Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Article Number 10
Number of page(s) 29
DOI https://doi.org/10.1051/bsgf/2023006
Published online 03 July 2023

© F. Jouffray et al., Published by EDP Sciences 2023

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

Since the first definition of Haüy (1822), mafic eclogites have long held specific interest for geologists owing to their singular mineral composition and geodynamic significance in mountain belts. Starting with the seminal investigations of Bearth (1959), Miyashiro (1961), Coleman et al. (1965) and Ernst (1971), a consensus has been built around the interpretation of both low-temperature eclogites (group C eclogites of Coleman et al., 1965) and high-temperature, gneiss hosted eclogites (group B eclogites of Coleman et al., 1965) as the metamorphic equivalent of oceanic crust transformed at mantle depths in subduction zones. These pioneering works have been expanded in the last three decades by a significant number of petrologic, chronologic and thermo-mechanical investigations that have shown that in continental collision zones, these metabasites are key targets to understand the early subduction dynamics involved in the formation of mountain belts (see for example Spalla et al., 1996; Gerya and Stöckhert, 2005; Hacker, 2006; Štípská et al., 2006, 2016; Ernst and Liou, 2008; Brown, 2010; Massonne et al., 2018; Gilotti, 2013; Hacker et al., 2013; Collett et al., 2017, 2018; Zhao et al., 2017; Lotout et al., 2020; Roda et al., 2020; Regorda et al., 2021). However in large and hot orogens, such as the European Variscan belt, eclogites can be severely transformed and re-equilibrated under granulite and/or amphibolite-facies conditions, making it challenging to decipher natural and protolith ages, as well as eclogite peak P−T conditions (Dufour et al., 1985; Piboule and Briand, 1985; O’Brien, 1997, 2000; Medaris et al., 1995; Klapova et al., 1998; Faryad et al., 2010; Lardeaux, 2014; Štípská et al., 2014; Cruciani et al., 2015; Scodina et al., 2021). This is particularly the case for the eclogites from the Maures-Tanneron Massif, which is located in southeast France, for which available geochemical, petrologic are equivocal while modern geochronologic constraints are lacking (see Schneider et al., 2014; Oliot et al., 2015). In particular, the prograde/HP stages are poorly constrained, while the decompressional evolution is much better known. Such data are necessary to address the precollision subduction, which is the most obscured Variscan tectonic event, particularly at the southern boundary of this orogenic system that is severely reworked by the Alpine orogeny and opening of the western Mediterranean oceanic basin (Edel et al., 2014, 2018; Spalla et al., 2014; Gosso et al., 2019). Consequently, the goals of this study are the following:

  • trace the origin and the tectonic setting leading to the formation of the eclogite protoliths using their geochemical characteristics, including elements that are least mobile during alteration and metamorphism;

  • maximize geochronological constraints on the age of the magmatic protoliths and the subsequent metamorphic reequilibrations, using zircon geochronology (LA‒ICP‒ MS/U‒Pb);

  • introduce new robust quantitative data on the high-pressure metamorphism, by using trace element contents in specific trapped mineral inclusions in garnets (Ti in quartz and Zr in rutile) and comparing the results with thermodynamic modelling of equilibrium phase assemblages.

2 Geological setting

The Variscan orogen is an 8000 km-long belt formed as a consequence of Palaeozoic subduction and collision events (Franke, 1989, 1995; Matte, 2001; Faure et al., 2009; Martínez Catalán et al., 2009; Schulmann et al., 2014). Starting with Suess (1926), Kossmat (1927) and Demay (1931) the final orogenic architecture of the European Variscan belt was interpreted as the result of a Carboniferous continent‒ continent collision. Successive episodes of rifting, convergence and collision of several continental microblocks and/or island arcs were involved in the convergence before the final collision of Laurussia and Gondwana (Nance and Murphy, 1994; Scotese et al., 1999; Franke, 2000; Torsvik and Cocks, 2004; Faure et al., 2005; Lardeaux et al., 2014). Finally, late strike-slip faulting driving block rotations led to the actual configuration (Edel et al., 2018).

In Europe, the belt shows an internal orogenic zonation (Kossmat, 1927), which underpins regional-scale correlations and tectonic interpretations (Ballèvre et al., 2009, 2014; Schulmann et al., 2009; Lardeaux et al., 2014; Franke et al., 2017; Martínez Catalán et al., 2020). If there is a general consensus on the existence of a large oceanic domain north of the peri-Gondwanan terranes (i.e., Rheic Ocean), which subducted beneath Laurussia and peri-Gondwana during Devonian times (McKerrow and Cocks, 1995; Cocks and Torsvik, 2002; Stampfli and Borel, 2002; Nance et al., 2010), the existence of one or several successive closures of oceanic and/or back-arc basins during plate convergence is still a matter of debate (Bodinier et al., 1988; Pin, 1990; Matte, 1991; Linnemann et al., 2007; Schulmann et al., 2009, 2014; Lardeaux et al., 2014; Franke et al., 2017; Regorda et al., 2020).

In this general framework, the Maures-Tanneron Massif (MTM), located in southeast France (Fig. 1A), is a segment of the southern part of the Variscan Realm whose geological affinities with Sardinia and Corsica have been recognized for several decades (Carmignani et al., 1992; Crévola and Pupin, 1994; Lardeaux et al., 1994; Carosi and Oggiano, 2002; Bellot, 2005; Elter and Pandeli, 2005; Corsini and Rolland, 2009; Rossi et al., 2009; Schneider et al., 2014; Cruciani et al., 2015). These assumptions are now widely confirmed by high-resolution palaeomagnetic investigations that definitely established that the Maures-Tanneron Massif belongs to the singular microplate called “Maures-Estérel-Corsica-Sardinia” (MECS, Edel et al., 2014, 2015, 2018).

At the regional scale, the MTM can be subdivided into two main N‒S oriented metamorphic domains, which were folded and moderately deformed during north‒south shortening related to the so-called “Pyrenean-Provence” alpine phase (Fig. 1B; Crévola and Pupin, 1994; Bellot, 2005; Corsini and Rolland, 2009; Schneider et al., 2014). The main Variscan metamorphic domains are as follows:

  • a very low to medium-grade western domain, mainly consisting of Chlorite‒Chloritoid-bearing phyllites, quartzites and amphibolite-facies micaschists and orthogneiss;

  • a high-grade eastern domain composed of migmatitic para- and orthogneiss, with lenses of metabasic rocks with relics of eclogite-facies metamorphism and serpentinized mantle-derived peridotites.

The two domains are separated by the regional-scale La Garde-Freinet/Cavalaire shear zone (Fig. 1B), which is a west-dipping ductile shear zone, considered as the major tectonic suture of the MTM and reactivated as a transpressive shear zone at the end of the orogenic history (Bellot et al., 2002, 2003; Corsini and Rolland, 2009; Rolland et al., 2009; Gerbault et al., 2018; Simonetti et al., 2020).

The polyphased tectono-metamorphic evolution of the MTM can be summarized as follows (Schneider et al., 2014; Oliot et al., 2015): an early oceanic subduction event (unknown age) revealed by relics of mafic eclogites found only in the eastern domain. This subduction was followed, during the Devonian–Mississippian times (i.e., 360–330 Ma), by continental collision, leading to NW-directed (in present day coordinates) nappe tectonics (D1) and Barrovian-type metamorphism (M1, i.e., 5–7.6 kbar and 430–610 °C in the external domain and up to 9–11 kbar and 600–650 °C in the internal domain; Buscail, 2000; Bellot, 2005; Bellot et al., 2010), then by back thrusting of the nappes towards the SE (D2). The D2 phase developed under medium-pressure and medium- to high-temperature metamorphic conditions mainly in the eastern domain (M2, i.e., 5–6 kbar and 560–618 °C in the external domain and 7–8 kbar for 750–850 °C in the internal domain, Buscail, 2000; Bellot et al., 2010; Schneider et al., 2014). During the Pennsylvanian (i.e., 330–300 Ma), the latter was affected by highly partitioned transpression (D3 phase), with an ca. E‒W shortening, producing plurikilometric concentric folds associated with an ca. N‒S strike-slip shear zone, as the Grimaud–Joyeuse and Lamoure faults. The D3 transpressional phase was associated with the exhumation of metamorphic units, low-pressure/high-temperature metamorphism (M3, i.e., 4–5 kbar for 600–650 °C, evolving to 2–5 kbar and 300–450 °C; Bellot et al., 2003; Corsini and Rolland, 2009; Schneider et al., 2014) and formation of migmatites, as well as the emplacement of granitoids at approximately 325–300 Ma (Morillon et al., 2000). This evolution ends with the opening of the intramountainous Middle to Upper Pennsylvanian (i.e., 305–300 Ma), coal-bearing, continental sedimentary basins sometimes associated with intrusions of microgranite dikes.

One of the most remarkable elements of the geology of the MTM is the occurrence of several leptynite–amphibolite complexes (LAC, Bard and Caruba, 1981; Seyler, 1986; Bouloton et al., 1998; Bellot et al., 2002). The LAC is a distinctive rock association that is well-known in the French Variscan belt (Forestier et al., 1973; Piboule and Briand, 1985; Santallier et al., 1988; Ballèvre et al., 2009; Faure et al., 2009; Lardeaux et al., 2014) and is defined by the association of mafic rocks (eclogitized meta-basalts or meta-gabbros, amphibolitized ophiolites and mafic HP granulites…) and felsic rocks (meta-rhyolites and meta-granites) sometimes with spinel and/or garnet peridotites. In the western part of the MTM (Fig. 1B), this bimodal magmatism, of unknown age, is interpreted as the relic of pre-Variscan, possibly plume-induced, continental rifting (i.e., active rifting, Seyler, 1986; Briand et al., 2002). In this Western domain (“Collobrières unit”, Seyler, 1975; Seyler and Boucarut, 1978), the LAC displays an alkaline affinity, with metavolcanics metamorphosed under upper greenschist to amphibolite-facies conditions, whereas in the central part of the MTM (Les Arcs−La Garde Freinet), it displays tholeiitic to transitional signatures (Seyler, 1986; Bellot et al., 2010). In the easternmost part of the MTM (i.e., east of the Joyeuse-Grimaud strike-slip fault, Fig. 1B), eclogites occur as numerous boudins, sometimes associated with serpentinites and/or metagabbros, within metasediments (Laverne et al., 1997; Bellot et al., 2010; Schneider et al., 2014). In this case, the metabasites display tholeiitic affinities that are typical for an oceanic crust and/or oceanic back-arc basin. This regional-scale geochemical zonation is interpreted as the relic of a progressive transition from a rifted continental margin to oceanic crust (see review in Schneider et al., 2014). The mafic rocks are metamorphosed under eclogite-facies (Figs. 1B and 2) and severely retrogressed under amphibolite-facies conditions (Bard and Caruba, 1981, 1982; Seyler and Crevola, 1982; Caruba, 1983; Crévola and Pupin, 1994). Consequently, if retrograde evolutions of basic rocks are well documented, the pressure peak conditions of the MTM mafic eclogites are still poorly constrained (see Schneider et al., 2014 for a synthesis of the calculated P−T paths with references therein). In this eastern MTM, the age of amphibolite-facies metamorphism is constrained at 348 ± 7 Ma and 358 ± 7 Ma (Rb–Sr whole-rock; Innocent et al., 2003 and U–Th–Pb (EPMA in situ dating) on monazite, Oliot et al., 2015, respectively), with progressive cooling ages ranging from 329.9 ± 2.1 Ma to 302.8 ± 2.3 Ma (40Ar–39Ar dating of brown amphibole; Morillon et al., 2000; Corsini et al., 2010).

South of Saint Tropez, at Cap Pinet, migmatitic paragneisses with decametric mafic lenses crop out along the coastline (Fig. 2). The foliation dips very steeply with a NNE‒SSW orientation, bears a subhorizontal stretching lineation, and corresponds to the main regional S2 plane that transposed during the D3 event. The pronounced tubular shape of the amphibolite bodies (Fig. 3) results from intense stretching. In this area, the finite strain pattern and thus the observed tectonic structures are associated with the D3 transpression phase, which reorients the structures inherited from the previous D1 and D2 phases (Schneider et al., 2014). As gneisses and amphibolites are both affected by the same D3 deformation they were likely mixed during the early evolution stages of the MTM (see Gerbault et al., 2018 for discussion).

thumbnail Fig. 1

(A) Location of the Maures-Tanneron in southeast France. European Variscan massifs are indicated in grey. (B) Geological map of the Maures-Tanneron Massif showing the External and Internal Zones (modified after Seyler, 1986, Bellot, 2005, Schneider et al., 2014 and Gerbault et al., 2018). Green stars represent the main occurrences of eclogites. The sampling site of interest is indicated.

(A) Localisation du massif des Maures-Tanneron dans le Sud-Est de la France. Les massifs de la chaîne Varisque d’Europe apparaissent en gris. (B) Carte géologique du Massif des Maures-Tanneron présentant les zones externes et internes (modifiée d’après Seyler, 1986, Bellot, 2005, Schneider et al., 2014 et Gerbault et al., 2018). Les principaux affleurements d’éclogites sont mentionnés par les étoiles vertes. Le site d’échantillonnage des éclogites étudiées est encadré sur la carte.

thumbnail Fig. 2

(A) Geological sketch map of the coastline between Tahiti Beach and Cap du Pinet (see location in Fig. 1). (B) Detailed lithological and structural map of the main and most significant outcrop. White stars represent sample locations.

(A) Carte géologique de la ligne de côte entre la plage de Tahiti et le Cap du Pinet (localisée sur la Fig. 1). (B) Carte lithologique et structurale de l’affleurement principal sélectionné pour cette étude. Les étoiles blanches indiquent les sites de prélèvement.

thumbnail Fig. 3

(A) The various lithotypes recognized in the main outcrop (Fig. 2B). 1 = lens of eclogite; 2 = migmatitic paragneiss; 3 = granitic dyke. (B) Detailed macroscopic facies of the eclogitic lens.

(A) Les différentes lithologies observées sur l’affleurement principal (Fig. 2B). 1 = lentille d’éclogite ; 2 = paragneiss migmatitique ; 3 = filon de granite. (B) Aspect macroscopique de la lentille éclogitique.

3 Sampling strategy and methods

Because we focus on eclogites, all the studied samples were collected in the eastern domain of the MTM. In the field (Fig. 3), most of the metabasites occurr as foliated amphibolites (Fig. 4A and B), sometimes with relicts of garnet that are partly replaced by coronas of plagioclase and amphibole (Fig. 4C and D). In thin sections, these amphibolites display discrete relicts of Ca-clinopyroxene + plagioclase symplectite (Sect. 4.2.1 Petrography of eclogites), a microstructure that is diagnostic of omphacite retrogression (Boland and Van Roermund, 1983; Joanny et al., 1989, 1991). Thus, amphibolites are retrograded amphibolite-facies equivalents of eclogites. However, the best-preserved metabasites are found only as undeformed relicts in the core of metric to decametric boudins within foliated rocks. At the regional scale the best-preserved mafic boudins outcrop in the so-called “Tahiti Beach” (Fig. 3), near Saint-Tropez.

Mineral chemistry was determined by the electron probe microanalyser CAMECA SX 100 at the Laboratoire Magmas et Volcans, Université Clermont-Auvergne, France and at the “Service Commun de Microsonde” of the Montpellier University, France. In both cases, the operating conditions were a 20 kV accelerating voltage, a 10 nA for beam current, a 1 µm for beam size and a counting time of 10 seconds for analyses of silicates except for quartz inclusions in garnets for which conditions of a 20 kV accelerating voltage, a 100 nA beam current and a counting time of 120 seconds were used to measure titanium.

Peak eclogitic conditions were calculated only in undeformed and best-preserved garnet-bearing samples (i.e., samples MTME3, MTME4 and MTME5). In the latter, we studied the mineral inclusions trapped within the cores of garnet. These inclusions, which were first observed with a petrographic microscope, were also characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) at the “Centre commun de microscopie appliquée” of the Côte d’Azur University using a Tescan Vega 3 XMU SEM system (TESCAN FRANCE, Fuveau, France) equipped with an X-MaxN 50 EDX detector (Oxford Instruments, Abingdon, Great Britain).

In our samples we first used the Zr-in-rutile thermometer, as the solubility of trace elements within metastable rutile inclusions can be useful indicators of frozen P−T conditions (Watson et al., 2006; Tomkins et al., 2007). For this purpose, in thin sections, rutile was identified in reflected and transmitted light using a petrographic microscope to select the larger grains showing no transformation into ilmenite. Rutile inclusions were also backscattered electron (BSE) imaged to select grains without any trace of replacement by ilmenite using scanning electron microscopy (SEM) with an accelerating voltage of 20 kV. The selected well-preserved rutiles (i.e., without ilmenite corona or exsolution needles) were analysed using a CAMECA SX100 electron microprobe with operating conditions of a 20 kV accelerating voltage, a 100 nA current and a counting time of 90 seconds. A 1 µm spot beam was used on grains up to 0.2–0.4 mm in length. Furthermore, we considered the possibility of obtaining direct and robust calculations of P−T conditions of inclusion crystallization using the Zr-in-rutile thermometer together with the Ti-in-quartz thermobarometer (Thomas et al., 2010) on contemporary rutile and quartz inclusions preserved in garnet cores. We also performed thermodynamic modelling using the free energy minimization program THERIAK/DOMINO (De Capitani and Petrakakis, 2010, version 2015) on the least retromorphosed sample (MTME3), even if in retrograded eclogites the effective rock composition with which the garnet was in equilibrium remains difficult to define (see Lanari and Engi, 2017, for discussion). Thus, even if questionable, the modelled composition was determined using the whole-rock analysis. We used the internally consistent thermodynamic “tcdb55c2d” database (Holland and Powell, 2004) and the following mineral a–x relations: plagioclase (Holland and Powell, 2003), garnet (White et al., 2007), ilmenite (White et al., 2000), amphibole (Diener et al., 2007), clinopyroxene (Green et al., 2007), orthopyroxene (White et al., 2002), biotite, (White et al., 2007) and white mica (Coggon and Holland, 2002).

For LA‒ICP‒MS/U‒Pb zircon geochronology, we also selected the best-preserved MTME3 sample. Zircon grains were separated using standard heavy liquid and magnetic techniques. Prior to analysis back-scattered electron (BSE) and cathodoluminescence (CL) images of zircons were obtained at the Czech Geological Survey. These images were used to choose spot locations for LA‒ICP‒MS analyses. LA‒ICP‒ MS/U‒Pb analyses on zircons were conducted at the Czech Geological Survey, Prague and at the GeOHeLiS Platform, University of Rennes, France, and the procedure is described in detail in the Supplementary material (Analytical Methods). Only zircon analyses with 98–102% concordance and not affected by Pb loss or inheritance (Gehrels, 2012) were used. Probability density plots of analytical data were generated using “Density Plotter” (Vermeesch, 2012) and Wetherill diagrams using Isoplot 4.15 (Ludwig, 2011).

Whole-rock major and trace element analyses were obtained by using inductively coupled plasma atomic emission spectrometry (ICP‒AES) and inductively coupled plasma‒ mass spectrometry (ICP‒MS) respectively, at the Geochemical and Petrographic Research Center in Nancy (SARM laboratory, CNRS-CRPG) following the procedure proposed by Carignan et al. (2001). To evaluate the effects of amphibolite-facies retrogression on the eclogite chemical composition, both undeformed best-preserved samples and retrogressed samples were analysed. However, the geochemical characterization of protoliths took only the best-preserved samples into account.

thumbnail Fig. 4

Various mesoscopic facies of more or less retrogressed eclogites. (A) Typical spindle-shaped mafic sample showing a preserved core and foliated cortex. (B) Foliated and intensively retrogressed sample. This rock appears as a foliated amphibolite. (C) Poorly deformed and partially preserved eclogite. Note the variously preserved garnets surrounded by plagioclase and amphibole bearing coronas. (D) Typical undeformed (corona-type texture) and well-preserved sample of eclogite. Note the excellent preservation of garnets.

Détail à l’échelle mésoscopique des différents facies observés dans les lentilles mafiques. (A) Métabasite, au sein de laquelle on distingue un cœur préservé et une bordure foliée. (B) Métabasite totalement rétromorphosée corrspondant à une amphibolite foliée. (C) Éclogite partiellement préservée. Les grenats présentant des couronnes (amphibole et plagioclase) soulignent la présence d’une foliation plus ou moins marquée. (D) Métabasite, à texture coronitique et au sein de laquelle les grenats éclogitiques sont bien préservés. Elles représentent les échantillons d’éclogites les moins rétromorphosées.

4 Results

4.1 Geochemistry of MTM eclogites

Analytical results are presented in the Supplementary material (Table S1).

4.1.1 Classification diagrams

In the TAS classification diagram (Le Bas et al., 1986), all samples plot within the basaltic field (Fig. 5A) while in the AFM compositional scheme (Irvine and Baragar, 1971), they plot in the field of tholeiitic series, except for one of the severely retrogressed samples (Fig. 5B). However, because the MTM eclogites experienced high-temperature re-equilibration and are embodied within migmatitic paragneiss, significant mobility of major elements and crustal contamination must be considered. Indeed, in comparison with average N-MORB or E-MORB major element compositions (McKenzie and O’Nions, 1991), the MTM samples show, for nearly constant SiO2 contents (48.5 to 51.6 wt%), sharp depletions in MgO and CaO or clear enrichment in mobile elements (i.e., K2O, Na2O or TiO2), which are notably pronounced for the most retrogressed eclogites. Thus, classification diagrams based on relatively immobile trace elements are preferred, particularly the Zr/Ti versus Nb/Y diagram of Pearce (1996). In the latter (Fig. 5C), a distinction between preserved and retrogressed samples can be observed. When preserved, eclogites plot mainly in the tholeiitic basalt field, while retrogressed samples exhibit significant dispersion, even regarding reputedly immobile elements. This type of evolution has been noted in other examples of retrogressed eclogites and interpreted as tracers of chemical contamination, although the origin of this contamination is still debated (Thompson et al., 1983; Štípská et al., 2014; Cruciani et al., 2015; Jouffray et al., 2020).

thumbnail Fig. 5

Chemical compositions of the studied eclogites. In all the diagrams, the red stars correspond to severely retrogressed samples (MTMA-x) and the black stars to the best-preserved eclogites (MTME-x). Grey areas represent the compositional range of Sardinian eclogites. (A) Total Alkali–Silica (TAS) diagram (after Le Bas et al., 1986), white symbol figure N-MORB composition after McKenzie and O’Nions (1991). (B) AFM classification diagram (after Irvine and Baragar, 1971). (C) Compositional diagram using elements considered as less mobile, here Zr/Ti versus Nb/Y (after Pearce, 1996). (D) 0,01Ti-Zr-3Y geotectonic discrimination diagram (after Meschede, 1986). (E) 0,001Ti versus V geotectonic discrimination diagram (after Shervais, 1982). (F) Hf/3-Th-Ta geotectonic discrimination diagram (after Wood, 1980). (G) Th versus Nb normalized to chondritic composition diagram (after Saccani, 2015). (H) Th/Yb versus Nb/Yb normalized to chondritic composition diagram (after Pearce, 2008).

Composition chimique des éclogites étudiées. Dans l’ensemble des diagrammes, les étoiles rouges correspondent aux échantillons ayant subi la rétromorphose la plus notable (MTMA-x). Par opposition, les étoiles noires correspondent aux roches les mieux préservées (MTME-x). Les aires grisées indiquent les zones dans lesquelles se situent les échantillons sardes. (A) Diagramme Total Alkali–Silica (TAS) (d’après Le Bas et al., 1986), le symbole blanc indique la composition chimique moyenne des basaltes N-MORB (McKenzie et O’Nions, 1991). (B) Diagramme de classification AFM (d’après Irvine et Baragar, 1971). (C) Diagramme de composition basé sur les éléments les moins mobiles, dans ce cas Zr/Ti versus Nb/Y (d’après Pearce, 1996). (D) Diagramme de discrimination géochimique 0,01Ti-Zr-3Y (d’après Meschede, 1986). (E) Diagramme de discrimination géochimique 0,001Ti versus V (d’après Shervais, 1982). (F) Diagramme de discrimination géochimique Hf/3-Th-Ta (d’après Wood, 1980). (G) Diagramme Th versus N normalisés à la composition chondritique (d’après Saccani, 2015). (H) Diagramme Th/Yb versus Nb/Yb normalisés à la composition chondritique (d’après Pearce, 2008).

4.1.2 Geotectonic discriminant diagrams

In various discriminant diagrams, well-preserved eclogites show typical MORB compositions, whereas the most retrogressed samples trend towards different geotectonic fields (Fig. 5D and E). Focusing on preserved metabasites, in the chondrite-normalized Th versus Nb of Saccani (2015), as well as in the Hf/3-Th-Ta compositional scheme proposed by Wood (1980), the MTM eclogites show E-MORB affinity (Fig. 5F and G). In the Th/Yb versus Nb/Yb diagram elaborated by Pearce (2008) the preserved samples still plot along a MORB-axis, close to E-MORB affinity (Fig. 5H), while a significant shift is observed for the most retrogressed eclogites, indicating possible crustal contamination or a contaminated basaltic source (i.e., contamination of liquids produced during subduction).

Moreover, N- and E-MORBs have uniform Zr/Hf and Nb/Ta ratios of approximately 36 and 17, respectively (Sun and McDonough, 1989). In the most preserved MTM eclogites, the mean values of Nb/La, Zr/Hf and Nb/Ta ratios are 0.71 ± 0.1, 37.8 ± 2.2 and 12.49 ± 0.6, respectively.

Furthermore, the Ce/Pb ratios of approximately 25 ± 5 are characteristic of average MORB compositions (Hofmann et al., 1986), while the Nb/U ratios of 47 ± 11 and Pb/Nd ratios of 0.04 to 0.07 are typical for MORBs (Hofmann, 2003). In our preserved eclogites mean values of 10.3 ± 3.1 for Ce/Pb, 12 ± 2.7 for Nb/U and 0.14 ± 0.05 for Pb/Nd ratios testify to crustal contamination (see Rudnick and Fountain, 1995 with references therein).

4.1.3 REE and HFSE patterns

Average N-MORB and E-MORB compositions provide reference ΣREE values of 39.11 and 49.1 ppm, respectively (Sun and McDonough, 1989; McKenzie and O’Nions, 1991). The most preserved MTM eclogites show a value of 59 ± 8 ppm, and thus a coefficient of enrichment on the order of 1.6. By comparison, in the severely retrogressed samples this coefficient of enrichment reaches a value of 4.

In the best-preserved MTM eclogites, the Eu/Eu* ratio (commonly corresponding to EuN/(SmN x GdN)1/2, Costa et al., 2021), which yields relatively homogeneous values (0.95 to 0.98), is consistent with the typical reference value proposed for basalts (0.95 after Philpotts and Schnetlzer, 1968). Most scattered values (0.86 to 1.06) are calculated in the most retrogressed samples. This former indicates homogeneous protolith basaltic chemistry and the latter corroborates the link between the modification of sample chemistry and the degree of retrogression.

Patterns of the primitive mantle-normalized rare earth elements (REEs, Fig. 6A) show a global negative slope (LaN/YbN = 2.5–3.5) and enrichment in LREEs with respect to HREEs (LaN/SmN = 1.94–2.23 and SmN/YbN = 1.46–1.72). The patterns of the most preserved eclogites are consistent with the E-MORB trend.

HFSE patterns normalized to the primitive mantle (Fig. 6B), are characterized by depletions in Pb, Y, Sn and Mo or enrichments in La, U or Ta compatible with the E-MORB trend. However, even the best-preserved samples show depletion in Sr or enrichment, which is slight in Nd, indicating probable changes in the initial chemical composition of the protolith.

thumbnail Fig. 6

(A) Primitive mantle-normalized Rare Earth Elements pattern. (B) Primitive mantle-normalized High Field Strength Elements Patterns. OIB, E-MORB and N-MORB compositions (after Sun and McDonough, 1989) are plotted as dotted lines for comparison. Black lines correspond to the best preserved eclogites, while red lines correspond to severely retrogressed samples. Grey areas represent the compositional range to the best-preserved Sardinian eclogites (after Cruciani et al., 2015).

(A) Spectres en terres rares normalisées à la composition du manteau primitif. (B) Spectres en éléments à fort effet de champ (faibles rayons ioniques et fortes charges, HFSE) normalisés à la composition du manteau primitif. Les spectres en OIB, N-MORB et E-MORB sont présentés à titre de référence (d’après Sun et McDonough, 1989). La zone grisée représente la gamme des spectres obtenus à partir des échantillons des éclogites sardes les mieux préservées (d’après Cruciani et al., 2015).

4.2 Petrography, mineralogy, and peak P−T conditions of MTM eclogites

4.2.1 Petrography of eclogites

The MTM eclogites experienced intense retrogression, and preserved typical eclogitic assemblages were never observed in thin sections. The following description is focused on the petrography of the best-preserved eclogites.

The most preserved eclogites are composed predominantly of fine-grained symplectite of plagioclase and Ca-clinopyroxene and garnet surrounded by coronas of plagioclase and amphibole (Figs. 7 and 8). Omphacite single grains were never observed, even as inclusions within garnet, but their prior occurrence is attested to by the fine-grained symplectite (Boland and Van Roermund, 1983; Joanny et al., 1989, 1991).

Garnet occurs as millimetre (1–2 mm), sometimes centimetre, sized grains, commonly rimmed by coronas of brown amphibole, plagioclase and sometimes ilmenite. The best-preserved garnet grains display numerous inclusions of quartz, amphibole and rutile (Figs. 7D and 8). Even when included in garnet, some of the rutile inclusions can be partly transformed into ilmenite. Some garnets are fractured and cracks are filled by amphibole, quartz, epidote and ilmenite. In the MTME3 sample, the high-resolution observation of garnet inclusions using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) reveals the presence of preserved white mica (Fig. 8B). This inclusion was analysed using the low vacuum mode of the SEM instrument, and EDX spot analysis revealed the K content in the mica, which is thus a muscovite.

Amphibole represents the most abundant phase and displays four microtextural sites (Fig. 7): (i) brown inclusions within garnet, (ii) in coronas, in association with plagioclase, around garnet, (iii) as replacements of Ca-clinopyroxene in fine-grained symplectite, and (iv) poikiloblasts of brown to greenish grains replacing garnet and/or symplectite.

Zircon is observed as inclusions within garnet but also in symplectite assemblages associated with Ca-clinopyroxene, plagioclase and/or amphibole. Rare biotite is observed in the amphibole + plagioclase-bearing coronas around garnet.

thumbnail Fig. 7

Microphotographs of a preserved sample of eclogite (MTME-4). (A) Thin section image (plane polarized light). (B) Thin section image (crossed polars). Fine-grained Ca-clinopyroxene−plagioclase symplectite is abundant. Garnet, which contain numerous inclusions of amphibole (Amp-I in D) and quartz, is surrounded by brown amphibole (Amp-II) and plagioclase coronas. In symplectite, amphibole (Amp-III) replaces Ca-clinopyroxene. Late brown to greenish amphibole poikiloblasts (Amp-IV), are locally developed at the expense of the symplectite. (C) Back-scattered Electron (BSE) image displaying fine-grained Amp-II + plagioclase inter-growths developed around garnet. Note local development of poikiloblasts of Amp-IV. (D) BSE image focused on a well-preserved garnet with inclusions of Amp-I, rutile and quartz. Amp-II is developed around the garnet. Garnet is partly replaced by Amp-II, quartz and late biotite grains. Gt: garnet; Amp: amphibole; Bt: biotite; Pl: plagioclase; Ru: rutile; Qtz: quartz; Ti: titanite.

Microphotographies en lames minces d’échantillons d’éclogite préservée (MTME-4). (A) Microscope polarisant non analysé (LPNA). (B) Microscope polarisant analysé (LPA). Images de la texture symplectitique à grains fins composée de plagioclase et de Ca-clinopyroxène. Les grenats, contenant des inclusions d’amphibole (Amp-I, voir D) et de quartz, sont entourés de couronnes d’amphibole (Amp-II) et de plagioclase. Quelques amphiboles (Amp-III) remplacent le Ca-clinopyroxène dans la symplectite. Des poeciloblastes d’amphibole tardive (Amp-IV), de teinte brune à verte, cristallisent localement au dépend de la symplectite. (C) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE) illustrant les couronnes de minéraux d’Amp-II et de plagioclase en inter-croissance autour des grenats. Noter la présence locale d’Amp-IV tardive. (D) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE) d’un grenat bien préservé au sein duquel sont pointées des inclusions d’Amp-I, de rutile et de quartz. À la périphérie, on observe toujours les réactions de déstabilisation du grenat, faisant apparaître l’Amp-II, le quartz et des grains tardifs de biotite. Gt : grenat ; Amp : amphibole ; Bt : biotite ; Pl : plagioclase ; Ru : rutile ; Qtz : quartz ; Ti : titanite.

thumbnail Fig. 8

Garnet inclusions from the best-preserved sample (MTME-3). (A) Thin section image (crossed polars) showing Amp-I and quartz inclusions in a garnet core. (B) BSE image of a preserved inclusion of white mica. Note the development of Amp-II at the rim and filling the micro-cracks of the garnet. (C) Thin section image (plane polarized light) of quartz and rutile inclusions within the garnet core. (D) BSE image of a trapped inclusion of Amp-I clearly disconnected from micro-cracks in garnet. Mineral abreviations are the same as in Figure 7. Wm: white mica.

Détails des inclusions observées dans les cœurs de grenats de l’échantillon le mieux préservé (MTME-3). (A) Microphotographie en lumière polarisée analysée révélant la présence d’inclusions d’Amp-I et de quartz. (B) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE). Image d’un grenat contenant une inclusion préservée de mica blanc. Noter également la critallisation de l’Amp-II qui se développe vers le cœur du grenat à la faveur de la mico-fracturation. (C) Microphotographie en lumière polarisée non analysée montrant les inclusions de quartz et de rutile dans le grenat. (D) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE). Détail d’une inclusion d’Amp-I isolée des micro-fractures du grenat. Abréviations identiques à celle de la figure 7. Wm: mica blanc.

4.2.2 Mineral chemistry

Analytical results are presented in the Supplementary material (Table S2).

Garnet is almandine-rich (46.5–58.6 mol%) with pyrope and grossular contents of 15.6 to 32.7 and 14 to 27.9 mol%, respectively, if we consider all the preserved samples. Garnet compositions plot in the fields of B and C eclogite types (Fig. 9A) in the diagram of Coleman et al. (1965). In the garnets from the MTME3 sample, zoning is very slightly pronounced. In the MTME1 sample, a zonation is depicted with, from core to rim, a decrease in the almandine content associated with an increase in the pyrope content. On the other hand, in the MTME2 and MTME4 samples, garnets display zonation with a decrease in the pyrope content from core to rim. A full compositional profile obtained on a garnet from the MTME1 (Fig. 9B) sample shows that the chemical composition obtained in the garnet core remains relatively constant over a significant distance (ca. 150 µm). The zonation is characterized by an increase in XMg (15.5 to 22.5% with XMg = Mg/(Mg + Mn + Fe + Ca)) associated with a decrease in XMn (4.21 to 0.44% with XMn = Mn/(Mg + Mn + Fe + Ca)) from the core to the rim of the mineral, while the variations in XFe and XCa are much more irregular.

Clinopyroxene in symplectite displays a compositional evolution from omphacite, with jadeite content of approximately 28–30 mol% in coarser lamellae, to mainly diopside in association with plagioclase at the edge of symplectite (Fig. 10).

Plagioclase lamellae (Fig. 10C) associated with omphacite are oligoclase (70–85%mol of albite). When associated with amphibole in coronas around garnet and/or replacing symplectite, they correspond to andesine (63–71%mol of albite).

Amphibole is calcic in the classifications of Leake et al. (1997, 2004) and Hawthorne and Oberti (2012) (Fig. 10D). Amphibole in inclusions within garnet (Amp-I) is tschermakite (#Mg between 0.53 and 0.60). Amphibole in coronas around garnet (Amp-II) and amphibole replacing Ca-clinopyroxene in symplectite (Amp-III) are magnesio-hornblende (#Mg within the range of 0.58 to 0.70). Late poikiloblasts of amphibole (Amp-IV) are actinolite with #Mg value of 0.69.

thumbnail Fig. 9

(A) Compositions of garnet in the diagram of Coleman et al. (1965). Core to rim zonations are indicated. (B) Rim-to-rim chemical zoning in one millimetric garnet from MTME1 sample (represented in the previous diagram). Data are from garnet imaged in Figure 7D.

(A) Composition chimique des grenats dans le diagramme de Coleman et al. (1965), montrant les évolutions depuis les cœurs vers les bordures de grains. (B) Profil de zonation chimique d’un grenat millimétrique de l’échantillon MTME-1 (identifié dans le diagramme précédent). Les analyses ont été effectuées sur le grenat de la figure 7D.

thumbnail Fig. 10

(A) and (B) Chemical compositions of clinopyroxene in the classification diagrams of Morimoto (1988), (C) chemical compositions of plagioclase and (D) chemical compositions of different generations of amphibole in the diagram of Leake et al. (1997, 2004).

(A) et (B) Composition chimique des clinopyroxènes dans les diagrammes de classification de Morimoto (1988), (C) composition chimique des feldspaths et (D) composition chimique des différentes générations d’amphibole dans le diagramme de Leake et al. (1997, 2004).

4.2.3 Estimated P−T peak conditions

Based on the previously presented observations, the inferred primary assemblage of the studied eclogites is garnet + omphacite + rutile + amphibole + quartz ± white mica ± zircon.

It is now clearly established that Zr solubility in rutile in equilibrium with quartz and zircon, is strongly temperature dependent, with a moderate P dependence (Degeling et al., 2001; Troitzsch and Ellis, 2004; Zack et al., 2004; Watson et al., 2006; Ferry and Watson, 2007; Tomkins et al., 2007). An important advantage of this method is that Zr is very dilute in rutile. Therefore, the uncertainties related to the nonideality of solid solutions in thermodynamic calculations remain negligible in both phases (Watson et al., 2006). However, the accuracy of the Zr-in-rutile thermometer can be assessed only if (1) rutile is perfectly preserved without any reaction rim with the host mineral (Ewing et al., 2013), (2) quartz and zircon are also present as trapped inclusions in the same host mineral, (3) the Si content in rutile is lower than 200 ppm, and for Si values higher than 200 ppm, the zirconium content could be merely the total of the zirconium in rutile mixed with zirconium derived from nearby phases (see the discussion in Zack et al., 2004), and (4) high values for accelerating voltage, beam current and counting time are implemented (Batanova et al., 2018). Considering all these limitations, we first applied the calibrations of Tomkins et al. (2007), for the Zr-in-rutile thermometer, and of Thomas et al. (2010) for TitaniQ thermo-barometer, in mineral inclusions trapped in well-preserved garnets. In the MTME3 sample, 2 quartz inclusions and 4 inclusions of rutile were analysed, each analysis was duplicated, and each result presented is the average of two analyses. In the MTME5 sample, 3 inclusions of quartz and 3 inclusions of rutile were analysed following the same procedure (the analytical results are presented in the Supplementary material, Table S3).

The values for Ti-in-quartz vary between 5.1 and 6.9 ppm, while for Zr-in-rutile the measured values range between 101.4 and 197.7 ppm. The combination of these data leads to a stability domain of 12–19 kbar for 600–670 °C (Fig. 11).

A P−T pseudosection was calculated with the THERIAK/DOMINO program (De Capitani and Petrakakis, 2010, version 2015) in the SiO2-Al2O3-TiO2-FeO-MgO-CaO-Na2O-H2O system using the whole rock composition of the best-preserved sample (MTME3). Because the MnO content is very low and biotite is clearly a retrogressive phase occurring as interstitial grains or replacing garnets, MnO and K2O were removed from the modelled composition. As a first investigation, H2O was considered in excess. In this case, the inferred primary mineral assemblage corresponds to a calculated field of 16.5–22 kbar and 600–690 °C (Fig. 12A). It is bounded by the stability of zoisite at low temperatures and the disappearance of rutile and amphibole at low and high pressures respectively. The combination of the two calculation methods used yields a restricted P−T field of 16.8–18.5 kbar and 630–660 °C for the MTM eclogites (Fig. 12A). However, this H2O-saturated pseudosection predicts the presence of paragonite in the high-pressure assemblages. This mineral has not been observed, although the inclusion of white mica was identified in garnet.

Because the effect of Fe3+ cannot be neglected in modelling mafic rocks, a second pseudosection was calculated. According to Sun and McDonough (1989) and Rebay et al. (2010), a range of values between 9 and 12% Fe2O3 of total FeO was considered for basaltic composition. With Fe2O3 values higher than 10%, epidote is always present in the metamorphic assemblage of interest, a mineral that has not been observed as trapped inclusions in garnet and thus discards these conditions. On the other hand, for a value of 9% Fe2O3 of total FeO, epidote is no longer present in the eclogitic assemblage and the main mineral stability fields identified in the previous models are, at the first order, retained (Fig. 12B). The major change concerns the presence of haematite (1.9–5.2%) and the presence of muscovite instead of paragonite in the metamorphic assemblage is considered the most likely. First, the results of this model are consistent with the P−T conditions calculated in trapped inclusions, and the combination of the two methods allows us to propose a P−T range of 17.2–18.5 kbar for 640–660 °C.

We also tested the effect of water undersaturation on our models. With a value of 9% Fe2O3 of total FeO, a model with only 5% H2O in the system was investigated. In this case, epidote and/or paragonite are always present in the metamorphic assemblage of interest. Moreover, the calculated P−T field for the least different mineral assemblage from that observed is less compatible with the results obtained with the study of trapped inclusions compared to previous models.

Finally, if we accept the postulates of H2O-saturated conditions and 9% Fe2O3 of total FeO for the effective rock composition, the combination of the related pseudosection with the P−T range calculated with trapped quartz and rutile inclusions yields to a P−T estimate restricted to 17.2–18.5 kbar and 640–660 °C for the formation of the MTM eclogites.

thumbnail Fig. 11

P−T conditions (hatched field corresponding to the intersection of the measured minimum and maximum values) obtained on trapped inclusions in garnet using calibrations of Tomkins et al. (2007) for Zr-in-rutile and Thomas et al. (2010) for Ti-in-quartz. Metamorphic facies fields after Spear (1993).

Conditions P−T (champ hachuré correspondant à l’intersection des valeurs minimales et maximales mesurées) déterminées à partir de l’analyse des inclusions dans les grenats, selon les calibrations de Tomkins et al. (2007) pour le « Zr-in-rutile » et Thomas et al. (2010) pour le « Ti-in-quartz ». Les champs des faciès métamorphiques sont reportés (d’après Spear, 1993).

thumbnail Fig. 12

(A)P−T pseudosection calculated for the sample MTME3 modeled composition in H2O saturated conditions. The shaded field corresponds to the results of Figure 11. Numbered fields represent the following assemblages: 1: Cpx Amp Ilm Law Chlr Qtz. 2: Cpx Gt Amp Ilm Ru Zo Qtz. 3: Cpx Gt Amp Ilm Qtz. 4: Cpx Gt 2Amp Ilm Qtz. 5: Cpx Gt Amp Ru Zo Qtz. 6: Cpx Gt Amp Ilm Law Qtz. 7: Cpx Gt Amp Ru. 8: Cpx Gt Amp Ilm Law Chlr Qtz. 9: Cpx Gt Amp Ilm Zo Law Chlr Qtz. 10: Cpx Gt Amp Ilm Zo Qtz. 11: Cpx Gt Amp Ru Ilm Zo Pa Qtz. 12: Cpx Gt Amp Ilm Zo Chlr Qtz. 13: Cpx Amp Ilm Zo Chlr Qtz. 14: Amp Ilm Zo Chlr Qtz. 15: Cpx Gt Amp Ilm Zo Qtz. 16: 2Amp Ilm Zo Qtz. 17: Cpx Gt Amp Ilm Zo Qtz. 18: Cpx 2Amp Ilm Zo Qtz. 19: Cpx Gt Ru. 20: 2Amp Ilm Zo Pl Qtz. 21: 2Amp Cpx Ilm Zo Pl Qtz. 22: Cpx 2Amp Gt Ilm Qtz. 23: Ilm Cpx Gt Ru. (B)P−T pseudosection calculated for the same sample for modeled composition in H2O saturated conditions with a value at 9% Fe2O3 of total FeO. Numbered fields match with the following assemblages: 1: Cpx Grt Amp Phng Bio Ru Hem Qtz. 2: Cpx Grt Bio Ru Hem Qtz. 3: Cpx Grt Amp Phng Ru Hem Qtz. 4: Cpx Grt Amp Bio Ru Hem Qtz. 5: Cpx Grt Amp Bio Ru Hem Mt Qtz. 6: Cpx Grt Amp Bio Ru Ep Mt Qtz. 7: Cpx Grt Amp Ru Ep Mt Qtz. 8: Cpx Grt Amp Ru Mt Qtz. 9: Cpx Grt Amp Ilm Ru Mt Ep Qtz. 10: Cpx Grt Amp Ilm Ru Mt Qtz. 11: Cpx Grt Amp Mu Ilm Ep Mt Qtz. 12: Cpx Grt Amp Mu Bio Ilm Ep Mt Qtz. 13: Cpx Grt Amp Mu Bio Ilm Ep Zo Qtz. 14: Cpx Grt Amp Bio Ilm Ep Zo Qtz. 15: Cpx Grt Amp Mu Pa Ilm Ep Qtz. 16: Cpx Grt 2Amp Mu Pa Ilm Ep Qtz. 17: Cpx Grt 2Amp Mu Ilm Ep Qtz. 18: Cpx Grt Amp Mu Ilm Ep Qtz. 19: Cpx Grt Amp Mu Ilm Ep Qtz. 20: Grt 2Amp Bio Ilm Ep Zo Qtz. 21: Grt Amp Bio Ilm Ep Zo Qtz. 22: Cpx Grt Amp Bio Ilm Ep Zo Qtz. In pseudosections, the main field of interest is highlighted in green, corresponding to the observed mineral assemblage. The dark grey field represents the intersection between the two calculation methods and thus the most probable peak P−T conditions.

(A) Pseudosection P−T calculée à partir d’une composition modélisée de l’échantillon MTME3 en condition saturée en H2O. Le champ obscurci représente le champ P−T de la figure 11. Les champs numérotés correspondent aux assemblages suivants : 1 : Cpx Amp Ilm Law Chlr Qtz. 2 : Cpx Gt Amp Ilm Ru Zo Qtz. 3 : Cpx Gt Amp Ilm Qtz. 4 : Cpx Gt 2Amp Ilm Qtz. 5 : Cpx Gt Amp Ru Zo Qtz. 6 : Cpx Gt Amp Ilm Law Qtz. 7 : Cpx Gt Amp Ru. 8 : Cpx Gt Amp Ilm Law Chlr Qtz. 9 : Cpx Gt Amp Ilm Zo Law Chlr Qtz. 10 : Cpx Gt Amp Ilm Zo Qtz. 11 : Cpx Gt Amp Ru Ilm Zo Pa Qtz. 12 : Cpx Gt Amp Ilm Zo Chlr Qtz. 13 : Cpx Amp Ilm Zo Chlr Qtz. 14 : Amp Ilm Zo Chlr Qtz. 15 : Cpx Gt Amp Ilm Zo Qtz. 16 : 2Amp Ilm Zo Qtz. 17 : Cpx Gt Amp Ilm Zo Qtz. 18 : Cpx 2Amp Ilm Zo Qtz. 19 : Cpx Gt Ru. 20 : 2Amp Ilm Zo Pl Qtz. 21 : 2Amp Cpx Ilm Zo Pl Qtz. 22 : Cpx 2Amp Gt Ilm Qtz. 23 : Ilm Cpx Gt Ru. (B) Pseudosection P−T calculée à partir d’une composition modélisée du même échantillon en présence de 9 % de Fe2O3 calculé sur la teneur totale en FeO. Les champs numérotés correspondent aux assemblages suivants : 1 : Cpx Grt Amp Phng Bio Ru Hem Qtz. 2 : Cpx Grt Bio Ru Hem Qtz. 3 : Cpx Grt Amp Phng Ru Hem Qtz. 4 : Cpx Grt Amp Bio Ru Hem Qtz. 5 : Cpx Grt Amp Bio Ru Hem Mt Qtz. 6 : Cpx Grt Amp Bio Ru Ep Mt Qtz. 7 : Cpx Grt Amp Ru Ep Mt Qtz. 8 : Cpx Grt Amp Ru Mt Qtz. 9 : Cpx Grt Amp Ilm Ru Mt Ep Qtz. 10 : Cpx Grt Amp Ilm Ru Mt Qtz. 11 : Cpx Grt Amp Mu Ilm Ep Mt Qtz. 12 : Cpx Grt Amp Mu Bio Ilm Ep Mt Qtz. 13 : Cpx Grt Amp Mu Bio Ilm Ep Zo Qtz. 14 : Cpx Grt Amp Bio Ilm Ep Zo Qtz. 15 : Cpx Grt Amp Mu Pa Ilm Ep Qtz. 16 : Cpx Grt 2Amp Mu Pa Ilm Ep Qtz. 17 : Cpx Grt 2Amp Mu Ilm Ep Qtz. 18 : Cpx Grt Amp Mu Ilm Ep Qtz. 19 : Cpx Grt Amp Mu Ilm Ep Qtz. 20 : Grt 2Amp Bio Ilm Ep Zo Qtz. 21 : Grt Amp Bio Ilm Ep Zo Qtz. 22 : Cpx Grt Amp Bio Ilm Ep Zo Qtz. Le champ d’intérêt dont l’assemblage minéralogique est le plus proche de la paragénèse de haute pression observée apparaît en teinte verte vive sur les deux modèles. La zone noircie correpond à l’intersection entre les deux champs obtenus.

4.3 U‒Pb zircon geochronology

The analytical results are presented in the Supplementary material (Table S4).

More than 150 zircon grains, which were all selected from the best-preserved sample, MTME3, were mounted and analysed by laser ablation. Zircons are mostly subrounded (∼50–200 μm) and multifaceted grains (Corfu et al., 2003). Under cathodoluminescence (CL), the majority of zircon grains show CL-grey to dark cores, often overgrown by large CL-grey to dark rims that are structureless (Fig. 13). Only a few grains show CL-dark oscillatory-zoned cores, which are characteristic of igneous zircons (Hoskin and Schaltegger, 2003 with references therein). Limits between internal and external domains are often marked by irregular features (Corfu et al., 2003; Fig. 11C).

The U‒Pb Concordia diagram, kernel density and bar plots of concordant data are represented in Figure 13. The reported errors are all 2σ. The sample displays a pattern of U‒Pb dating characterized by a discontinuous spread of dates from 510 Ma to 310 Ma. Older zircon domains at ca. 710 Ma are extremely rare (Fig. 13B). The few concordant zircon analyses obtained from CL-dark oscillatory-zoned cores define a 206Pb/238U weighted mean age of 499.5 ± 2.9 Ma (MSWD = 0.88; n = 4). This zircon core group is characterized by homogeneous Th/U ratios (0.3–0.4), which are consistent with a magmatic origin (Rubatto and Gebauer, 2000; Kirkland et al., 2015).

Poorly constrained dates from 450 to 410 Ma are observed in a few zircon domains characterized by low Th/U ratios (Th/U < 0.1), and are thus possibly of a metamorphic origin.

A 206Pb/238U weighted mean age of 332 ± 2.1 Ma (MSWD = 1.6; n = 15) can be calculated from CL grey cores. This main core population is characterized by a low and restricted range of Th/U ratios (<0.1). Large CL grey to dark rims yield a younger 206Pb/238U weighted mean age of 321.9 ± 1.5 Ma (MSWD = 0.83; n = 12).

thumbnail Fig. 13

206U/238Pb zircons geochronology in MTM eclogites. (A) Wetherill Concordia diagram, ellipse corresponding to 2 level error. (B) Kernel density plots (grey field) and probability density (red line) plots showing the distribution of U–Pb ages for concordant analyses (98–102%). Dates in italic represent peak ages and circles below the x-axis indicate the central value of individual data points. n: number of concordant analyses. (C) Representative zircon CL images. The 206Pb/238U dates (in Ma) are reported next to the analytical spot. (D) Bar plots of concordant data. Shaded bars represent the Th/U ratios in zircons. Red lines indicate weighted mean ages; MSWD: numbers in squared brackets.

Résultats de géochronologie obtenus par 206U/238Pb sur les zircons des éclogites du MTM. (A) Diagramme Concordia de Wetherill, les ellipses correspondent au niveau d’erreur 2 sigma. (B) Estimation par noyau (méthode de Parzen-Rosenblatt) et densité de probabilité représentant la distribution des âges U–Pb pour les seuls résultats concordants (98–102 %). Les âges en italique représentent l’âge du pic et les cercles sur l’axe des abscisses, le centre des valeurs pour chaque point des données utilisées. n : nombre d’analyses concordantes. (C) images en CL de zircons représentatifs. Les âges 206Pb/238U (en Ma) sont reportés à proximité des points analysés. (D) Représentation des données concordantes avec leur barre d’erreur. L’ombrage de chaque barre fait référence au rapport Th/U obtenu (en référence à l’échelle décrite sur la droite du diagramme). Les lignes rouges indiquent les principaux âges pondérés ; MSWD : nombres entre crochet.

5 Discussion and conclusions

5.1 Nature of protoliths

Considering the nature of the protolith of the studied eclogites, major and trace element analyses display a clear affinity with tholeiitic basalts. Our results are clearly in line with previous geochemical studies regarding the eclogitic boudins recognized in the easternmost part of the MTM (Caruba, 1983; Seyler, 1986; Bouloton et al., 1998; Bellot et al., 2010; Schneider et al., 2014). In the study area, i.e., the eastern MTM, both metabasalts and metagabbros are identified and are frequently associated with serpentinites, marbles and siliceous-rich meta-sediments (Caruba, 1983). Moreover, contrary to that is observed in the western part of the MTM (Seyler, 1986; Briand et al., 2002), the metabasites of interest are not associated with metarhyolites (i.e., felsic protoliths possibly derived from continental crust melts). All these petrographic data lead to interpretation of eclogites as relics of oceanic crust rather than witnesses of basaltic dikes that intruded within a thinned continental as envisaged in some of the external crystalline massifs in the Western Alps (Vanardois et al., 2022).

Discriminant diagrams are consistent with the MORB signature, while HFSE and REE patterns seem relatively compatible with an E-MORB affinity. However, ∑REE enrichment relative to N-MORB is of a factor close to 2 for most preserved samples and of 4 for the more retrogressed samples. Significant chemical shifts are observed in various geochemical diagrams in the latter, indicating probable chemical contamination. Consequently, if the MORB affinity should be assumed to be robust, the shift between N-MORB and E-MORB affinity is the result of chemical contamination rather than the witness of a geodynamic setting.

By comparison, the sardinian eclogites preserved within amphibolite-facies gneisses show clear affinity with N-MORBs (Cruciani et al., 2015; Fig. 5H), while eclogite boudins enclosed within migmatites display a clear shift towards E-MORB interpreted as evidence of significant crustal contamination by several authors (Loi, 2003; Cortesogno et al., 2004; Giacomini et al., 2005; Utzeri, 2007; Cruciani et al., 2010). Indeed, during crustal melting, crust-derived fluid influxes within mafic formations have been described (see Pattison, 1991 and Štípská et al., 2014, with references therein). Two working hypotheses must therefore be considered for the MTM eclogites: (i) protoliths are truly E-MORBs (i.e., contaminated basaltic liquids during subduction); thus, supra-subduction zone basalts or (ii) protoliths are N-MORBs, and the derived eclogites are contaminated by the surrounding migmatites during their emplacement. Regardless of the chosen model, the MTM eclogites represent the remnant of oceanic basaltic crust involved in a subduction zone environment.

5.2 Magmatic protolith ages and geodynamic consequences

The zircon cores with typical igneous characteristics show a main U‒Pb age at 499.5 ± 2.9 Ma, which could represent the most likely formation age of the oceanic basaltic crust. Currently, unified full plate reconstruction models are available (i.e., palaeomagnetic databases consistent with coherent plate boundary kinematics, mantle dynamics and geologic features; see Domeier and Torsvik, 2017 for a discussion with references) and offer the most robust framework for palaeogeographic reconstruction in the considered time span. In all the available unified models (Fig. 14) at 548–500 Ma the drift of Avalonia and of the other northern Gondwana microplates has not yet started. Consequently, the volcanic protolith of the MTM eclogites was part of an old oceanic floor located north of the Gondwana active continental margin, called Mirovoi, or the Ran Ocean depending on the authors (Domeier, 2016; Merdith et al., 2021). The opening of the Rheic oceanic domain occurred later during the Ordovician, following the Cambro-Ordovician continental rifting leading to Avalonia drift (Murphy et al., 2006; Linnemann et al., 2007, 2008; Nance et al., 2010, 2012; Torsvik and Cocks, 2011; Franke et al., 2017).

Zircons characterized by low Th/U ratios observed in our sample with Ordovician ages (approximately 450 Ma) are poorly constrained (uncertainty of 10–20 Ma). Because Th/U ratios in this population of zircon rims are generally low (<0.1), they could indicate a metamorphic zircon precipitation (Rubatto, 2002). Moreover, in the studied sample, 206Pb/238U weighted mean ages recorded in CL grey cores (332 ± 2.1 Ma) or CL fine grey to dark rims (321.9 ± 1.5 Ma) in zircons with Th/U ratios <0.1 attest to the metamorphic evolution during Carboniferous crustal thickening that is well established in the MECS microplate (Rossi et al., 2009; Giacomini et al., 2008; Morillon et al., 2000; Corsini et al., 2010; Li et al., 2014; Faure et al., 2014; Oliot et al., 2015), thus metamorphic zircon precipitation between ca. 350 and ca. 305 Ma could be considered. More specifically, in the internal domain of the MTM, the development of the regional-scale foliation (M1 and/or M2 tectonic events), which clearly postdates eclogite-facies metamorphism, is dated in the range of 360–330 Ma by different methods (Corsini et al., 2010; Oliot et al., 2015). However, considering the spread of U‒Pb data between the two populations, it is also possible that all these analyses do not define a statistically valid age but result from a natural spread of dates, in addition to analytical uncertainties, which is actually reported for metamorphic zircons in Variscan eclogites (e.g. Schmädicke et al., 2018; De Hoÿm de Marien, 2019; Pitra et al., 2022).

Regarding magmatic protolith ages, it seems important to emphasize that in Sardinia, all the protolith ages of the eclogites are Ordovician (470–450 Ma) and thus interpreted as subducted pieces of the Rheic Ocean (Giacomini et al., 2005; Cruciani et al., 2013, 2015). Our results indicate older protolith ages. Thus, the eclogites recognized in the internal metamorphic domain (i.e., the Mid-Variscan Allochthon following Martínez Catalán et al., 2021) of the MECS microplate represent the closure of oceanic domains of different ages. Indeed, at ca. 500 Ma, the MECS microplate, as well as all the other components that amalgamated further during the Variscan orogeny, is located to the north of the Gondwana active margin (see Linnemann et al., 2007, 2008, 2014; Avigad et al., 2012; Margalef et al., 2016; Couzinié et al., 2017; Stephan et al., 2019; Collett et al., 2020; Tabaud et al., 2021, 2022). The location of MTM in the northeast of the active margin of Gondwana was recently demonstrated by the study of inherited zircons identified within the orthogneiss of this massif (Tabaud et al., 2022). At that time, there was only one oceanic domain, located to the north of the considered continental ribbons (or microplates), which was being closed. Moreover, as previously underlined, there is also a broad consensus that Avalonia drift led to the opening of the Rheic oceanic crust during the Ordovician. Consequently, if in the same Variscan internal zone, metabasalts have protolith ages on the one hand at 500 Ma and on the other hand at 470–450 Ma this means that they come from two different oceanic crusts, the youngest being the Rheic Ocean and the oldest the so-called Mirovoi or Ran Ocean, depending on the authors. It is significant to note that similar results were obtained in other segments of the northeastern Variscan belt with similar conclusions (Soejono Žáčková et al., 2010; Collett et al., 2020, 2022).

thumbnail Fig. 14

Probable location of the MTM eclogite oceanic protoliths during early Cambrian and early Silurian, in the framework of available paleomagnetic unified full plates reconstruction models: (A) after Domeier (2016) and (B) after Merdith et al. (2021). IO: Iapetus Ocean; MO: Mirovoi Ocean; GA: Ganderia; WA: West Avalonia. The blue star figures a possible location of the MTM (MECS micro-plate) in northeastern Gondwana active margin, after Avigad et al. (2012) and Tabaud et al. (2022). In the model of Domeier (2016), the dashed external boundary is an arbitrary perimeter marking the outer limit of the domain considered. The grey hatched areas represent the preserved pieces of early Cambrian oceanic crust, within the region of interest, during early Silurian oceans development.

Localisation probable des protolithes océaniques des éclogites du MTM, au Cambrien inférieur et au Silurien inférieur sur la base des modèles paléomagnétiques globaux unifiés: (A) d’après Domeier (2016) et (B) d’après Merdith et al. (2021). IO : Ocean Iapetus ; MO : Ocean Mirovoi ; GA : Ganderia ; WA : West Avalonia. L’étoile bleue correspond à une localisation du MTM (microplaque MECS) au Nord-Est de la marge active du Gondwana, d’après Avigad et al. (2012) et Tabaud et al. (2022). Dans les représentations de Domeier (2016), la zone grisée correspond à une limite arbitraire de résolution du modèle. En gris hachuré sont représentées les portions de croûte océanique d’âge Cambrien inférieur préservées, dans la région d’intérêt, lors des océanisations du Silurien inférieur.

5.3 P−T peak conditions

An important element to emphasize is that even within retrogressed eclogites it is possible to propose quite a well-constrained estimate of the P−T conditions of the metamorphic peak, using mineral inclusions trapped within garnets.

Peak conditions for the MTM eclogites have been estimated at 17.2–18.5 kbar for 640–660 °C. These conditions are consistent with the thermal gradients calculated for the subduction of the mature ocean floor (i.e., “standard subduction zones”, Fig. 15).

By comparison with other available P−T estimates within the MECS microplate (Lardeaux et al., 1994; Cortesogno et al., 2004; Franceschelli et al., 2005; Giacomini et al., 2005; Cruciani et al., 2011, 2015), our results are clearly consistent with most of the P−T values proposed for Sardinian eclogites (see Supplementary material, Table S5).

Altogether these results suggest that the P−T conditions obtained on the severely retrogressed Corsican or on some Sardinian eclogites (SA-4 and Co boxes in Fig. 14) probably reflect postpeak thermal re-equilibration during continental collision. On the other hand, the geochronological data obtained from our samples do not allow us to constrain the age of the eclogite-facies metamorphism in the MTM. It is only possible to state that it predates the amphibolite-facies regional metamorphism for which the older ages range from 360–350 Ma (Oliot et al., 2015). Similarly, there is no robust geochronological constraint for the age of eclogite-facies metamorphism in Corsica or in Sardinia. In Corsica, an age of 361 ± 3 Ma is proposed for HP granulite-facies (Giacomini et al., 2008). Metamorphic evolution under lower pressure conditions is dated between ca. 360 and 330 Ma and described in the Corsican basement (Li et al., 2014; Massonne et al., 2018; Cruciani et al., 2020). In Sardinia, eclogite-facies metamorphism developed prior to the regional-scale Barrovian-type metamorphism that has been dated to ca. 350 Ma (del Moro et al., 1991; Franceschelli et al., 2007; Carosi et al., 2012).

In conclusion, the new data presented in this study show that following an adapted petro-chronological approach it is possible, even in severely retrogressed eclogites, to obtain information on the age of the magmatic protolith and the peak P−T conditions. The conditions of eclogite-facies metamorphism are quantified for the first time in the MTM (17.2–18.5 kbar and 640–660 °C) and are compatible with thermal gradients typical for the subduction of an oceanic crust. The integration of our data on the nature and age of the protoliths in the recently proposed unified full plate paleaomagnetic reconstruction models suggests that the MTM eclogites are derived from the subduction of an oceanic domain older than the Rheic Ocean, located (at ca. 500 Ma) to the north of the Gondwana active margin.

thumbnail Fig. 15

P−T conditions of the studied MTM eclogites (brown box, MTM), compared with Sardinian (grey-boxes, SA-1 after Giacomini et al., 2005, SA-2 after Cruciani et al., 2015; SA-3 after Cruciani et al., 2011; SA-4 after Cortesogno et al., 2004) and Corsican eclogites (green box CO after Lardeaux et al., 1994 and Palagi et al., 1985). Metamorphic gradients (Cloos, 1993) appear in dotted-color lines, from (1) near spreading ridge and volcanic arcs, to warm (3) and cold (4) subduction zones. Line (2) illustrates an unperturbed geotherm. Data sources for P−T estimation are available in the Supplementary material.

Conditions P−T des éclogites étudiées du MTM (boîte marron, MTM), comparées aux données obtenues sur les éclogites de Sardaigne (boîtes grises, SA-1 d’après Giacomini et al., 2005, SA-2 d’après Cruciani et al., 2015 ; SA-3 d’après Cruciani et al., 2011, SA-4 d’après Cortesogno et al., 2004) et celle de Corse (boîte verte, CO d’après Lardeaux et al., 1994 et Palagi et al., 1985). Les gradients métamorphiques (Cloos, 1993) sont figurés par les lignes de couleur en pointillés (1) dorsales et arcs volcaniques, (3) zones de subduction chaudes, (4) zones de subduction froides. La ligne (2) indique l’allure d’un géotherme non perturbé. Les données sources des estimations P−T, issues de la bibliographie, sont disponibles sous forme de tableau dans la partie Matériel supplémentaire.

Supplementary Material

Table S1. Major and trace elements for the MTM retrogressed eclogites.

Table S2. Microprobe analyses for selected minerals in MTM eclogites.

Table S3. Thermobarometers, Zr-in-Rutile et Ti-in-Quartz calibration.

Table S4. U-Pb isotopic data on zircons for MTME3.

Table S5. P–T conditions estimated in bibliography for Maures-Esterel-Corsica-Sardinia (MECS) microplate.

Access here

Acknowledgements

This work was supported by the Research Project no. 310560 of the Czech Geological Survey (DKRVO/ČGS 2018–2022). We are grateful to M. Poujol (Geosciences Rennes, France), N. Novotná and J. Míková (Czech Geological Survey, Prague) for the LA-ICP-MS analyses. We also thank M. Bonnefoy and M. Štrba for mineral separation. We sincerely would like to thank the reviews, the comments and the suggestions of two anonymous reviewers that significantly improved the manuscript. We thank O. Vanderhaeghe for helpful editorial work.

References

  • Avigad D, Gerdes A, Morag N, Bechstädt T. 2012. Coupled U-Pb-Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondw Res 21: 690–703. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341: 174–201. [CrossRef] [Google Scholar]
  • Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol. Soc. Lond. 159: 77–133. [CrossRef] [Google Scholar]
  • Bard JP, Caruba C. 1981. Les séries leptyno-amphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie ? C R Acad Sci Paris 292: 611–614. [Google Scholar]
  • Bard JP, Caruba C. 1982. Texture et minéralogie d’une éclogite à disthène-saphirine-hypersténe-quartz en inclusion dans les gneiss migmatitites des Cavaliéres, massif de Ste Maxime (Maures, Var, France). C R Acad Sci Paris 294: 103–106. [Google Scholar]
  • Batanova VG, Sobolev AV, Magnin V. 2018. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy. IOP Conf Ser Mater Sci Eng 304: 012001. https://doi.org/10.1088/1757-899X/304/1/012001. [CrossRef] [Google Scholar]
  • Bearth P. 1959. Über Eklogite, Glaukophanschiefer und metamorphe Pillowlaven. Schweiz Mineral Petrogr Mitt 39: 267–286. [Google Scholar]
  • Bellot JP, Bronner G, Marchand J, Laverne C, Triboulet C. 2002. Thrust and normal faulting in the Western Maures (SE France): evidence for geometric, kinematics and thermobarometry of the Cavalaire shear zone. Géologie de la France 1: 21–37. [Google Scholar]
  • Bellot JP, Triboulet C, Laverne C, Bronner G. 2003. Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int J Earth Sci 92: 7–26. [CrossRef] [Google Scholar]
  • Bellot JP. 2005. The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. In: Carosi R, Dias R, Iacopini D, Rosenbaum G, eds. The Southern Variscan Belt. J Virt Expl 19. [Google Scholar]
  • Bellot JP, Laverne C, Bronner G. 2010. An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci 99: 473–504. [CrossRef] [Google Scholar]
  • Bodinier JL, Burg JP, Leyreloup A, Vidal H. 1988. Reliques d’un bassin d’arrière arc subducté puis obducté dans la région de Marvejols (Massif central). Bull Soc géol Fr 8(IV): 20–34. [Google Scholar]
  • Boland JN, Van Roermund HLM. 1983. Mechanisms of exsolution in omphacites from high temperature, type B, eclogites. Phys Chem Miner 9: 30–37. [CrossRef] [Google Scholar]
  • Bouloton J, Goncalves P, Pin C. 1998. Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales) : un cumulat d’affinité océanique impliqué dans la subduction éohercynienne ? C R Acad Sci Paris 326: 473–477. [Google Scholar]
  • Briand B, Bouchardon JL, Capiez P, Piboule M. 2002. Felsic (A-Type)-Basic (Plume-Induced) Early Palaeozoic bimodal magmatism in the Maures massif (southeastern France). Geol Mag 139: 291–311. [CrossRef] [Google Scholar]
  • Brown M. 2010. Paired metamorphic belts revisited. Gondw Res 18: 46–59. https://doi.org/10.1016/j.gr.2009.11.004. [CrossRef] [Google Scholar]
  • Buscail F. 2000. Contribution à la compréhension du problème géologique et géodynamique du massif des Maures : le métamorphisme régional modélisé dans le système KFMASH : analyse paragénétique, chémiographie, thermobarométrie, géochronologie Ar/Ar. Unpublished thesis. France: université Montpellier II. [Google Scholar]
  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB- N, AN-G and GH. Geost Geoan Res Wiley 25(2–3): 187–198. [CrossRef] [Google Scholar]
  • Carmignani L, Barsa S, Cappelli B, Di Pisa A, Gattiglio M, Oggiano G, et al. 1992. A tentative geodynamic model for the Hercynian basement of Sardinia. In: Carmignai L, Sassi FP, eds. Contributions to the Geology of Italy with special regard to the Palaeozoic basements. IGCP Project 276(5): 61–83. [Google Scholar]
  • Carosi R, Oggiano G. 2002. Transpressional deformation in NW Sardinia (Italy): insights on the tectonic evolution of the Variscan belt. C R Geosci 334: 273–278. [CrossRef] [Google Scholar]
  • Carosi R, Montomoli C, Tiepolo M, Frassi C. 2012. Geochronological constraints on post collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 24: 42–51. [CrossRef] [Google Scholar]
  • Caruba C. 1983. Nouvelles données pétrographiques, minéralogiques et géochimiques sur le massif métamorphique hercynien des Maures (Var, France) : comparaison avec les segments varisques voisins et essais d’interprétation géotectonique. Unpublished thesis. France: Université de Nice. [Google Scholar]
  • Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105: 715–737. [CrossRef] [Google Scholar]
  • Cocks LRM, Torsvik TH. 2002. Earth geography from 500 to 400 million years ago; a faunal and palaeomagnetic review. J Geol Soc Lond 159(6): 631–644. [CrossRef] [Google Scholar]
  • Coggon R, Holland JB. 2002. Mixing properties of phengitic micas and revised garnet phengite thermobarometers. J Metamorph Geol 20: 683–696. [CrossRef] [Google Scholar]
  • Coleman RG, Lee DE, Beatty LB, Brannock WW. 1965. Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76: 483–508. [CrossRef] [Google Scholar]
  • Collett S, Štípská P, Kusbach V, Schulmann K, Marciniak G. 2017. Dynamics of Saxothuringian subduction channel/wedge constrained by phase-equilibria modelling and micro-fabric analysis. J Metamorph Geol 35: 253–280. [CrossRef] [Google Scholar]
  • Collett S, Štípská P, Schulmann K, Peresty V, Soldner J, Anczkiewicz R, et al. 2018. Combined Lu-Hf and Sm-Nd geochronology of the Mariánské Lázně Complex: New constraints on the timing of eclogite-and granulite-facies metamorphism. Lithos 304: 74–94. https://doi.org/10.1016/j.lithos.2018.02.007. [CrossRef] [Google Scholar]
  • Collett S, Schulmann K, Štípská P, Míková J. 2020. Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondw Res 79: 27–48. https://doi.org/10.1016/j.gr.2019.09.009. [CrossRef] [Google Scholar]
  • Collett S, Schulmann K, Deiller P, Štípská P, Peresty V, Ulrich M, et al. 2022. Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European Variscan belt). Geoscience Frontiers 13(3). https://doi.org/10.1016/j.gsf.2022.101374. [CrossRef] [Google Scholar]
  • Corfu F, Hanchar JM, Hoskin PWO, Kinny PD. 2003. Atlas of zircon textures. Rev Mineral Geochem 53: 469–500. [CrossRef] [Google Scholar]
  • Corsini M, Rolland Y. 2009. Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. C R Geosci 341: 214–223. [CrossRef] [Google Scholar]
  • Corsini M, Bosse V, Féraud G, Demoux A, Crevola G. 2010. Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France). Int J Earth Sci 99: 327–341. [CrossRef] [Google Scholar]
  • Cortesogno L, Gaggero L, Oggiano G, Paquette JL. 2004. Different tectono-thermal evolutionary paths in eclogitic rocks from the axial zone of the variscan chain in Sardinia (Italy) compared with the ligurian Alps. Ofioliti 29(2): 125–144. [Google Scholar]
  • Costa S, Fulignati P, Campbell IH, Gioncada A, Carrasco Godoy CI, Pistolesi M, et al. 2021. Platinum-group element geochemistry of the shoshonitic igneous suite of Vulcano (Aeolian Arc, Italy): implications for chalcophile element fertility of arc magmas. Contrib Mineral Petrol 176: 106. https://doi.org/10.1007/s00410-021-01865-7. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen JF, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287: 16–34. [CrossRef] [Google Scholar]
  • Crévola G, Pupin JP. 1994. Crystalline Provence: structure and Variscan evolution. In: Keppie JD, ed. Pre-Mesozoic Geology in France and Related Areas. Berlin: Springer Verlag, pp. 426–441. [CrossRef] [Google Scholar]
  • Cruciani G, Dini A, Franceschelli M, Puxeddu M, Utzeri D. 2010. Metabasite from the Variscan belt in NE Sardinia, Italy: within-plate OIB-like melts with very high Sr and low Nd isotope ratios. Eur J Mineral 22: 509–523. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Groppo C. 2011. P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 121: 135–150. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Massonne HJ, Carosi R, Montomoli C. 2013. Pressure-temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy. Lithos 175–176: 272–284. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Groppo C, Oggiano G, Spano ME. 2015. Re-equilibration history and P-T path of eclogites from Variscan Sardinia, Italy: a case study from the medium-grade metamorphic complex. Int J Earth Sci 104: 797–814. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Massonne HJ, Musumeci G. 2020. Evidence of two metamorphic cycles preserved in garnet from felsic granulite in the southern Variscan belt of Corsica, France. Lithos 380–381. https://doi.org/10.1016/j.lithos.2020.105919. [Google Scholar]
  • De Capitani C, Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95: 1006–1016. [CrossRef] [Google Scholar]
  • De Hoÿm de Marien L. 2019. Évolution pression-température-temps des unités varisques de haute-pression de l’est du Massif Central : implications géodynamiques. PhD Thesis. Université de Rennes. [Google Scholar]
  • Degeling H, Eggins S, Ellis DJ. 2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65(6): 749–758. https://doi.org/10.1180/0026461016560006. [CrossRef] [Google Scholar]
  • Del Moro A, Di Pisa A, Oggiano G, Villa IM. 1991. Isotopic ages of two constrained tectonometamorphic episode in the Variscan chain in N Sardinia. Geologia del basamento Italiano 33–35. [Google Scholar]
  • Demay, A. 1931. Les Nappes Cévenoles. Explications de la Carte Géologique détaillées, France. Paris: Imprimerie Nationale. [Google Scholar]
  • Diener JFA, Powell R, White RW, Holland TJB. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 25: 631–656. [CrossRef] [Google Scholar]
  • Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondw Res 36: 275–295. [CrossRef] [Google Scholar]
  • Domeier M, Torsvik TH. 2017. Full-plate modelling in pre-Jurassic time. Geol Mag 156(2): 261–280. https://doi.org/10.1017/S0016756817001005. [Google Scholar]
  • Dufour E, Lardeaux JM, Coffrant D. 1985. Eclogites and granulites in the Monts du Lyonnais area: an eo-hercynian plurifacial evolution. C R Acad Sci Paris 300: 141–144. [Google Scholar]
  • Edel JB, Casini L, Oggiano G, Rossi P, Schulmann K. 2014. Early Permian 90° clockwise rotation of the Maures-Estérel-Corsica-Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc Spec Publ Lond 405: 333–361. [CrossRef] [Google Scholar]
  • Edel JB. Schulmann K, Lexa O, Diraison M, Géraud Y. 2015. Permian clockwise rotations of the Ebro and Corso-Sardinian blocks during Iberian-Armorican oroclinal bending: preliminary paleomagnetic data from the Catalan Coastal Range (NE Spain). Tectonophysics 657: 172–186. [CrossRef] [Google Scholar]
  • Edel JB, Schulmann K, Lexa O, Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth Sci Rev 177: 589–612. [CrossRef] [Google Scholar]
  • Elter M, Pandeli E. 2005. Structural-metamorphic correlations between three variscan segments in Southern Europe: Maures Massif (France), Corsica (France)–Sardinia (Italy), and Northern Appennines (Italy). J Virt Expl 9. [Google Scholar]
  • Ernst WG. 1971. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California, and the Alps. Contrib Mineral Petrol 34: 43–59. [CrossRef] [Google Scholar]
  • Ernst W, Liou J. 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am Mineral 93: 1771–1786. [CrossRef] [Google Scholar]
  • Ewing TA, Hermann J, Rubatto D. 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Mineral Petrol 165: 757–779. https://doi.org/10.1007/s00410-012-0834-5. [CrossRef] [Google Scholar]
  • Faryad SW, Klapova H, Nosal L. 2010. Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineral Mag 74: 111–126. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot JY. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. J Virt Expl 19(5): 1–26. [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341: 202–213. [CrossRef] [Google Scholar]
  • Faure M, Rossi P, Gaché J, Melleton J, Frei D, Li XH, et al. 2014. Variscan orogeny in Corsica: New structural and geochronological insights, and its place in the Variscan geodynamic framework. Int J Earth Sci 103: 1533–1551. https://doi.org/10.1007/s00531-014-1031-8. [CrossRef] [Google Scholar]
  • Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154: 429–437. [CrossRef] [Google Scholar]
  • Forestier FH, Lasnier B, Leyreloup PA, Marchand J. 1973. Vues nouvelles sur la catazone dans le Massif central français et le Massif armoricain de l’affleurement au Moho. Bull Soc géol Fr XV: 562–578. [CrossRef] [Google Scholar]
  • Franceschelli M, Puxeddu M, Cruciani G. 2005. Variscan metamorphism in Sardinia, Italy: review and discussion. J Virt Expl 19: paper 2. [Google Scholar]
  • Franceschelli M, Puxeddu M, Cruciani G, Utzeri D. 2007. Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: a review. Int J Earth Sci 96: 795–815 [CrossRef] [Google Scholar]
  • Franke W. 1989. Variscan plate tectonics in Central Europe − current ideas and open questions. Tectonophysics 169: 221–228. [CrossRef] [Google Scholar]
  • Franke W. 1995. Rhenohercynian foldbelt, autochthon and non metamorphic nappe units, III. B. 1 − stratigraphy. In: Dallmeyer D, Franke W, Weber K, eds. Pre-Permian Geology of Central and Western Europe. Berlin: Springer, pp. 33–49. [CrossRef] [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondw Res 48: 257–284. [CrossRef] [Google Scholar]
  • Franke W. 2000. The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Spec Publ Lond 179: 35–61. [CrossRef] [Google Scholar]
  • Gehrels G. 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Tectonics of Sedimentary Basins. John Wiley and Sons, Ltd., pp. 45–62. https://doi.org/10.1002/9781444347166.ch2. [CrossRef] [Google Scholar]
  • Gerbault M, Schneider J, Reverso-Peila A, Corsini M. 2018. Crustal exhumation during ongoing compression in the Variscan Maures–Tanneron Massif, France – Geological and thermo- mechanical aspects. Tectonophysics 746: 439–458. [CrossRef] [Google Scholar]
  • Gerya TV, Stöckhert B. 2005. Two-dimensional numerical modelling of tectonic and metamorphic histories at active convergent margins. Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-005-0035-9. [Google Scholar]
  • Giacomini F, Bomparola RM, Ghezzo C. 2005. Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: constraints for the Palaeozoic evolution of Southern Europe. Lithos 82: 221–248. [CrossRef] [Google Scholar]
  • Giacomini F, Dallai L, Carminati E, Tiepolo M, Ghezzo C. 2008. Exhumation of a Variscan orogenic complex: insights into the composite granulitic-amphibolitic metamorphic basement of south-east Corsica (France). J Metamorph Geol 26: 403–436. [CrossRef] [Google Scholar]
  • Gilotti JA. 2013. The realm of ultrahigh-pressure metamorphism. Elements 9: 255–260. https://doi.org/10.2113/gselements.9.4.255. [CrossRef] [Google Scholar]
  • Gosso G, Lardeaux JM, Zanoni D, Volante S, Corsini M, Bersezio R, et al. 2019. Mapping the progressive geologic history at the junction of the Alpine mountain belt and the western Mediterranean ocean. Ofioliti 44: 97–110. [Google Scholar]
  • Green EC, Holland TJB, Powell R. 2007. An order- disorder model for omphacitic pyroxenes in the system jadeite- diopside hedenbergite-acmite, with applications to eclogitic rocks. Am Mineral 92: 1181–1189. [CrossRef] [Google Scholar]
  • Hacker B. 2006. Pressures and temperatures of ultrahighpressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48: 1053–1066. [CrossRef] [Google Scholar]
  • Hacker B, Gerya TV, Gilotti JA. 2013. Formation and Exhumation of Ultrahigh-Pressure Terranes. Elements 9: 289–293. https://doi.org/10.2113/gselements.9.4.289. [CrossRef] [Google Scholar]
  • Haüy RJ. 1822. Traité de minéralogie, 2e éd., revue, corrigée et considérablement augmentée par l’auteur. Paris: Bachelier et Huzard, 4 vol. in−8° + atlas [t. II, p. 456; t. IV, p. 548]. [Google Scholar]
  • Hawthorne FC, Oberti R. 2012. Nomenclature of the amphibole supergroup. Am Mineral 97(11–12): 2031–2048. [CrossRef] [Google Scholar]
  • Hofmann AW, Jochum KP, Seufert WWM. 1986. Nb and Pb in oceanic basalts: new constrains on mantle evolution. Earth Planet Sci Lett 80: 299–313. [CrossRef] [Google Scholar]
  • Hofmann AW. 2003. Sampling mantle heterogeneity through oceanic basalts isotopes and trace elements. In: Carlson RW, ed. The Mantle and Core. Treatise on Geochemistry 2. New York: Elsevier, pp. 61–101. [Google Scholar]
  • Holland TJB, Powell R. 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145: 492–501. [CrossRef] [Google Scholar]
  • Holland TJB, Powell R. 2004. An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16: 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x. [CrossRef] [Google Scholar]
  • Hoskin PW, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53: 27–62. [CrossRef] [Google Scholar]
  • Innocent C, Michard A, Guerrot C, Hamelin B. 2003. U-Pb zircon age of 548 Ma for the leptynites (high-grade felsic rocks) of the central part of the Maures Massif. Geodynamic significance of the so-called leptyno-amphibolitic complexes of the Variscan belt of western Europe. Bulletin de la Société Géologique de France 174: 585–594. [CrossRef] [Google Scholar]
  • Irvine TNJ, Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci 8: 523–548. [CrossRef] [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211: 47–69. [CrossRef] [Google Scholar]
  • Joanny V, Lardeaux JM, Trolliard G, Boudeulle M. 1989. La transition omphacite = diopside + plagioclase dans les éclogites du Rouergue (Massif central français): un exemple de précipitation discontinue. C R Acad Sci Paris 309: 1929–1930. [Google Scholar]
  • Joanny V, van Roermund H, Lardeaux JM. 1991. The clinopyroxene/ plagioclase symplectite in retrograde eclogites: a potential geo- thermometer. Geol Rundsch 80: 303–320. [CrossRef] [Google Scholar]
  • Jouffray F, Spalla MI, Lardeaux JM, Filippi M, Rebay G, Corsini M, et al. 2020. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): a dismembered cryptic suture zone. Int J Earth Sci 109: 1273–1294. https://doi.org/10.1007/s00531-020-01848-2. [CrossRef] [Google Scholar]
  • Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B. 2015. Zircons Th/U ratios in magmatic environs. Lithos 212–215: 397–414. https://doi.org/10.1016/j.lithos.2014.11.021. [CrossRef] [Google Scholar]
  • Klapova H, Konopasek J, Schulmann K. 1998. Eclogites from the Czech part of the Erzgebirge: multi-stage metamorphic and structural evolution. J Geol Soc Lond 155: 567–583. [CrossRef] [Google Scholar]
  • Kossmat F. 1927. Gliederung des varistischen Gebirgsbaus. Abh Sächs Geol LA 1: 1–39 [Google Scholar]
  • Lanari P, Engi M. 2017. Local bulk composition effects on metamorphic mineral assemblages. Rev Mineral Geoch 83(1): 55–102. [CrossRef] [Google Scholar]
  • Lardeaux JM, Ménot RP, Orsini JB, Rossi P, Naud G, Libourel G. 1994. Corsica and Sardinia in the Variscan chain. In: Keppie JD., ed. Pre-Mesozoic geology in France and related areas. Berlin: Springer, pp. 467–479. [CrossRef] [Google Scholar]
  • Lardeaux JM. 2014. Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts. Part II: Variscan metamorphism in the French Massif Central. A review. Bull Soc géol Fr 185: 281–310. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, et al. 2014. The Moldanubian Zone in the French Massif Central, Vosges/ Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: extent Timescale and the Formation of the European Crust. J Geol Soc Lond Spec Publ 405: 7–44. [CrossRef] [Google Scholar]
  • Laverne C, Bronner G, Bellot JP. 1997. Les ultrabasites du massif hercynien des Maures (Var), témoins d’une zone avant-arc ? Evidences pétrographiques et minéralogiques. C R Acad Sci Paris IIA Earth Planet Sci 325(10): 765–771. [CrossRef] [Google Scholar]
  • Le Bas M, Maitre RL, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745–750. [CrossRef] [Google Scholar]
  • Leake BE, Woolley AR, Birch WD, Birch WD, Gilbert MC, Grice JD, et al. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Am Mineral 82: 1019–1037. [Google Scholar]
  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, et al. 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur J Miner 16: 191–196. [Google Scholar]
  • Li XH, Faure M, Lin W. 2014. From crustal anatexis to mantle melting in the Variscan orogen of Corsica (France): SIMS U-Pb zircon age constraints. Tectonophysics 634: 19–30. [CrossRef] [Google Scholar]
  • Linnemann U, Gerded A, Drost K, Buschmann B. 2007. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G, eds. The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Paper 423: 61–96. https://doi.org/10.1130/2007.2423(03). [Google Scholar]
  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461: 21–43. [CrossRef] [Google Scholar]
  • Linnemann U, Gerdes A, Hofmann M, Marko L. 2014. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244: 236–278. https://doi.org/10.1016/j.precamres.2013.08.007. [CrossRef] [Google Scholar]
  • Loi M. 2003. Evoluzione metamorfica e caratterizzazione geochimica delle rocce eclogitiche della Sardegna Nord-Orientale. PhD thesis. Università di Cagliari, pp. 1–290. [Google Scholar]
  • Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From burial to exhumation: emplacement and metamorphism of Mafic Eclogitic Terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). J Petrol. https://doi.org/10.1093/petrology/egaa046. [Google Scholar]
  • Ludwig K. 2011. User’s manual for Isoplot 4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, USA concentrations: Loess and the upper continental crust. Geochem Geophys Geosyst 2. [Google Scholar]
  • Margalef A, Castiñeiras P, Casas JM, Navidad M, Montserrat L, Linneman U, et al. 2016. Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance. Tectonophysics 681: 124–134. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Arena R, Abat J, Sánchez Martínez S, Díaz García F, Fernández Suárez J, et al. 2009. A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. C R Geosci 341: 114–126. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Collett S, Schulmann K, Aleksandrowski P, Mazur S. 2020. Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt. Int J Earth Sci 109: 1105–1131. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Schulmann K, Ghienne JF. 2021. The Mid-Variscan Allochthon: keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci Rev 220: 103700. https://doi.org/10.1016/j.earscirev.2021.103700. [CrossRef] [Google Scholar]
  • Massonne HJ. 2013. Constructing the pressure-temperature path of ultrahigh-pressure rocks. Elements 9: 267–272. https://doi.org/10.2113/gselements.9.4.267. [CrossRef] [Google Scholar]
  • Massonne HJ, Cruciani G, Franceschelli M, Musumeci G. 2018. Anticlockwise pressure-temperature paths record Variscan upper-plate exhumation: example from micaschists of the Porto Vecchio region, Corsica. J Metamorph Geol 36: 55–77. [CrossRef] [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan Belt in western Europe. Tectonophysics 196: 309–337. [CrossRef] [Google Scholar]
  • Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13: 122–128. [CrossRef] [Google Scholar]
  • McKenzie D, O’Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021–1091. [CrossRef] [Google Scholar]
  • McKerrow WS, Cocks LRM. 1995. The use of biogeography in the terrane assembly of the Variscan belt of Europe. Studia Geophysica Geodaetica 39: 269–275. [CrossRef] [Google Scholar]
  • Medaris LG, Jelinek E, Misar Z. 1995. Czech eclogites: terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. Eur J Miner 7: 7–28. [CrossRef] [Google Scholar]
  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mudler JA, Blades ML, et al. 2021. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth Sci Rev 214: 103477. https://doi.org/10.1016/j.earscirev.2020.103477. [CrossRef] [Google Scholar]
  • Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56: 207–218. [CrossRef] [Google Scholar]
  • Miyashiro A. 1961. Evolution of metamorphic belts. J Petrol 2: 277–311. [CrossRef] [Google Scholar]
  • Morillon AC, Fraud G, Sosson M, Ruffet G, Crevola G, Lerouge G. 2000. Diachronous cooling on both side of a major strike-slip fault in the Variscan Maures massif (SE France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321: 103–126. [CrossRef] [Google Scholar]
  • Morimoto N. 1988. Nomenclature of pyroxenes. Mineral Petrol 39: 55–76. [CrossRef] [Google Scholar]
  • Murphy JB, Gutierrez Alonso G, Nance RD, Fernández Suárez J, Keppie JD, Quesada C, et al. 2006. Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34(5): 325–328. https://doi.org/10.1130/G22068.1. [CrossRef] [Google Scholar]
  • Nance RD, Murphy JB. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neo- proterozoic Avalonian-Cadomian belt. Geology 22: 617–620. [CrossRef] [Google Scholar]
  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2010. Evolution of the Rheic Ocean. Gondw Res 17: 194–222. https://doi.org/10.1016/j.gr.2009.08.001. [CrossRef] [Google Scholar]
  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2012. A brief history of the Rheic Ocean. Geoscience Frontiers 3(2): 125–135. https://doi.org/10.1016/j.gsf.2011.11.008. [CrossRef] [Google Scholar]
  • O’Brien P. 1997. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: a record of their thermal history during exhumation. Lithos 41: 119–133. [CrossRef] [Google Scholar]
  • O’Brien P. 2000. The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179(1): 369–386. https://doi.org/10.1144/GSL.SP2000.179.01.22. [CrossRef] [Google Scholar]
  • Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y. 2015. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull Soc géol Fr 186: 145–169. https://doi.org/10.2113/gssgfbull.186.2-3.145. [CrossRef] [Google Scholar]
  • Palagi P, Laporte D, Lardeaux JM, Menot RP, Orsini, JB. 1985. Identification d’un complexe leptyno-amphibolique au sein des « gneiss de Belgodère » (Corse occidentale). C R Acad Sci Paris 301(2): 1047–1052. [Google Scholar]
  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3). [Google Scholar]
  • Pattison DRM. 1991. Infiltration-driven anatexis in granulite facies metagabbro, Grenville Province, Ontario, Canada. J Metamorph Geol 9: 315–332. [CrossRef] [Google Scholar]
  • Pearce JA. 1996. A user’s guide to basalt discrimination diagrams. In: Wyman DA, ed. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. , Newfoundland: Geological Association of Canada, Short Course Notes, 12, pp. 79–113. [Google Scholar]
  • Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14–48. [CrossRef] [Google Scholar]
  • Philpotts JA, Schnetlzer CC. 1968. Europium anomalies and the genesis of basalt. Chem Geol 3: 5–13. [CrossRef] [Google Scholar]
  • Piboule M, Briand B. 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chem Geol 50: 189–199. [CrossRef] [Google Scholar]
  • Pin C. 1990. Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227. [CrossRef] [Google Scholar]
  • Pitra P, Poujol M, Van Den Driessche J, Bretagne E, Lotout C, Cogné N. 2022. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J Metamorph Geol 40: 39–65. https://doi.org/10.1111/jmg.12609. [CrossRef] [Google Scholar]
  • Rebay G, Powell R, Diener JFA. 2010. Calculated phase equilibria for a MORB composition in a P–T range, 450–650 °C and 18–28 kbar: the stability of eclogite. J Metamorph Geol 28: 635–645. https://doi.org/10.1111/j.1525-1314.2010.00882.x. [CrossRef] [Google Scholar]
  • Regorda A, Lardeaux JM, Roda M, Marotta AM, Spalla I. 2020. How many subductions in the Variscan orogeny? Insights form numerical models. Geoscience Frontiers 11(3): 1025–1052. [CrossRef] [Google Scholar]
  • Regorda A, Spalla MI, Roda M, Lardeaux JM, Marotta AM. 2021. Metamorphic facies and deformation fabrics diagnostic of subduction: Insights from 2D numerical models. Geochem Geophys Geosyst 22: e2021GC009899. https://doi.org/10.1029/2021GC009899. [CrossRef] [Google Scholar]
  • Roda M, Zucali M, Regorda A, Spalla MI. 2020. Formation and evolution of a subduction-related melange: the example of the Rocca Canavese Thrust Sheets (Western Alps). Bull Geol Soc Am 132(3–4): 884–896. https://doi.org/10.1130/B35213.1. [CrossRef] [Google Scholar]
  • Rolland Y, Corsini M, Demoux A. 2009. Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along the transpressional margin. Bull Soc géol Fr 180: 217–230. [CrossRef] [Google Scholar]
  • Rossi P, Oggiano G, Cocherie A. 2009. A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. C R Geosci 341: 224–238. [CrossRef] [Google Scholar]
  • Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U ± Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D, eds. Cathodoluminescence in geosciences. Berlin Heidelberg, New York: Springer, pp. 373–400. [CrossRef] [Google Scholar]
  • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184: 123–138. [CrossRef] [Google Scholar]
  • Rudnick R, Fountain DM. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33: 267–309. [CrossRef] [Google Scholar]
  • Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geoscience Frontiers 6: 481–501. [CrossRef] [Google Scholar]
  • Santallier D, Briand B, Ménot RP, Piboule M. 1988. Les complexes leptyno-amphiboliques (CLA) : revue critique et suggestions pour un meilleur emploi de ce terme. Bull Soc géol Fr 8, IV(1): 3–12. [CrossRef] [Google Scholar]
  • Schmädicke E, Will TM, Ling X, Li XH, Li QL. 2018. Rare peak and ubiquitous post-peak zircon in eclogite: constraints for the timing of UHP and HP metamorphism in Erzgebirge, Germany. Lithos 322: 250–267. [CrossRef] [Google Scholar]
  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux JM. 2014. Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France) In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: extent, timescale and the formation of the European Crust. Geol Soc Lond Spec Publ 405: 313–331. [CrossRef] [Google Scholar]
  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, et al. 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266–286. [CrossRef] [Google Scholar]
  • Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB. 2014. Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42: 275–278. [CrossRef] [Google Scholar]
  • Scodina M, Cruciani G, Franceschelli M. 2021. Metamorphic evolution and P–T path of the Posada Valley amphibolites: new insights on the Variscan high pressure metamorphism in NE Sardinia, Italy. C R Geosci 353(1): 227–246. https://doi.org/10.5802/crgeos.65. [Google Scholar]
  • Scotese CR, Boucot AJ, McKerrow WS. 1999. Gondwanan paleogeography and paleoclimatology. J Afr Earth Sci 28: 99–114. [CrossRef] [Google Scholar]
  • Seyler M. 1975. Pétrologie et lithostratigraphie des formations cristallophylliennes dans la chaîne de la Sauvette (Maures, Var, France). PhD Thesis. Université de Nice. [Google Scholar]
  • Seyler M. 1986. Magmatologie des séries volcaniques métamorphiques. L’exemple des métavolcanites cambro-ordoviciennes, en particulier alcalines, du socle provençal (France). Unpublished thesis. France: Université Lyon 1. [Google Scholar]
  • Seyler M, Boucarut M. 1978. Données nouvelles sur la lithostratigraphie du massif des Maures le long d’une transversale Réal Martin-Grimaud. Bulletin du Bureau de recherches géologiques et minières 1: 3–18. [Google Scholar]
  • Seyler M, Crevola G. 1982. Mise au point sur la structure et l’évolution géodynamique de la partie centrale du Massif des Maures. C R Acad Sci Paris 295: 243–246. [Google Scholar]
  • Shervais JW. 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59: 101–118. [CrossRef] [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle JM, et al. 2020. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int J Earth Sci 109: 2261–2285. https://doi.org/10.1007/s00531-020-01898-6. [CrossRef] [Google Scholar]
  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005. [CrossRef] [Google Scholar]
  • Soejono I, Žáčková E, Janoušek V, Machek M, Košler J. 2010. Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. J Geol Soc Lond 167: 1113–1130. https://doi.org/10.1144/0016-76492009-180. [CrossRef] [Google Scholar]
  • Spalla MI, Lardeaux JM, Dal Piaz GV, Gosso G, Messiga B. 1996. Tectonic significance of Alpine eclogites. J Geodyn 21(3): 257–285. [CrossRef] [Google Scholar]
  • Spalla MI, Zanoni D, Marotta AM, Rebay G, Roda M, Zucalli M, et al. 2014. The transition from Variscan collision to continental break-up in the Alps: insights from the comparison between natural data and numerical model predictions. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan orogeny: extent, timescale and the formation of the European Crust. Geol Soc Lond Spec Publ 405: 363–400. [CrossRef] [Google Scholar]
  • Spear FS. 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am Monogr Ser 1: 789. [Google Scholar]
  • Stampfli G, Borel G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1): 17–33. [CrossRef] [Google Scholar]
  • Stephan T, Kroner U, Romer RL. 2019. The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geol Mag 156: 281–307. [CrossRef] [Google Scholar]
  • Štípská P, Pitra P, Powell R. 2006. Separate or shared metamorphic histories of eclogites and surrounding rocks? An example from the Bohemian Massif. J Metamorph Geol 24: 219–240. [CrossRef] [Google Scholar]
  • Štípská P, Powell R, Racek M, Lexa O. 2014. Intermediate granulite produced by transformation of eclogite at a felsic granulite contact, in Blansky les, Bohemian Massif. J Metamorph Geol 32: 347–370. [CrossRef] [Google Scholar]
  • Štípská P, Powell R, Hacker BR, Holder R, Kylander-Clark ARC. 2016. Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J Metamorph Geol 34: 551–572. https://doi.org/10.1111/jmg.12193. [CrossRef] [Google Scholar]
  • Suess FE. 1926. Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Berlin: Verlag von Gebrüder Borntraeger. [Google Scholar]
  • Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ, eds. Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ 42: 313–345. [CrossRef] [Google Scholar]
  • Tabaud AS, Štípská P, Mazur S, Schulmann K, Míková J, Wong J, et al. 2021. Evolution of a Cambro-Ordovician active margin in northern Gondwana: Geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondw Res 90: 1–26. https://doi.org/10.1016/j.gr.2020.10.011. [CrossRef] [Google Scholar]
  • Tabaud AS, Lardeaux JM, Corsini M. 2022. A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin. Int J Earth Sci. https://doi.org//10.1007/s00531-022-02277-z. [Google Scholar]
  • Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A. 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in Quartz. Contrib Mineral Petrol 160: 743–759. [CrossRef] [Google Scholar]
  • Thompson R, Morrison MA, Dickin A, Hendry GL. 1983. Continental flood basalts arachnids rule OK? In: Hawkesworth CJ, Norry MJ, eds. Continental Basalts and Mantle Xenoliths. India: Shiva Publications, pp. 158–185. [Google Scholar]
  • Tomkins HS, Powell R, Ellis DJ. 2007. The pressure dependance of the zirconium-in-rutile thermometer. J Metamorph Geol 25: 703–713. [CrossRef] [Google Scholar]
  • Torsvik TH, Cocks LRM. 2004. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J Metamorph Geol 161(4): 555–572. [Google Scholar]
  • Torsvik TH, Cocks LRM. 2011. The Palaeozoic palaeogeography of central Gondwana. Geol Soc Lond Spec Publ 357: 137–166. [CrossRef] [Google Scholar]
  • Troitzsch U, Ellis DJ. 2004. High-PT study of solid solutions in the system ZrO2-TiO2: the stability of srilankite. Eur J Miner 16: 577–584. [CrossRef] [Google Scholar]
  • Utzeri D. 2007. La Valle del Posada (Sardegna NE): Transizione medio- alto grado metamorfico e caratterizzazione delle metabasiti. PhD thesis. Università di Cagliari, pp. 1–210. [Google Scholar]
  • Vanardois J, Roger F, Trap P, Goncalves P, Lanari P, Paquette JL, et al. 2022. Exhumation of deep continental crust in a transpressive regime: the example of Variscan eclogites from the Aiguilles-Rouges Massif (Western Alps). J Metamorph Geol. https://doi.org/10.1002/jmg.12659. [Google Scholar]
  • Vermeesch P. 2012. On the visualisation of detrital age distributions. Chem Geol 312: 190–194. [CrossRef] [Google Scholar]
  • Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151: 413–433. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB, Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system: K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18: 497–511. [CrossRef] [Google Scholar]
  • White RW, Powell R, Clarke GL. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20: 41–55. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25: 511–527. [CrossRef] [Google Scholar]
  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19(1): 1–23. https://doi.org/10.1111/j.1751-908X1995.tb00147.x. [CrossRef] [Google Scholar]
  • Wood DA. 1980. The application of a TH-HF-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth Planet Sci Lett 50: 11–30. [CrossRef] [Google Scholar]
  • Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148(4): 471–488. [CrossRef] [Google Scholar]
  • Zhao L, Zhai M, Santosh M, Zhou X. 2017. Early Mesozoic retrograded eclogite and mafic granulite from the Badu Complex of the Cathaysia Block, South China: petrology and tectonic implications. Gondw Res 42: 84–103. https://doi.org/10.1016/j.gr.2016.10.002. [CrossRef] [Google Scholar]

Cite this article as: Jouffray F, Lardeaux J-M, Tabaud A-S, Corsini M, Schneider J. 2023. Deciphering the nature and age of the protoliths and peak P−T conditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides, BSGF - Earth Sciences Bulletin 194: 10.

All Figures

thumbnail Fig. 1

(A) Location of the Maures-Tanneron in southeast France. European Variscan massifs are indicated in grey. (B) Geological map of the Maures-Tanneron Massif showing the External and Internal Zones (modified after Seyler, 1986, Bellot, 2005, Schneider et al., 2014 and Gerbault et al., 2018). Green stars represent the main occurrences of eclogites. The sampling site of interest is indicated.

(A) Localisation du massif des Maures-Tanneron dans le Sud-Est de la France. Les massifs de la chaîne Varisque d’Europe apparaissent en gris. (B) Carte géologique du Massif des Maures-Tanneron présentant les zones externes et internes (modifiée d’après Seyler, 1986, Bellot, 2005, Schneider et al., 2014 et Gerbault et al., 2018). Les principaux affleurements d’éclogites sont mentionnés par les étoiles vertes. Le site d’échantillonnage des éclogites étudiées est encadré sur la carte.

In the text
thumbnail Fig. 2

(A) Geological sketch map of the coastline between Tahiti Beach and Cap du Pinet (see location in Fig. 1). (B) Detailed lithological and structural map of the main and most significant outcrop. White stars represent sample locations.

(A) Carte géologique de la ligne de côte entre la plage de Tahiti et le Cap du Pinet (localisée sur la Fig. 1). (B) Carte lithologique et structurale de l’affleurement principal sélectionné pour cette étude. Les étoiles blanches indiquent les sites de prélèvement.

In the text
thumbnail Fig. 3

(A) The various lithotypes recognized in the main outcrop (Fig. 2B). 1 = lens of eclogite; 2 = migmatitic paragneiss; 3 = granitic dyke. (B) Detailed macroscopic facies of the eclogitic lens.

(A) Les différentes lithologies observées sur l’affleurement principal (Fig. 2B). 1 = lentille d’éclogite ; 2 = paragneiss migmatitique ; 3 = filon de granite. (B) Aspect macroscopique de la lentille éclogitique.

In the text
thumbnail Fig. 4

Various mesoscopic facies of more or less retrogressed eclogites. (A) Typical spindle-shaped mafic sample showing a preserved core and foliated cortex. (B) Foliated and intensively retrogressed sample. This rock appears as a foliated amphibolite. (C) Poorly deformed and partially preserved eclogite. Note the variously preserved garnets surrounded by plagioclase and amphibole bearing coronas. (D) Typical undeformed (corona-type texture) and well-preserved sample of eclogite. Note the excellent preservation of garnets.

Détail à l’échelle mésoscopique des différents facies observés dans les lentilles mafiques. (A) Métabasite, au sein de laquelle on distingue un cœur préservé et une bordure foliée. (B) Métabasite totalement rétromorphosée corrspondant à une amphibolite foliée. (C) Éclogite partiellement préservée. Les grenats présentant des couronnes (amphibole et plagioclase) soulignent la présence d’une foliation plus ou moins marquée. (D) Métabasite, à texture coronitique et au sein de laquelle les grenats éclogitiques sont bien préservés. Elles représentent les échantillons d’éclogites les moins rétromorphosées.

In the text
thumbnail Fig. 5

Chemical compositions of the studied eclogites. In all the diagrams, the red stars correspond to severely retrogressed samples (MTMA-x) and the black stars to the best-preserved eclogites (MTME-x). Grey areas represent the compositional range of Sardinian eclogites. (A) Total Alkali–Silica (TAS) diagram (after Le Bas et al., 1986), white symbol figure N-MORB composition after McKenzie and O’Nions (1991). (B) AFM classification diagram (after Irvine and Baragar, 1971). (C) Compositional diagram using elements considered as less mobile, here Zr/Ti versus Nb/Y (after Pearce, 1996). (D) 0,01Ti-Zr-3Y geotectonic discrimination diagram (after Meschede, 1986). (E) 0,001Ti versus V geotectonic discrimination diagram (after Shervais, 1982). (F) Hf/3-Th-Ta geotectonic discrimination diagram (after Wood, 1980). (G) Th versus Nb normalized to chondritic composition diagram (after Saccani, 2015). (H) Th/Yb versus Nb/Yb normalized to chondritic composition diagram (after Pearce, 2008).

Composition chimique des éclogites étudiées. Dans l’ensemble des diagrammes, les étoiles rouges correspondent aux échantillons ayant subi la rétromorphose la plus notable (MTMA-x). Par opposition, les étoiles noires correspondent aux roches les mieux préservées (MTME-x). Les aires grisées indiquent les zones dans lesquelles se situent les échantillons sardes. (A) Diagramme Total Alkali–Silica (TAS) (d’après Le Bas et al., 1986), le symbole blanc indique la composition chimique moyenne des basaltes N-MORB (McKenzie et O’Nions, 1991). (B) Diagramme de classification AFM (d’après Irvine et Baragar, 1971). (C) Diagramme de composition basé sur les éléments les moins mobiles, dans ce cas Zr/Ti versus Nb/Y (d’après Pearce, 1996). (D) Diagramme de discrimination géochimique 0,01Ti-Zr-3Y (d’après Meschede, 1986). (E) Diagramme de discrimination géochimique 0,001Ti versus V (d’après Shervais, 1982). (F) Diagramme de discrimination géochimique Hf/3-Th-Ta (d’après Wood, 1980). (G) Diagramme Th versus N normalisés à la composition chondritique (d’après Saccani, 2015). (H) Diagramme Th/Yb versus Nb/Yb normalisés à la composition chondritique (d’après Pearce, 2008).

In the text
thumbnail Fig. 6

(A) Primitive mantle-normalized Rare Earth Elements pattern. (B) Primitive mantle-normalized High Field Strength Elements Patterns. OIB, E-MORB and N-MORB compositions (after Sun and McDonough, 1989) are plotted as dotted lines for comparison. Black lines correspond to the best preserved eclogites, while red lines correspond to severely retrogressed samples. Grey areas represent the compositional range to the best-preserved Sardinian eclogites (after Cruciani et al., 2015).

(A) Spectres en terres rares normalisées à la composition du manteau primitif. (B) Spectres en éléments à fort effet de champ (faibles rayons ioniques et fortes charges, HFSE) normalisés à la composition du manteau primitif. Les spectres en OIB, N-MORB et E-MORB sont présentés à titre de référence (d’après Sun et McDonough, 1989). La zone grisée représente la gamme des spectres obtenus à partir des échantillons des éclogites sardes les mieux préservées (d’après Cruciani et al., 2015).

In the text
thumbnail Fig. 7

Microphotographs of a preserved sample of eclogite (MTME-4). (A) Thin section image (plane polarized light). (B) Thin section image (crossed polars). Fine-grained Ca-clinopyroxene−plagioclase symplectite is abundant. Garnet, which contain numerous inclusions of amphibole (Amp-I in D) and quartz, is surrounded by brown amphibole (Amp-II) and plagioclase coronas. In symplectite, amphibole (Amp-III) replaces Ca-clinopyroxene. Late brown to greenish amphibole poikiloblasts (Amp-IV), are locally developed at the expense of the symplectite. (C) Back-scattered Electron (BSE) image displaying fine-grained Amp-II + plagioclase inter-growths developed around garnet. Note local development of poikiloblasts of Amp-IV. (D) BSE image focused on a well-preserved garnet with inclusions of Amp-I, rutile and quartz. Amp-II is developed around the garnet. Garnet is partly replaced by Amp-II, quartz and late biotite grains. Gt: garnet; Amp: amphibole; Bt: biotite; Pl: plagioclase; Ru: rutile; Qtz: quartz; Ti: titanite.

Microphotographies en lames minces d’échantillons d’éclogite préservée (MTME-4). (A) Microscope polarisant non analysé (LPNA). (B) Microscope polarisant analysé (LPA). Images de la texture symplectitique à grains fins composée de plagioclase et de Ca-clinopyroxène. Les grenats, contenant des inclusions d’amphibole (Amp-I, voir D) et de quartz, sont entourés de couronnes d’amphibole (Amp-II) et de plagioclase. Quelques amphiboles (Amp-III) remplacent le Ca-clinopyroxène dans la symplectite. Des poeciloblastes d’amphibole tardive (Amp-IV), de teinte brune à verte, cristallisent localement au dépend de la symplectite. (C) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE) illustrant les couronnes de minéraux d’Amp-II et de plagioclase en inter-croissance autour des grenats. Noter la présence locale d’Amp-IV tardive. (D) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE) d’un grenat bien préservé au sein duquel sont pointées des inclusions d’Amp-I, de rutile et de quartz. À la périphérie, on observe toujours les réactions de déstabilisation du grenat, faisant apparaître l’Amp-II, le quartz et des grains tardifs de biotite. Gt : grenat ; Amp : amphibole ; Bt : biotite ; Pl : plagioclase ; Ru : rutile ; Qtz : quartz ; Ti : titanite.

In the text
thumbnail Fig. 8

Garnet inclusions from the best-preserved sample (MTME-3). (A) Thin section image (crossed polars) showing Amp-I and quartz inclusions in a garnet core. (B) BSE image of a preserved inclusion of white mica. Note the development of Amp-II at the rim and filling the micro-cracks of the garnet. (C) Thin section image (plane polarized light) of quartz and rutile inclusions within the garnet core. (D) BSE image of a trapped inclusion of Amp-I clearly disconnected from micro-cracks in garnet. Mineral abreviations are the same as in Figure 7. Wm: white mica.

Détails des inclusions observées dans les cœurs de grenats de l’échantillon le mieux préservé (MTME-3). (A) Microphotographie en lumière polarisée analysée révélant la présence d’inclusions d’Amp-I et de quartz. (B) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE). Image d’un grenat contenant une inclusion préservée de mica blanc. Noter également la critallisation de l’Amp-II qui se développe vers le cœur du grenat à la faveur de la mico-fracturation. (C) Microphotographie en lumière polarisée non analysée montrant les inclusions de quartz et de rutile dans le grenat. (D) Microscopie électronique à balayage (images en électrons rétrodiffusés, BSE). Détail d’une inclusion d’Amp-I isolée des micro-fractures du grenat. Abréviations identiques à celle de la figure 7. Wm: mica blanc.

In the text
thumbnail Fig. 9

(A) Compositions of garnet in the diagram of Coleman et al. (1965). Core to rim zonations are indicated. (B) Rim-to-rim chemical zoning in one millimetric garnet from MTME1 sample (represented in the previous diagram). Data are from garnet imaged in Figure 7D.

(A) Composition chimique des grenats dans le diagramme de Coleman et al. (1965), montrant les évolutions depuis les cœurs vers les bordures de grains. (B) Profil de zonation chimique d’un grenat millimétrique de l’échantillon MTME-1 (identifié dans le diagramme précédent). Les analyses ont été effectuées sur le grenat de la figure 7D.

In the text
thumbnail Fig. 10

(A) and (B) Chemical compositions of clinopyroxene in the classification diagrams of Morimoto (1988), (C) chemical compositions of plagioclase and (D) chemical compositions of different generations of amphibole in the diagram of Leake et al. (1997, 2004).

(A) et (B) Composition chimique des clinopyroxènes dans les diagrammes de classification de Morimoto (1988), (C) composition chimique des feldspaths et (D) composition chimique des différentes générations d’amphibole dans le diagramme de Leake et al. (1997, 2004).

In the text
thumbnail Fig. 11

P−T conditions (hatched field corresponding to the intersection of the measured minimum and maximum values) obtained on trapped inclusions in garnet using calibrations of Tomkins et al. (2007) for Zr-in-rutile and Thomas et al. (2010) for Ti-in-quartz. Metamorphic facies fields after Spear (1993).

Conditions P−T (champ hachuré correspondant à l’intersection des valeurs minimales et maximales mesurées) déterminées à partir de l’analyse des inclusions dans les grenats, selon les calibrations de Tomkins et al. (2007) pour le « Zr-in-rutile » et Thomas et al. (2010) pour le « Ti-in-quartz ». Les champs des faciès métamorphiques sont reportés (d’après Spear, 1993).

In the text
thumbnail Fig. 12

(A)P−T pseudosection calculated for the sample MTME3 modeled composition in H2O saturated conditions. The shaded field corresponds to the results of Figure 11. Numbered fields represent the following assemblages: 1: Cpx Amp Ilm Law Chlr Qtz. 2: Cpx Gt Amp Ilm Ru Zo Qtz. 3: Cpx Gt Amp Ilm Qtz. 4: Cpx Gt 2Amp Ilm Qtz. 5: Cpx Gt Amp Ru Zo Qtz. 6: Cpx Gt Amp Ilm Law Qtz. 7: Cpx Gt Amp Ru. 8: Cpx Gt Amp Ilm Law Chlr Qtz. 9: Cpx Gt Amp Ilm Zo Law Chlr Qtz. 10: Cpx Gt Amp Ilm Zo Qtz. 11: Cpx Gt Amp Ru Ilm Zo Pa Qtz. 12: Cpx Gt Amp Ilm Zo Chlr Qtz. 13: Cpx Amp Ilm Zo Chlr Qtz. 14: Amp Ilm Zo Chlr Qtz. 15: Cpx Gt Amp Ilm Zo Qtz. 16: 2Amp Ilm Zo Qtz. 17: Cpx Gt Amp Ilm Zo Qtz. 18: Cpx 2Amp Ilm Zo Qtz. 19: Cpx Gt Ru. 20: 2Amp Ilm Zo Pl Qtz. 21: 2Amp Cpx Ilm Zo Pl Qtz. 22: Cpx 2Amp Gt Ilm Qtz. 23: Ilm Cpx Gt Ru. (B)P−T pseudosection calculated for the same sample for modeled composition in H2O saturated conditions with a value at 9% Fe2O3 of total FeO. Numbered fields match with the following assemblages: 1: Cpx Grt Amp Phng Bio Ru Hem Qtz. 2: Cpx Grt Bio Ru Hem Qtz. 3: Cpx Grt Amp Phng Ru Hem Qtz. 4: Cpx Grt Amp Bio Ru Hem Qtz. 5: Cpx Grt Amp Bio Ru Hem Mt Qtz. 6: Cpx Grt Amp Bio Ru Ep Mt Qtz. 7: Cpx Grt Amp Ru Ep Mt Qtz. 8: Cpx Grt Amp Ru Mt Qtz. 9: Cpx Grt Amp Ilm Ru Mt Ep Qtz. 10: Cpx Grt Amp Ilm Ru Mt Qtz. 11: Cpx Grt Amp Mu Ilm Ep Mt Qtz. 12: Cpx Grt Amp Mu Bio Ilm Ep Mt Qtz. 13: Cpx Grt Amp Mu Bio Ilm Ep Zo Qtz. 14: Cpx Grt Amp Bio Ilm Ep Zo Qtz. 15: Cpx Grt Amp Mu Pa Ilm Ep Qtz. 16: Cpx Grt 2Amp Mu Pa Ilm Ep Qtz. 17: Cpx Grt 2Amp Mu Ilm Ep Qtz. 18: Cpx Grt Amp Mu Ilm Ep Qtz. 19: Cpx Grt Amp Mu Ilm Ep Qtz. 20: Grt 2Amp Bio Ilm Ep Zo Qtz. 21: Grt Amp Bio Ilm Ep Zo Qtz. 22: Cpx Grt Amp Bio Ilm Ep Zo Qtz. In pseudosections, the main field of interest is highlighted in green, corresponding to the observed mineral assemblage. The dark grey field represents the intersection between the two calculation methods and thus the most probable peak P−T conditions.

(A) Pseudosection P−T calculée à partir d’une composition modélisée de l’échantillon MTME3 en condition saturée en H2O. Le champ obscurci représente le champ P−T de la figure 11. Les champs numérotés correspondent aux assemblages suivants : 1 : Cpx Amp Ilm Law Chlr Qtz. 2 : Cpx Gt Amp Ilm Ru Zo Qtz. 3 : Cpx Gt Amp Ilm Qtz. 4 : Cpx Gt 2Amp Ilm Qtz. 5 : Cpx Gt Amp Ru Zo Qtz. 6 : Cpx Gt Amp Ilm Law Qtz. 7 : Cpx Gt Amp Ru. 8 : Cpx Gt Amp Ilm Law Chlr Qtz. 9 : Cpx Gt Amp Ilm Zo Law Chlr Qtz. 10 : Cpx Gt Amp Ilm Zo Qtz. 11 : Cpx Gt Amp Ru Ilm Zo Pa Qtz. 12 : Cpx Gt Amp Ilm Zo Chlr Qtz. 13 : Cpx Amp Ilm Zo Chlr Qtz. 14 : Amp Ilm Zo Chlr Qtz. 15 : Cpx Gt Amp Ilm Zo Qtz. 16 : 2Amp Ilm Zo Qtz. 17 : Cpx Gt Amp Ilm Zo Qtz. 18 : Cpx 2Amp Ilm Zo Qtz. 19 : Cpx Gt Ru. 20 : 2Amp Ilm Zo Pl Qtz. 21 : 2Amp Cpx Ilm Zo Pl Qtz. 22 : Cpx 2Amp Gt Ilm Qtz. 23 : Ilm Cpx Gt Ru. (B) Pseudosection P−T calculée à partir d’une composition modélisée du même échantillon en présence de 9 % de Fe2O3 calculé sur la teneur totale en FeO. Les champs numérotés correspondent aux assemblages suivants : 1 : Cpx Grt Amp Phng Bio Ru Hem Qtz. 2 : Cpx Grt Bio Ru Hem Qtz. 3 : Cpx Grt Amp Phng Ru Hem Qtz. 4 : Cpx Grt Amp Bio Ru Hem Qtz. 5 : Cpx Grt Amp Bio Ru Hem Mt Qtz. 6 : Cpx Grt Amp Bio Ru Ep Mt Qtz. 7 : Cpx Grt Amp Ru Ep Mt Qtz. 8 : Cpx Grt Amp Ru Mt Qtz. 9 : Cpx Grt Amp Ilm Ru Mt Ep Qtz. 10 : Cpx Grt Amp Ilm Ru Mt Qtz. 11 : Cpx Grt Amp Mu Ilm Ep Mt Qtz. 12 : Cpx Grt Amp Mu Bio Ilm Ep Mt Qtz. 13 : Cpx Grt Amp Mu Bio Ilm Ep Zo Qtz. 14 : Cpx Grt Amp Bio Ilm Ep Zo Qtz. 15 : Cpx Grt Amp Mu Pa Ilm Ep Qtz. 16 : Cpx Grt 2Amp Mu Pa Ilm Ep Qtz. 17 : Cpx Grt 2Amp Mu Ilm Ep Qtz. 18 : Cpx Grt Amp Mu Ilm Ep Qtz. 19 : Cpx Grt Amp Mu Ilm Ep Qtz. 20 : Grt 2Amp Bio Ilm Ep Zo Qtz. 21 : Grt Amp Bio Ilm Ep Zo Qtz. 22 : Cpx Grt Amp Bio Ilm Ep Zo Qtz. Le champ d’intérêt dont l’assemblage minéralogique est le plus proche de la paragénèse de haute pression observée apparaît en teinte verte vive sur les deux modèles. La zone noircie correpond à l’intersection entre les deux champs obtenus.

In the text
thumbnail Fig. 13

206U/238Pb zircons geochronology in MTM eclogites. (A) Wetherill Concordia diagram, ellipse corresponding to 2 level error. (B) Kernel density plots (grey field) and probability density (red line) plots showing the distribution of U–Pb ages for concordant analyses (98–102%). Dates in italic represent peak ages and circles below the x-axis indicate the central value of individual data points. n: number of concordant analyses. (C) Representative zircon CL images. The 206Pb/238U dates (in Ma) are reported next to the analytical spot. (D) Bar plots of concordant data. Shaded bars represent the Th/U ratios in zircons. Red lines indicate weighted mean ages; MSWD: numbers in squared brackets.

Résultats de géochronologie obtenus par 206U/238Pb sur les zircons des éclogites du MTM. (A) Diagramme Concordia de Wetherill, les ellipses correspondent au niveau d’erreur 2 sigma. (B) Estimation par noyau (méthode de Parzen-Rosenblatt) et densité de probabilité représentant la distribution des âges U–Pb pour les seuls résultats concordants (98–102 %). Les âges en italique représentent l’âge du pic et les cercles sur l’axe des abscisses, le centre des valeurs pour chaque point des données utilisées. n : nombre d’analyses concordantes. (C) images en CL de zircons représentatifs. Les âges 206Pb/238U (en Ma) sont reportés à proximité des points analysés. (D) Représentation des données concordantes avec leur barre d’erreur. L’ombrage de chaque barre fait référence au rapport Th/U obtenu (en référence à l’échelle décrite sur la droite du diagramme). Les lignes rouges indiquent les principaux âges pondérés ; MSWD : nombres entre crochet.

In the text
thumbnail Fig. 14

Probable location of the MTM eclogite oceanic protoliths during early Cambrian and early Silurian, in the framework of available paleomagnetic unified full plates reconstruction models: (A) after Domeier (2016) and (B) after Merdith et al. (2021). IO: Iapetus Ocean; MO: Mirovoi Ocean; GA: Ganderia; WA: West Avalonia. The blue star figures a possible location of the MTM (MECS micro-plate) in northeastern Gondwana active margin, after Avigad et al. (2012) and Tabaud et al. (2022). In the model of Domeier (2016), the dashed external boundary is an arbitrary perimeter marking the outer limit of the domain considered. The grey hatched areas represent the preserved pieces of early Cambrian oceanic crust, within the region of interest, during early Silurian oceans development.

Localisation probable des protolithes océaniques des éclogites du MTM, au Cambrien inférieur et au Silurien inférieur sur la base des modèles paléomagnétiques globaux unifiés: (A) d’après Domeier (2016) et (B) d’après Merdith et al. (2021). IO : Ocean Iapetus ; MO : Ocean Mirovoi ; GA : Ganderia ; WA : West Avalonia. L’étoile bleue correspond à une localisation du MTM (microplaque MECS) au Nord-Est de la marge active du Gondwana, d’après Avigad et al. (2012) et Tabaud et al. (2022). Dans les représentations de Domeier (2016), la zone grisée correspond à une limite arbitraire de résolution du modèle. En gris hachuré sont représentées les portions de croûte océanique d’âge Cambrien inférieur préservées, dans la région d’intérêt, lors des océanisations du Silurien inférieur.

In the text
thumbnail Fig. 15

P−T conditions of the studied MTM eclogites (brown box, MTM), compared with Sardinian (grey-boxes, SA-1 after Giacomini et al., 2005, SA-2 after Cruciani et al., 2015; SA-3 after Cruciani et al., 2011; SA-4 after Cortesogno et al., 2004) and Corsican eclogites (green box CO after Lardeaux et al., 1994 and Palagi et al., 1985). Metamorphic gradients (Cloos, 1993) appear in dotted-color lines, from (1) near spreading ridge and volcanic arcs, to warm (3) and cold (4) subduction zones. Line (2) illustrates an unperturbed geotherm. Data sources for P−T estimation are available in the Supplementary material.

Conditions P−T des éclogites étudiées du MTM (boîte marron, MTM), comparées aux données obtenues sur les éclogites de Sardaigne (boîtes grises, SA-1 d’après Giacomini et al., 2005, SA-2 d’après Cruciani et al., 2015 ; SA-3 d’après Cruciani et al., 2011, SA-4 d’après Cortesogno et al., 2004) et celle de Corse (boîte verte, CO d’après Lardeaux et al., 1994 et Palagi et al., 1985). Les gradients métamorphiques (Cloos, 1993) sont figurés par les lignes de couleur en pointillés (1) dorsales et arcs volcaniques, (3) zones de subduction chaudes, (4) zones de subduction froides. La ligne (2) indique l’allure d’un géotherme non perturbé. Les données sources des estimations P−T, issues de la bibliographie, sont disponibles sous forme de tableau dans la partie Matériel supplémentaire.

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.