Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Article Number 18
Number of page(s) 19
DOI https://doi.org/10.1051/bsgf/2022017
Published online 14 December 2022
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: the Aquitaine Basin (SW France). Tectonics 37: 430–449. https://doi.org/10.1002/2017TC004670. [CrossRef] [Google Scholar]
  • Balestro G, Piana F. 2007. The representation of geological knowledge and uncertainty in databases of GIS geological maps. Boll Soc Geol It (Ital J Geosci) 126(3): 487–495. [Google Scholar]
  • Barberousse A, Kistler M, Ludwig P. 2011. La philosophie des sciences au XXe siècle. Champs-Essais. Flammarion, 352 p. [Google Scholar]
  • Brodaric B. 2004. The design of GSC FieldLog: ontology-based software for computer aided geological field mapping. Comput Geosci 30: 5–20. https://doi.org/10.1016/j.cageo.2003.08.009. [CrossRef] [Google Scholar]
  • Casas JM, Castiñeiras P, Navidad M, Liesa M, Carreras J. 2010. New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U-Pb SHRIMP zircon data from the Canigo massif. Gondwana Research 17: 317–324. https://doi.org/10.1016/j.gr.2009.10.006. [CrossRef] [Google Scholar]
  • Catuneanu O, Galloway WE, Kendall C, Miall A, Posamentier W, Strasser A, et al. 2011. Sequence stratigraphy: methodology and Nomenclature. Newsletters on Stratigraphy 44/3: 173–245. [CrossRef] [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: synconvergence escape of the Pyrenees in the Iberian-Armorican syntax. Bull Soc Géol Fr 188: 39. https://doi.org/10.1051/bsgf/2017206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B. 2005. U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Géol Fr 176: 269–282. [CrossRef] [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: new constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Comptes Rendus Geoscience 348(3–4): 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [CrossRef] [Google Scholar]
  • Chantraine J, Autran A, Cavelier C, Alabouvette B, Barféty J-C., Cecca F, et al. 2003. Carte géologique de la France à l’échelle du millionième, 6e édition révisée. Orléans: BRGM. [Google Scholar]
  • Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P. 2002. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. Int J Earth Sci 91: 398–405. [CrossRef] [Google Scholar]
  • Ellenberger F. 1982. Les premières cartes géologiques en France : projets et réalisations. 1e série, n° 45, 35 p. [Google Scholar]
  • Ellenberger F. 1983. Recherches et réflexions sur la naissance de la cartographie géologique en Europe et plus particulièrement en France. Histoire et Nature 22–23: 3–54. [Google Scholar]
  • Gabalda S. Vernhet Y, Rambourg D, Prognon C, Chevremont P, Capar L, et al. 2013. Élaboration d’un chantier RGF : retour d’expérience du chantier pilote Vosges-Fossé Rhénan. Rapport final. BRGM/RP-63008-FR. 238 p. [Google Scholar]
  • Giboin A, Grataloup S, Morel O, Durville P. 2013. Building Ontologies for analyzing data expressed in natural language. In Perrin, M., Rainaud, J.F., Shared Earth Modeling − Knowledge driven solutions for building and managing subsurface 3D geological models. Technip edition, IFP energie nouvelle publication. [Google Scholar]
  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2020. Geologic time scale, volume 1 and 2. Elsevier. https://doi.org/10.1016/C2020-1-02369-3. [Google Scholar]
  • Guitard G. 1964. Un exemple de structure en nappe de style pennique dans la chaîne hercynienne : les gneiss stratoïdes du Canigou (Pyrénées Orientales). C R Acad Sci Ser II 258: 4597–4599. [Google Scholar]
  • Guitard G. 1970. Le métamorphisme hercynien mésozonal et les gneiss oeillés du massif du Canigou (Pyrénées-Orientales). BRGM Mém 63: 353 p. [Google Scholar]
  • Harrell JA, Brown VM. 1992. The world’s oldest surviving geological map: the 1150 B.C. Turin Papyrus from Egypt. Journal of Geology 100: 3–18. [CrossRef] [Google Scholar]
  • Hintersberger E, Iglseder C, Schuster R, Huet B. 2017. The new database “Tectonic Boundaries” at the Geological Survey of Austria. Jahrbuch der Geologischen Bundesanstalt 157(1–4): 195–207. [Google Scholar]
  • Ireland A, 1943. History of the development of geologic maps. Bulletin of the Geological Society of America 54: 1227–1280. [CrossRef] [Google Scholar]
  • Jäger E, Zwart HJ. 1968. Rb-Sr age determinations of some gneisses and granites of the Aston-Hospitalet massif (Pyrenees). Geologie en Mijnbouw 47(5): 249–358. [Google Scholar]
  • Kuhn Th. 1970. The structure of scientific révolutions, 1962 [Traduction française : La structure des révolutions scientifiques]. Paris: Flammarion. [Google Scholar]
  • Lemirre B, Cochelin B, Duchene S, de Saint Blanquat M, Poujol M. 2019. Origin and duration of late orogenic magmatism in the foreland of the Variscan belt (Lesponne—Chiroulet—Neouvielle area, French Pyrenees). Lithos 336–337: 183–201. https://doi.org/10.1016/j.lithos.2019.03.037. [CrossRef] [Google Scholar]
  • Liesa M, Carreras J, Castiñeiras P, Casas JM, Navidad M, Vila M. 2011. U-Pb zircon of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). Geol Acta 9: 93–101. [Google Scholar]
  • Loudon TV. 2009. Four interacting aspects of a geological survey knowledge system. Comput Geosci 35: 700–705. https://doi.org/10.1016/j.cageo.2007.12.009. [CrossRef] [Google Scholar]
  • Loudon TV. 2011. A Scenario for Systems Geology: Suggestions Concerning the Emerging Geoscience Knowledge System and the Future Geological Map. Nottingham, UK: British Geological Survey, p. 375. RR/11/005. [Google Scholar]
  • Mantovani A, Piana F, Lombardo V. 2020. Ontology-driven representation of knowledge for geological maps. Computers & Geosciences 139. https://doi.org/10.1016/j.cageo.2020.104446. [CrossRef] [Google Scholar]
  • Medioni R. 2002. Du service de la carte géologique de la France au Service géologique national. Causes et conséquences de la fusion de 1968. Travaux du Comité français d’Histoire de la Géologie, 3e série (tome 16), pp. 165–175. [Google Scholar]
  • Oldroyd D. 2013. Maps as pictures or diagrams: The early development of geological maps. Geol. Soc. of America Special Paper 502: 41–101. [Google Scholar]
  • Salvador A. 1994. International stratigraphic guide: a guide to stratigraphic classification, terminology, and procedure. 2nd ed. Geol. Soc. America. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105 https://doi.org/10.1016/j.marpetgeo.2019.03.031. [CrossRef] [Google Scholar]
  • Padel M, Clausen S, Álvaro J-J, Casas J-M. 2018. Review of the Ediacaran-Lower Ordovician (pre-Sardic) 1 stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta 16(4): 339–355. https://doi.org/10.1344/GeologicaActa2018.16.4.1. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader A-G. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. Geoscience 348: 224–235. https://doi.org/10.1016/j.crte.2015.12.005. [CrossRef] [Google Scholar]
  • Savaton P. 2007. The First Detailed Geological Maps of France: Contributions of Local Scientists and Mining Engineers. Earth Sciences History 26(1): 55–73. [CrossRef] [Google Scholar]
  • Schiegl M, Schuster R, Krenmayr H-G., Lipiarski P, Pestal G, Stöckl W, et al. 2008. GeoSciML − Ein konzeptionelles Datenmodell fur die Geologie? Ubersetzung und Erlauterung ausgewahlter Objektklassen von GeoSciML. − Jahrbuch der Geologischen Bundesanstalt 148/2: 213–226. [Google Scholar]
  • Schuster R. 2015. Zur Geologie der Ostalpen. Abhandlungen der Geologischen Bundesanstalt 64: 143–165. [Google Scholar]
  • Sen M, Duffy T. 2005. GeoSciML: development of a generic geoscience markup language. Comput Geosci 31(9): 1095–1103. [CrossRef] [Google Scholar]
  • Simons BA, Boisvert E, Brodaric B, Cox SJD, Duffy TR, Johnson BR, et al. 2006. GeoSciML: Enabling the Exchange of Geological Map Data. ASEG Ext. Abstr.: 1–4. https://doi.org/10.1071/ASEG2006ab162. [Google Scholar]
  • Skrzypek E. 2011. Structural, petrological and geochronological contribution to intracontinental tectonics of the European Variscan Belt (Sudetes, Vosges Mts). Earth Sciences. Université de Strasbourg, English. tel-00773597. [Google Scholar]
  • Tabaud A-S. 2012. Le magmatisme des Vosges : conséquence des subductions paléozoïques (datation, pétrologie, géochimie, ASM). Géochimie. Université de Strasbourg, français. NNT : 2012STR AH003. tel-00755354. [Google Scholar]
  • Tissoux H, Ricordel-Prognon C, Prognon F, Lacquement F, Bertran P, Bosq M, et al. 2020. Carte au Millionième du Quaternaire de la France métropolitaine. https://doi.org/10.18144/0__bf80ba9f-db3f-455a-9d55-24cadd052db6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.