Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 194, 2023
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/bsgf/2022021 | |
Published online | 08 March 2023 |
- Ackerman L, Kotková J, Čopjaková R, Sláma J, Trubač J, Dillingerová V. 2020. Petrogenesis and Lu–Hf dating of (ultra) mafic rocks from the Kutná Hora Crystalline Complex: Implications for the Devonian evolution of the Bohemian Massif. Journal of Petrology. https://doi.org/10.1093/petrology/egaa075. [Google Scholar]
- Altherr R. 2021. Retrograded garnet peridotites from Col des Bagenelles and Crébimont in the Variscan Vosges Mountains (NE France). Contributions to Mineralogy and Petrology 176(7): 53. https://doi.org/10.1007/s00410-021-01811-7. [CrossRef] [Google Scholar]
- Altherr R, Kalt A. 1996. Metamorphic evolution of ultrahigh-pressure garnet peridotites from the Variscan Vosges Mountains (France). Chemical Geology 134(1): 27–47. https://doi.org/10.1016/S0009-2541(96)00088-5. [CrossRef] [Google Scholar]
- Altherr R, Soder CG. 2018. Sapphirine as a breakdown product of garnet in a Variscan UHP/HT Peridotite from the Vosges Mountains (France) – An indication of near-isothermal decompression. Journal of Petrology 59(11): 2221–2243. https://doi.org/10.1093/petrology/egy096. [CrossRef] [Google Scholar]
- Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geological Society, London, Special Publications 405: 77–113. https://doi.org/10.1144/SP405.13. [CrossRef] [Google Scholar]
- Baier J, Audétat A, Keppler H. 2008. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters 267(1): 290–300. https://doi.org/10.1016/j.epsl.2007.11.032. [CrossRef] [Google Scholar]
- Barféty JC, Pêcher A. 1984. Geological map and explanatory text of the sheet n 822 “St Christophe en Oisans”, Scale: 1:50 000. Ed. BRGM. [Google Scholar]
- Barfety JC, Gidon M, Ménot RP, Debon F, Pêcher S, Guillot S. 2000. Notice de la carte géologique de la France, feuille Domène (773), Scale 1: 50 000. Orléans : BRGM. [Google Scholar]
- Batanova VG, Sobolev AV, Kuzmin DV. 2015. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chemical Geology 419: 149–157. https://doi.org/10.1016/j.chemgeo.2015.10.0. [CrossRef] [Google Scholar]
- Batanova VG, Thompson JM, Danyushevsky LV, Portnyagin MV, Garbe-Schönberg D, Hauri E, et al. 2019. New olivine reference material for in situ microanalysis. Geostandards and Geoanalytical Research 43(3): 453–473. https://doi.org/10.1111/ggr.12266. [CrossRef] [Google Scholar]
- Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33(6): 1055–1088. https://doi.org/10.1002/2013TC003453. [CrossRef] [Google Scholar]
- Bellanger M, Augier R, Bellahsen N, Jolivet L, Monié P, Baudin T, et al. 2015. Shortening of the European Dauphinois Margin (Oisans Massif, Western Alps): New insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating. Journal of Geodynamics 83: 37–64. https://doi.org/10.1016/j.jog.2014.09.004. [CrossRef] [Google Scholar]
- Beyssac O, Goffé B, Chopin C, Rouzaud JN. 2002. Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology 20: 859–871. [Google Scholar]
- Borghini A, Ferrero S, Wunder B, Laurent O, O’Brien PJ, Ziemann MA. 2018. Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite. Geology 46(11): 1007–1010. https://doi.org/10.1130/G45316.1. [Google Scholar]
- Borghini A, Ferrero S, O’Brien PJ, Laurent O, Günter C, Ziemann MA. 2020. Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany. Journal of Metamorphic Geology 38(3): 207–234. https://doi.org/10.1111/jmg.12519. [CrossRef] [Google Scholar]
- Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273(1-2): 48–57. [CrossRef] [Google Scholar]
- Brey GP, Köhler T. 1990. Geothermobarometry in four-phase Lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31(6): 1353–1378. https://doi.org/10.1093/petrology/31.6.1353. [CrossRef] [Google Scholar]
- Brueckner H. 2018. The great eclogite debate of the Western Gneiss Region, Norwegian Caledonides: The in situ crustal vs. exotic mantle origin controversy. Journal of Metamorphic Geology 36(5): 517–527. https://doi.org/10.1111/jmg.12314. [CrossRef] [Google Scholar]
- Brueckner H, Medaris LG. 2000. A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes: Intrusion and evolution of ’mantle’ garnet peridotites. Journal of Metamorphic Geology 18(2): 123–133. https://doi.org/10.1046/j.1525-1314.2000.00250.x. [CrossRef] [Google Scholar]
- Brueckner HK, Carswell DA, Griffin WL, Medaris LG, Van Roermund HLM, Cuthbert SJ. 2010. The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation. Lithos 117(1): 1–19. https://doi.org/10.1016/j.lithos.2010.01.011. [CrossRef] [Google Scholar]
- Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25(2-3): 187–198. https://doi.org/10.1111/j.1751-908X.2001.tb00595.x. [CrossRef] [Google Scholar]
- Carlson WD. 2006. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist 91(1): 1–11. https://doi.org/10.2138/am.2006.2043. [CrossRef] [Google Scholar]
- Chen Y, Su B, Guo S. 2015. The Dabie–Sulu orogenic peridotites: Progress and key issues. Science China Earth Sciences 58(10): 1679–1699. https://doi.org/10.1007/s11430-015-5148-9. [CrossRef] [Google Scholar]
- Cherniak DJ, Dimanov A. 2010. Diffusion in pyroxene, mica and amphibole. Reviews in Mineralogy and Geochemistry 72(1): 641–690. https://doi.org/10.2138/rmg.2010.72.14. [CrossRef] [Google Scholar]
- Connolly JAD. 2009. The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems 10(10). https://doi.org/10.1029/2009GC002540. [Google Scholar]
- Debon F, Lemmet M. 1999. Evolution of Mg/Fe ratios in Late Variscan Plutonic rocks from the External Crystalline Massifs of the Alps (France, Italy, Switzerland). Journal of Petrology 40(7): 1151–1185. https://doi.org/10.1093/petroj/40.7.1151. [CrossRef] [Google Scholar]
- Debon F, Guerrot C, Ménot R-P. 1998. Late Variscan granites of the Belledonne Massif (French Western Alps): An Early Visean magnesian plutonism. Schweizerische Mineralogische Und Petrographische Mitteilungen 78: 67–85. https://doi.org/10.5169/seals-59275. [Google Scholar]
- Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178: 96–127. https://doi.org/10.1016/j.lithos.2013.05.019. [CrossRef] [Google Scholar]
- Duesterhoeft E, Lanari P. 2020. Iterative thermodynamic modelling – Part 1: A theoretical scoring technique and a computer program (Bingo-Antidote). Journal of Metamorphic Geology 38(5): 527–551. https://doi.org/10.1111/jmg.12538. [CrossRef] [Google Scholar]
- Faure M, Lardeaux J-M, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience 341(2-3): 202–213. [CrossRef] [Google Scholar]
- Ferrando S, Lombardo B, Compagnoni R. 2008. Metamorphic history of HP mafic granulites from the Gesso-Stura terrain (Argentera Massif, Western Alps, Italy). European Journal of Mineralogy 20(5): 777–790. [CrossRef] [Google Scholar]
- Foley SF, Pertermann M. 2021. Dynamic metasomatism experiments investigating the interaction between migrating potassic melt and garnet peridotite. Geosciences 11(10): article 10. https://doi.org/10.3390/geosciences11100432. [CrossRef] [Google Scholar]
- Foley SF, Venturelli G, Green DH, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews 24(2): 81–134. https://doi.org/10.1016/0012-8252(87)90001-8. [CrossRef] [Google Scholar]
- Fréville K, Trap P, Faure M, Melleton J, Li X-H, Lin W, et al. 2018. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France). Tectonophysics 726: 14–42. [CrossRef] [Google Scholar]
- Fréville K, Trap P, Vanardois J, Melleton J, Faure M, Bruguier O, et al. 2022. Carboniferous-Permian tectono-metamorphic evolution of the Pelvoux Massif (External Crystalline Massif, Western Alps), with discussion on flow kinematics of the Eastern-Variscan Shear Zone. Bulletin de la Société Géologique de France 193(1): 13. https://doi.org/10.1051/bsgf/2022008. [Google Scholar]
- Gardien V, Tegyey M, Lardeaux JM, Misseri M, Dufour E. 1990. Crust-mantle relationships in the French Variscan chain: The example of the Southern Monts du Lyonnais unit (Eastern French Massif Central). Journal of Metamorphic Geology 8(5): 477–492. https://doi.org/10.1111/j.1525-1314.1990.tb00481.x. [CrossRef] [Google Scholar]
- Godard G. 1990. Découverte d’éclogites, de péridotites à spinelle et d’amphibolites à anorthite, spinelle et corindon. Comptes Rendus de l’Académie Des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 310(3): 227–232. [Google Scholar]
- Godard G, Martin S. 2000. Petrogenesis of kelyphites in garnet peridotites: A case study from the Ulten Zone, Italian Alps. Journal of Geodynamics 30(1): 117–145. https://doi.org/10.1016/S0264-3707(99)00030-7. [CrossRef] [Google Scholar]
- Godard G, Martin S, Prosser G, Kienast JR, Morten L. 1996. Variscan migmatites, eclogites and garnet-peridotites of the Ulten Zone, Eastern Austroalpine system. Tectonophysics 259(4): 313–341. https://doi.org/10.1016/0040-1951(95)00145-X. [CrossRef] [Google Scholar]
- Grandjean V, Guillot S, Pecher A. 1996. A new record of the LP-HT Late Variscan metamorphism: The Peyre-Arguet unit (Haut-Dauphine). Comptes Rendus de l’Académie des sciences 322: 189–195. [Google Scholar]
- Guillot S, Ménot R. 1999. Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External Crystalline Massifs, French Alps). Geodinamica Acta 12: 97–111. https://doi.org/10.1016/S0985-3111(99)80026-6. [CrossRef] [Google Scholar]
- Guillot S, Ménot R-P. 2009. Paleozoic evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus Geoscience 341(2-3): 253–265. https://doi.org/10.1016/j.crte.2008.11.010. [CrossRef] [Google Scholar]
- Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. Subduction Zone Geodynamics: 175–205. [CrossRef] [Google Scholar]
- Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology 265(3): 512–526. https://doi.org/10.1016/j.chemgeo.2009.05.018. [CrossRef] [Google Scholar]
- Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29(3): 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x. [CrossRef] [Google Scholar]
- Ionov DA, Wood BJ. 1992. The oxidation state of subcontinental mantle: Oxygen thermobarometry of mantle xenoliths from Central Asia. Contributions to Mineralogy and Petrology 111 (2): 179–193. [CrossRef] [Google Scholar]
- Jacob J-B, Guillot S, Rubatto D, Janots E, Melleton J, Faure M. 2021. Carboniferous high pressure metamorphism and deformation in the Belledonne Massif (Western Alps). Journal of Metamorphic Geology n/a(n/a). https://doi.org/10.1111/jmg.12600. [Google Scholar]
- Jacob J-B, Janots E, Guillot S, Rubatto D, Fréville K, Melleton J, et al. 2022. HT overprint of HP granulites in the Oisans–Pelvoux Massif: Implications for the dynamics of the Variscan collision in the external Western Alps. Lithos 416-417: 106650. https://doi.org/10.1016/j.lithos.2022.106650. [Google Scholar]
- Jagoutz E, Palme H, Baddenhausen H, et al. 1979. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. In: Lunar and Planetary Science Conference Proceedings, pp. 2031–2050. [Google Scholar]
- Janoušek V, Holub FV. 2007. The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: Case study from the Moldanubian Zone of the Bohemian Massif. Proceedings of the Geologists’ Association 118(1): 75–86. https://doi.org/10.1016/S0016-7878(07)80049-6. [CrossRef] [Google Scholar]
- Janoušek V, Moyen J-F, Martin H, Erban V, Farrow C. 2016. Classical plots. In: Janoušek V, Moyen J-F, Martin H, Erban V, Farrow C, eds. Geochemical Modelling of Igneous Processes – Principles And Recipes in R Language: Bringing the Power of R to a Geochemical Community (pp. 27–43). Springer. https://doi.org/10.1007/978-3-662-46792-3_3. [CrossRef] [Google Scholar]
- Janoušek V, Bonin B, Collins WJ, Farina F, Bowden P. 2019. Post-Archean granitic rocks: Contrasting petrogenetic processes and tectonic environments. Geological Society of London. [Google Scholar]
- Janoušek V, Hanžl P, Svojtka M, Hora JM, Kochergina YVE, Gadas P, et al. 2020. Ultrapotassic magmatism in the heyday of the Variscan Orogeny: The story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif. International Journal of Earth Sciences 109(5): 1767–1810. https://doi.org/10.1007/s00531-020-01872-2. [CrossRef] [Google Scholar]
- Jarosewich E, Nelen JA, Norberg JA. 1980. Reference samples for electron microprobe analysis. Geostandards Newsletter 4(1): 43–47. [CrossRef] [Google Scholar]
- Jennings ES, Holland TJB. 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. Journal of Petrology 56(5): 869–892. https://doi.org/10.1093/petrology/egv020. [CrossRef] [Google Scholar]
- Jouffray F, Spalla MI, Lardeaux JM, Filippi M, Rebay G, Corsini M, et al. 2020. Variscan eclogites from the Argentera–Mercantour Massif (External Crystalline Massifs, SW Alps): A dismembered cryptic suture zone. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-020-01848-2. [Google Scholar]
- Kotková J, O’Brien PJ, Ziemann MA. 2011. Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology 39(7): 667–670. https://doi.org/10.1130/G31971.1. [CrossRef] [Google Scholar]
- Kubeš M, Leichmann J, Kotková J, Čopjaková R, Holá M, Sláma J. 2022. Diversity of origin and geodynamic evolution of the mantle beneath the Variscan Orogen indicating rapid exhumation within subduction-related mélange (Moldanubian Zone, Bohemian Massif). Lithos 422-423: 106726. https://doi.org/10.1016/j.lithos.2022.106726. [Google Scholar]
- Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, et al. 2014. The moldanubian zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: Differences and similarities. Geological Society, London, Special Publications 405(1): 7–44. [CrossRef] [Google Scholar]
- Le Fort P. 1971. Géologie du Haut-Dauphiné cristallin (Alpes Française) : Études pétrologique et structurale de la partie occidentale. PhD Thesis, Université Nancy I. [Google Scholar]
- Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root: Heat sources and exhumation mechanisms. Journal of Metamorphic Geology 29(1): 79–102. https://doi.org/10.1111/j.1525-1314.2010.00906.x. [CrossRef] [Google Scholar]
- Luais B, Telouk P, Albaréde F. 1997. Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochimica et Cosmochimica Acta 61(22): 4847–4854. [CrossRef] [Google Scholar]
- Lugmair GW, Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39(3): 349–357. [CrossRef] [Google Scholar]
- Maierová P, Schulmann K, Gerya T. 2018. Relamination styles in collisional orogens. Tectonics 37(1): 224–250. https://doi.org/10.1002/2017TC004677. [CrossRef] [Google Scholar]
- Maierová P, Schulmann K, Štípská P, Gerya T, Lexa O. 2021. Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides. Communications Earth & Environment 2(1): 56. https://doi.org/10.1038/s43247-021-00122-w. [CrossRef] [Google Scholar]
- Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth and Planetary Science Letters 249(3): 173–187. https://doi.org/10.1016/j.epsl.2006.07.017. [CrossRef] [Google Scholar]
- Malatesta C, Crispini L, Federico L, Capponi G, Scambelluri M. 2012. The exhumation of high pressure ophiolites (Voltri Massif, Western Alps): Insights from structural and petrologic data on metagabbro bodies. Tectonophysics 568-569: 102–123. https://doi.org/10.1016/j.tecto.2011.08.024. [CrossRef] [Google Scholar]
- Martínez Catalán JR, Schulmann K, Ghienne J-F. 2021. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Science Reviews 220: 103700. https://doi.org/10.1016/j.earscirev.2021.103700. [Google Scholar]
- McDonough WF, Sun S-S. 1995. The composition of the Earth. Chemical Geology 120: 223–253. https://doi.org/10.1016/0009-2541(94)00140-4. [CrossRef] [Google Scholar]
- Medaris G, Wang H, Jelínek E, Mihaljevič M, Jakeš P. 2005. Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82(1): 1–23. https://doi.org/10.1016/j.lithos.2004.12.004. [CrossRef] [Google Scholar]
- Medaris G, Ackerman L, Jelínek E, Michels ZD, Erban V, Kotková J. 2015. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle: Evidence from major elements, trace elements, and Sr–Nd–Os isotopes in a Saxothuringian garnet peridotite. Lithos 226: 81–97. https://doi.org/10.1016/j.lithos.2014.10.007. [CrossRef] [Google Scholar]
- Ménot R-P, Peucat JJ, Scarenzi D, Piboule M. 1988. 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): Evidence of a Lower Paleozoic oceanization. Earth and Planetary Science Letters 88(1-2): 82–92. [CrossRef] [Google Scholar]
- Moyen J-F, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, et al. 2017. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. https://doi.org/10.1016/j.lithos.2016.09.018. [CrossRef] [Google Scholar]
- Nickel KG, Green DH. 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 73(1): 158–170. https://doi.org/10.1016/0012-821X(85)90043-3. [CrossRef] [Google Scholar]
- Nimis P, Trommsdorff V. 2001. Revised thermobarometry of Alpe Arami and other Garnet Peridotites from the Central Alps. Journal of Petrology 42(1): 103–115. https://doi.org/10.1093/petrology/42.1.103. [CrossRef] [Google Scholar]
- Nimis P, Grütter H. 2010. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology 159(3): 411–427. https://doi.org/10.1007/s00410-009-0455-9. [CrossRef] [Google Scholar]
- Nouibat A, Stehly L, Paul A, Schwartz S, Bodin T, Dumont T, et al. 2022. Lithospheric transdimensional ambient-noise tomography of W- Europe: Implications for crustal-scale geometry of the W-Alps. Geophysical Journal International 229(2): 862–879. https://doi.org/10.1093/gji/ggab520. [CrossRef] [Google Scholar]
- Obata M. 2011. Kelyphite and symplectite: Textural and mineralogical diversities and universality, and a new dynamic view of their structural formation. In: Sharkov E, ed. New Frontiers in Tectonic Research – General Problems, Sedimentary Basins and Island Arcs. InTech. https://doi.org/10.5772/20265. [Google Scholar]
- Paquette JL, Ménot RP, Peucat JJ. 1989. REE, Sm–Nd and U–Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): Evidence for crustal contamination. Earth and Planetary Science Letters 96(1-2): 181–198. [CrossRef] [Google Scholar]
- Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15.20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234(3-4): 179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011. [CrossRef] [Google Scholar]
- Pecher A. 1970. Étude pétrographique de la partie orientale du massif des Écrins–Pelvoux : Le socle ancien – Alpes françaises. https://tel.archives-ouvertes.fr/tel-00576930. [Google Scholar]
- Perraki M, Faryad SW. 2014. First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202-203: 157–166. https://doi.org/10.1016/j.lithos.2014.05.025. [CrossRef] [Google Scholar]
- Pin C, Carme F. 1987. A Sm-Nd isotopic study of 500 Ma old oceanic crust in the Variscan Belt of Western Europe: The Chamrousse ophiolite complex, Western Alps (France). Contributions to Mineralogy and Petrology 96(3): 406–413. [CrossRef] [Google Scholar]
- Pin C, Zalduegui JS. 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Analytica Chimica Acta 339(1-2): 79–89. [CrossRef] [Google Scholar]
- Pin C, Briot D, Bassin C, Poitrasson F. 1994. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta 298(2): 209–217. [CrossRef] [Google Scholar]
- Rubatto D, Ferrando S, Compagnoni R, Lombardo B. 2010. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan Belt. Lithos 116(1-2): 65–76. [CrossRef] [Google Scholar]
- Ruiz M, Schaltegger U, Gaynor SP, Chiaradia M, Abrecht J, Gisler C, et al. 2022. Reassessing the intrusive tempo and magma genesis of the late Variscan Aar batholith: U–Pb geochronology, trace element and initial Hf isotope composition of zircon. Swiss Journal of Geosciences 115(1): 20. https://doi.org/10.1186/s00015-022-00420-1. [CrossRef] [Google Scholar]
- Sapienza GT, Scambelluri M, Braga R. 2009. Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contributions to Mineralogy and Petrology 158(3): 401–420. https://doi.org/10.1007/s00410-009-0389-2. [CrossRef] [Google Scholar]
- Scambelluri M, Hermann J, Morten L, Rampone E. 2006. Melt-versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): Clues from trace element and Li abundances. Contributions to Mineralogy and Petrology 151(4): 372–394. https://doi.org/10.1007/s00410-006-0064-9. [CrossRef] [Google Scholar]
- Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux J-M, Edel J-B, et al. 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geoscience 341: 266–286. https://doi.org/10.1016/j.crte.2008.12.006. [CrossRef] [Google Scholar]
- Schulmann K, Catalán J-RM, Lardeaux J-M, Janoušek V, Oggiano G. 2014. The Variscan orogeny: Extent, timescale and the formation of the European crust. Geological Society, London, Special Publications 405(1): 1–6. https://doi.org/10.1144/SP405.15. [CrossRef] [Google Scholar]
- Schulmann K, Lexa O, Janoušek V, Lardeaux J-M, Edel J-B. 2014. Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides. Geology 42(4): 275–278. https://doi.org/10.1130/G35290.1. [CrossRef] [Google Scholar]
- Skrzypek E, Štípská P, Cocherie A. 2012. The origin of zircon and the significance of U–Pb ages in high-grade metamorphic rocks: A case study from the Variscan orogenic root (Vosges Mountains, NE France). Contributions to Mineralogy and Petrology 164(6): 935–957. https://doi.org/10.1007/s00410-012-0781-1. [CrossRef] [Google Scholar]
- Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, et al. 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316(5823): 412–417. https://doi.org/10.1126/science.1138113. [CrossRef] [Google Scholar]
- Soder CG, Romer RL. 2018. Post-collisional Potassic–Ultrapotassic Magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction. Journal of Petrology 59(6): 1007–1034. https://doi.org/10.1093/petrology/egy053. [CrossRef] [Google Scholar]
- Steiger RH, Jäger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36(3): 359–362. https://doi.org/10.1016/0012-821X(77)90060-7. [CrossRef] [Google Scholar]
- Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, et al. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168(3-4): 279–281. [CrossRef] [Google Scholar]
- Taylor WR. 1998. An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the ther-mobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch Für Mineralogie – Abhandlungen: 381–408. https://doi.org/10.1127/njma/172/1998/381. [CrossRef] [Google Scholar]
- Tumiati S, Thöni M, Nimis P, Martin S, Mair V. 2003. Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten Zone): Geochronology and new petrological constraints. Earth and Planetary Science Letters 210(3-4): 509–526. [CrossRef] [Google Scholar]
- Vanardois J, Roger F, Trap P, Goncalves P, Lanari P, Paquette J-L, et al. 2022. Exhumation of deep continental crust in a transpressive regime: The example of Variscan eclogites from the Aiguilles-Rouges Massif (Western Alps). Journal of Metamorphic Geology. [Google Scholar]
- Vanderhaeghe O, Laurent O, Gardien V, Moyen J-F, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: The geologic record of the French Massif Central. Bulletin de la Société Géologique de France 191(25). https://doi.org/10.1051/bsgf/2020013. [Google Scholar]
- Von Raumer JF, Bussy F. 2004. Mont Blanc and Aiguilles Rouges geology of their polymetamorphic basement (external massifs, Westerns Alps, France-Switzerland). Mémoires de Géologie (Lausanne) 42: 1–210. [Google Scholar]
- Von Raumer JF, Stampfli GM. 2008. The birth of the Rheic Ocean – Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461(1-4): 9–20. [CrossRef] [Google Scholar]
- Von Raumer JF, Finger F, Veselá P, Stampfli GM. 2014. Durbachites–Vaugnerites – A geodynamic marker in the Central European Variscan orogen. Terra Nova 26(2): 85–95. [CrossRef] [Google Scholar]
- Wang J-M, Lanari P, Wu F-Y, Zhang J-J, Khanal GP, Yang L. 2021. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters 558: 116760. https://doi.org/10.1016/j.epsl.2021.116760. [Google Scholar]
- Zheng Y-F. 2019. Subduction zone geochemistry. Geoscience Frontiers 10(4): 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003. [CrossRef] [Google Scholar]
- Ziberna L, Klemme S, Nimis P. 2013. Garnet and spinel in fertile and depleted mantle: Insights from thermodynamic modelling. Contributions to Mineralogy and Petrology 166(2): 411–421. https://doi.org/10.1007/s00410-013-0882-5. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.