJ. 1968. Microhabitats, abundance and food of Conus on Atoll reefs in the Maldive and Chagos Islands. Ecology 49: 1046–1062. [CrossRef] [Google Scholar]
- Lamarck J. 1804. Suite des mémoires sur les fossiles des environs de Paris. Annales du Muséum National d’Histoire Naturelle, 436–441. [Google Scholar]
- Lambs L, Bompy F, Dulormne M. 2018. Using “isotopic spike” from tropical storm to understand water exchange on large scale: case study of Hurricane Rafael in the Lesser Antilles archipelago, October 2012. Rapid Communications in Mass Spectrometry 32: 457–468. https://doi.org/10.1002/rcm.8055. [CrossRef] [Google Scholar]
- Latal C, Piller WE, Harzhauser M. 2006. Shifts in oxygen and carbon isotope signals in marine molluscs from the central Paratethys (Europe) around the lower/middle Miocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology 231: 347–60. https://doi.org/10.1016/j.palaeo.2005.08.008. [CrossRef] [Google Scholar]
- Lebrato M, Garbe-Schönberg D, Müller MN, Blanco-Ameijeiras S, Feely RA, Lorenzoni L, et al. 2020. Global variability in seawater Mg: Ca and Sr: Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences 117: 22281–22292. https://doi.org/10.1073/pnas.1918943117. [CrossRef] [Google Scholar]
- Lécuyer C, Reynard B, Martineau F. 2004. Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chemical Geology 213: 293–305. https://doi.org/10.1016/j.chemgeo.2004.02.001. [CrossRef] [Google Scholar]
- Lécuyer C, Hutzler A, Amiot R, Daux V, Grosheny D, Otero O, et al. 2012. Carbon and oxygen isotope fractionations between aragonite and calcite of shells from modern molluscs. Chemical Geology 332-333: 92–101. https://doi.org/10.1016/j.chemgeo.2012.08.034. [CrossRef] [Google Scholar]
- Leviten PJ, Kohn AJ. 1980. Microhabitat resource use, activity patterns, and episodic catastrophe: Conus on tropical intertidal reef rock benches. Ecological Monographs 50: 55–75. [CrossRef] [Google Scholar]
- McConnaughey TA, Gillikin DP. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–99. https://doi.org/10.1007/s00367-008-0116-4. [CrossRef] [Google Scholar]
- Mégnien C, Mégnien F. 1980. Stratigraphie et paléogéographie. In: Mégnien C, ed. Synthèse Géologique du Bassin de Paris, pp. 1–466. [Google Scholar]
- Melville R, Freshney E. 1982. British regional geology; the Hampshire Basin and adjoining areas, 4th ed. London: H.M.S.O. [Google Scholar]
- Merle D. 2008. Stratotype Lutétien, 1st ed. Paris : Muséum national d’Histoire naturelle ; Biotope, Mèze ; BRGM, Orléans. [Google Scholar]
- Mosbrugger V, Utescher T, Dilcher DL. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences 102: 14964–14969. https://doi.org/10.1073/pnas.0505267102. [CrossRef] [Google Scholar]
- Murray J, Wright C. 1974. Palaeogene Foraminiferida and palaeoecology, Hampshire and Paris Basins and the English Channel. Special Papers in Palaeontology 14: 1–129. [Google Scholar]
- Norvick MS. 1969. An analysis of the microfauna and microflora of the upper Eocene of the Hampshire Basin. University of London. [Google Scholar]
- Plint AG. 1982. Eocene Sedimentation and Tectonics in the Hampshire Basin (UK). Journal of the Geological Society 139: 249–54. https://doi.org/10.1144/gsjgs.139.3.0249. [CrossRef] [Google Scholar]
- Plint AG. 1983. Facies, environments and sedimentary cycles in the middle Eocene, Bracklesham Formation of the Hampshire Basin: evidence for global sea-level changes? Sedimentology 30: 625–53. https://doi.org/10.1111/j.1365-3091.1983.tb00699.x. [CrossRef] [Google Scholar]
- Plint AG. 1988. Global eustacy and the Eocene sequence in the Hampshire Basin, England. Basin Research 1: 11–22. [CrossRef] [Google Scholar]
- Pomerol C. Stratigraphie et paléogéographie. In: Pomerol C, ed. Ere Cénozoïque, 1973. [Google Scholar]
- Poulain C, Gillikin DP, Thébault J, Munaron JM, Bohn M, Robert R, et al. 2015. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chemical Geology 396: 42–50. https://doi.org/10.1016/j.chemgeo.2014.12.019. [CrossRef] [Google Scholar]
- Purton LMA. 1997. Geochemical approaches to the problem of nummulitic life habit and habitat in the Eocene. Oxford University. [Google Scholar]
- Purton LMA, Brasier MD. 1997. Gastropod carbonate δ18O and δ13C values record strong seasonal productivity and stratification shifts during the late Eocene in England. Geology 25: 871. https://doi.org/10.1130/0091-7613(1997)025<0871:GCOACV>2.3.CO;2. [Google Scholar]
- Purton LMA, Shields GA, Brasier MD, Grime GW. 1999. Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks. Geology 27: 1083–1086. https://doi.org/10.1130/0091-7613(1999)027<1083:MCSCRI>2.3.CO;2. [CrossRef] [Google Scholar]
- Rae JWB, Zhang YG, Liu X, Foster GL, Stoll HM, Whiteford RDM. 2021. Atmospheric CO2 over the past 66 million years from marine archives. Annual Review of Earth and Planetary Sciences 49. https://doi.org/10.1146/annurev-earth-082420-063026. [Google Scholar]
- Sanders MT, Merle D, Villier L. 2015. The molluscs of the “Falunière” of Grignon (Middle Lutetian, Yvelines, France): quantification of lithification bias and its impact on the biodiversity assessment of the Middle Eocene of Western Europe. Geodiversitas 37: 345–365. https://doi.org/10.5252/g2015n3a4. [CrossRef] [Google Scholar]
- Schmitz B, Andreasson FP. 2001. Air humidity and lake δ18O during the latest Paleocene-earliest Eocene in France from recent and fossil fresh-water and marine gastropod δ18O, δ13C, and 87Sr/86Sr. Geological Society of America Bulletin 113: 774–89. https://doi.org/10.1130/0016-7606(2001)113<0774:AHALOD>2.0.CO;2. [CrossRef] [Google Scholar]
- Sosdian S, Gentry DK, Lear CH, Grossman EL, Hicks D, Rosenthal Y. 2006. Strontium to calcium ratios in the marine gastropod Conus ermineus: growth rate effects and temperature calibration. Geochemistry, Geophysics, Geosystems 7: 1–17. https://doi.org/10.1029/2005GC001233. [Google Scholar]
- Speijer RP, Pälike H, Hollis CJ, Hooker JJ, Ogg JG. 2020. The Paleogene Period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, eds. Geologic Time Scale 2020, pp. 1087–1140. https://doi.org/10.1016/b978-0-12-824360-2.00028-0. [CrossRef] [Google Scholar]
- Stinton FC. 1969. Field meeting in the New Forest, Hants. Proceedings of the Geologists’ Association 81: 269–274. [Google Scholar]
- Swart P, Price R. 2002. Origin of salinity variations in Florida Bay. Limnology and Oceanography 47: 1234–1241. [CrossRef] [Google Scholar]
- Swart P, Sternberg L, Steinen R, Harrison S. 1989. Controls on the oxygen and hydrogen isotopic composition of the waters of Florida Bay, U.S.A. Chemical Geology: Isotope Geoscience Section 79: 113–123. [CrossRef] [Google Scholar]
- Tao K, Grossman EL. 2010. Origin of high productivity in the Pliocene of the Florida platform: evidence from stable isotopes and trace elements. Palaios 25: 796–806. https://doi.org/10.2110/palo.2010.p10-058r. [CrossRef] [Google Scholar]
- Tao K, Robbins JA, Grossman EL, O’Dea A. 2013. Quantifying upwelling and freshening in nearshore tropical American environments using stable isotopes in modern gastropods. Bulletin of Marine Science 89: 815–35. https://doi.org/10.5343/bms.2012.1065. [CrossRef] [Google Scholar]
- Thiry M. 1989. Geochemical evolution and paleoenvironments of the Eocene continental deposits in the Paris Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 153–63. https://doi.org/10.1016/0031-0182(89)90086-2. [CrossRef] [Google Scholar]
- Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R, Ford HL, et al. 2020. Past climates inform our future. Science 370: eaay3701. https://doi.org/10.1126/science.aay3701. [CrossRef] [Google Scholar]
- Tivollier J, Létolle R, Pomerol C. 1968. Résultats et interprétation d’analyses isotopiques de faunes malacologiques du Tertiaire parisien. In: Pomerol C, ed. Colloque sur l’Eocène, pp. 346–357. [Google Scholar]
- Tracey S, Todd J, Le Renard J, King C, Goodchild M. 1996. Distribution of Mollusca in units S1 to S9 of the Selsey Formation (Middle Lutetian), Selsey Peninsula, West Sussex. Tertiary Research 16: 97–140. [Google Scholar]
- Tracey S, Craig B, Belliard L, Gain O. 2017. One, four or forty species? – Early Conidae (Mollusca, Gastropoda) that led to a radiation and biodiversity peak in the late Lutetian Eocene of the Cotentin, NW France. In: Le Renard J, ed. Carnet de Voyages Paléontologiques dans le Bassin Anglo-Parisien, Tome 3, pp. 1–38. [Google Scholar]
- Tucker J, Tenorio M. 2009. Systematic classification of recent and fossil conoidean gastropods: with keys to the genera of cone shells. Hackenheim: Conchbooks. [Google Scholar]
- van Hinsbergen DJJ, de Groot LV, van Schaik SJ, Spakman W, Bijl PK, Sluijs A, et al. 2015. A paleolatitude calculator for paleoclimate studies (model version 2.1). PLoS one 10: e 0126946. [Google Scholar]
- Van Horebeek N, Vellekoop J, Clark AJ, de Winter NJ, Speijer RP. 2021. A stable oxygen isotope record of weather-timescale variability in the Eocene greenhouse world, using the giant marine gastropod Campanile giganteum. EGU General Assembly 2021. [Google Scholar]
- Van Vliet-Lanoë B, Gosselin G, Mansy J-L, Bourdillon C, Meurisse-Fort M, Henriet J-P, et al. 2010. A renewed Cenozoic story of the Strait of Dover. Annales de La Société Géologique du Nord 17(2):59–80. [Google Scholar]
- Vander Zanden MJ, Rasmussen JB. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–66. https://doi.org/10.4319/lo.2001.46.8.2061. [CrossRef] [Google Scholar]
- Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, et al. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369: 1383–1387. https://doi.org/10.1126/science.aba6853. [CrossRef] [Google Scholar]
- Zachos J, Stott L, Lohmann K. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9: 353–387. [CrossRef] [Google Scholar]
- Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–83. https://doi.org/10.1038/nature06588. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.