Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Article Number 3
Number of page(s) 14
DOI https://doi.org/10.1051/bsgf/2023002
Published online 08 March 2023
  • Alexandre J. 2002. Les cuirasses latéritiques et autres formations ferrugineuses tropicales. Exemple du Haut Katanga. Annales-Sciences Géologiques, Musée Royal de l’Afrique Centrale, Tervuren, Belgium 107: 118. https://doi.org/10.1111/j.1351-0754.2004.00591c.x. [Google Scholar]
  • Bennett PC, Melcer ME, Siegel DI, Hassett JP. 1988. The dissolution of quartz in dilute aqueous solutions of organic acids at 25C. Geochimica et Cosmochimica Acta 52(6): 1521–1530. [CrossRef] [Google Scholar]
  • Blot A, Leprun JC, Pion JC. 1978. Corrélations géochimiques entre les cuirasses ferrugineuses et les roches du socle cristallin au Sénégal et en Haute Volta. Lithodépendance et héritage géochimique. Comptes rendus de l’Académie des sciences. Série D: Sciences naturelles (286): 1331–1334. [Google Scholar]
  • Blot A. 2004. Caractérisation des chapeaux de fer en milieu latéritique cuirassé. Comptes rendus geoscience 336(16): 1473–1480. https://doi.org/10.1016/j.crte.2004.07.008. [CrossRef] [Google Scholar]
  • Boulangé B, Bocquier G. 1983. Le rôle du fer dans la formation des pisolites alumineux au sein des cuirasses bauxitiques latéritiques. Sciences géologiques, bulletins et mémoires 72(1): 29–36. [Google Scholar]
  • Bricker OP, Simon NS, Newell WL, Clark I. 2003. Bog iron formation in the Nassawango Watershed, Maryland (p. 1). US Department of the Interior, US Geological Survey. [Google Scholar]
  • Brindley GW, Brown G. 1980. Crystal structure of clay minerals and their X-ray identification: the Mineralogical Society of Great Britain and Ireland, v. 5. https://doi.org/10.1180/mono-5. [Google Scholar]
  • Brookfield ME. 2011. Aeolian processes and features in cool climates. Geological Society, London, Special Publications 354(1): 241–258. https://doi.org/10.1144/SP354.16. [CrossRef] [Google Scholar]
  • Cornelius M, Robertson IDM, Cornelius AJ, Morris PA. 2007. Laterite geochemical database for the western Yilgarn Craton, Western Australia. Western Australia Geological Survey, Record, 44 p. https://doi.org/10.4225/08/586009a364f32. [Google Scholar]
  • Dallmeyer RD, Lécorché JP. 1989. 40Ar/39Ar polyorogenic mineral age record within the central Mauritanide orogen, West Africa. Geological Society of America Bulletin 101(1): 55–70. [CrossRef] [Google Scholar]
  • Fitzpatrick RW, Schwertmann U. 1982. Al-substituted goethite—an indicator of pedogenic and other weathering environments in South Africa. Geoderma 27(4): 335–347. https://doi.org/10.1016/0016-7061(82)90022-2. [CrossRef] [Google Scholar]
  • First Quantum. 2016. Guelb Moghrein Copper Gold Mine, Inchiri, Mauritania, NI 43-101 Technical Report. [Google Scholar]
  • Kaczorek D, Sommer M. 2003. Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. Catena 54(3): 393–402. https://doi.org/10.1016/S0341-8162(03)00133-4. [CrossRef] [Google Scholar]
  • Kolb J, Gregori A, Sakellaris F, Michael M. 2006. Controls on hydrothermal Fe oxide-Cu-Au-Co mineralization at the Guelb Moghrein deposit, Akjoujt area, Mauritania. Miner Deposita (41): 68–81. https://doi.org/10.1007/s00126-005-0041-7. [CrossRef] [Google Scholar]
  • Kolb J, Meyer FM, Vennemann T, Sindern S, Prantl S, Böttcher ME, et al. 2010. Characterisation of the hydrothermal fluids of the Guelb Moghrein iron oxide-Cu-Au-Co deposit, Mauritania: ore mineral chemistry, fluid inclusions and isotope geochemistry. In: Porter TM, ed. Hydrothermal iron oxide copper-gold and related deposits: a global perspective, v. 4 - Advances in the understanding of IOCG deposits. Adelaide: PGC Publishing, pp. 553–572. [Google Scholar]
  • Lécorché JP, Dallmeyer RD, Villeneuve M. 1989. Definition of tectonostratigraphic terranes in the Mauritanide, Bassaride, and Rokelide orogens, West Africa. Geol Soc Am Bull (230): 131–144. [Google Scholar]
  • Maignien R. 1958. Le cuirassement des sols en Guinée, Afrique Occidentale [The Cuirassement of Soil in Guinea, West Africa]. Thèse Sciences. Strasbourg: Université de Lorraine, pp. 239. [Google Scholar]
  • Marcelin J. 1968. Carte géologique de la région d’Akjoujt à 1/2000,000. Paris: Bur Rech géol Min edit. [Google Scholar]
  • Martyn J, Strickland C. 2004. Stratigraphy, structure and mineralisation of the Akjoujt area, Mauritania. Journal of African Earth Sciences 38: 489–503. https://doi.org/10.1016/j.jafrearsci.2004.03.004. [CrossRef] [Google Scholar]
  • Melfi AJ, Pédro G, Nalovic L, Queiroz Neto JP. 1976. Étude sur l’altération géochimique des itabirites du Brésil (dissolution du quartz et instabilité de l’hematite primaire en conditions tropicales hydrolysantes). Cah ORSTOM, Sér Pédol 3: 179–192. [Google Scholar]
  • Moore DM, Reynolds RC. 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford, United Kingdom: Oxford University Press, pp. 378. [Google Scholar]
  • Nahon D. 1976. Cuirasses ferrugineuses et encroûtements calcaires au Sénégal occidental et en Mauritanie. Systèmes évolutifs: géochimie, structures, relais et coexistence. Sciences Géologiques, Strasbourg 44: 232. [Google Scholar]
  • Nicholson K. 1987. Ironstone-gossan discrimination: pitfalls of a simple geochemical approach—A case study from northeast Scotland. Journal of Geochemical Exploration 27(1–2): 239–257. https://doi.org/10.1016/0375-6742(87)90022-7. [CrossRef] [Google Scholar]
  • Pitfield PEJ, Key JA, Waters RM, Hawkins CN, et al. 2004. Notice explicative des cartes géologiques et gîtologique à 1/200 000 et 1/500 000 du Sud de la Mauritanie. Volume 1-géologie. Nouakchott: DMG, Ministère des Mines et de l’Industrie, pp. 494–498. [Google Scholar]
  • Sakellaris GA. 2007. Petrology, geochemistry, stable and radiogenic isotopy of the Guelb Moghrein iron oxide-copper-gold-cobalt deposit, Mauritania. [Google Scholar]
  • Scott KM, Ashley PM, Lawie DC. 2001. The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. Journal of Geochemical Exploration 72(3): 169–191. https://doi.org/10.1016/S0375-6742(01)00159-5. [CrossRef] [Google Scholar]
  • Ségalen P. 1973. L’aluminium dans les sols (No. 22). Paris, France: Orstom. [Google Scholar]
  • Spier CA, Levett A, Rosière CA. 2019. Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineralium Deposita 54(7): 983–1010. https://doi.org/10.1007/s00126-018-0856-7. [CrossRef] [Google Scholar]
  • Strickland CD, Martyn JE. 2002. The Guelb Moghrein Fe-oxide copper-gold-cobalt deposit and associated mineral occurrences, Mauritania: a geological introduction. In: Porter TM, ed. Hydrothermal iron oxide copper-gold and related deposits: a global perspective, v. 2. Adelaide: PGC Publishing, pp. 275–291. [Google Scholar]
  • Tardy Y. 1993. Pétrologie des latérites et des sols tropicaux. Masson, pp. 459. [Google Scholar]
  • Thelemann M, Bebermeier W, Hoelzmann P, Lehnhardt E. 2017. Bog iron ore as a resource for prehistoric iron production in Central Europe—A case study of the Widawa catchment area in eastern Silesia, Poland. Catena (149): 474–490. https://doi.org/10.1016/j.catena.2016.04.002. [CrossRef] [Google Scholar]
  • Velasco F, Herrero JM, Suárez S, Yusta I, Alvaro A, Tornos F. 2013. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geology Reviews (53): 181–203. https://doi.org/10.1016/j.oregeorev.2013.01.008. [CrossRef] [Google Scholar]
  • Verplanck PL, Yager, DB, Church SE, Stanton MR. 2007. Ferricrete classification, morphology, distribution, and carbon-14 age constraints. US Geological Survey Professional Paper (1651): 721–744. [Google Scholar]
  • Wirt L, Vincent KR, Verplanck PL, Yager DB, Church SE, Fey DL. 2007. Geochemical and hydrologic processes controlling formation of ferricrete. US Geological Survey Professional Paper (1651): 779–815. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.