Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Article Number 11
Number of page(s) 33
DOI https://doi.org/10.1051/bsgf/2023007
Published online 04 August 2023
  • Abdelsalam MG, Liégeois J-P, Stern RJ. 2002. The Saharan Metacraton. Journal of African Earth Sciences 34: 119–136. [CrossRef] [Google Scholar]
  • Aguilar C, Alkmim FF, Lana C, Farina F. 2017. Palaeoproterozoic assembly of the São Francisco Craton, SE Brazil: New insights from U–Pb titanite and monazite dating. Precambrian Research 289: 95–115. [CrossRef] [Google Scholar]
  • Allibone A, Teasdale J, Cameron G, Etheridge M, Uttley P, Soboh A, et al. 2002. Timing and structural controls on gold mineralization at the Bogoso Gold Mine, Ghana, West Africa. Economic Geology 97: 949–969. https://doi.org/10.2113/gsecongeo.97.5.949. [CrossRef] [Google Scholar]
  • Auvray B, Peucat J-J, Potrel A, Burg J-P, Caruba C, Dars R, et al. 1992. Données géochronologiques nouvelles sur l’Archéen de l’Amsaga (Dorsale Réguibat, Mauritanie). Paris : Gauthier-Villars. [Google Scholar]
  • Bajolet F, Chardon D, Martinod J, Gapais D, Kermarrec J-J. 2015. Synconvergence flow inside and at the margin of orogenic plateaus: Lithospheric-scale experimental approach. Journal of Geophysical Research: Solid Earth 120: 6634–6657. [CrossRef] [Google Scholar]
  • Baratoux L, Metelka V, Naba S, Jessell MW, Grégoire M, Ganne J. 2011. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼ 2.2–2.0 Ga), western Burkina Faso. Precambrian Research 191: 18–45. [CrossRef] [Google Scholar]
  • Barbosa JSF, Martin H, Peucat JJ. 2000. Archean vs. Paleoproterozoic crustal evolution of the Laje, Mutuipe, Brejões and Santa Inês Region, Jequié Complex, Bahia, Brazil. In: 31st International Geological Congress, Rio de Janeiro, Brazil, CD-ROM (2000) (Vol. 31). [Google Scholar]
  • Barbosa J, Martin H, Peucat J-J. 2004. Palaeoproterozoic dome-forming structures related to granulite-facies metamorphism, Jequié block, Bahia, Brazil: Petrogenetic approaches. Precambrian Research 135: 105–131. [CrossRef] [Google Scholar]
  • Bédard JH. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70: 1188–1214. [CrossRef] [Google Scholar]
  • Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, et al. 2009. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5: 23–50. https://doi.org/10.1130/GES00179.1. [CrossRef] [Google Scholar]
  • Berger J, Diot H, Lo K, Ohnenstetter D, Féménias O, Pivin M, et al. 2013. Petrogenesis of Archean PGM-bearing chromitites and associated ultramafic-mafic-anorthositic rocks from the Guelb el Azib layered complex (West African Craton, Mauritania). Precambrian Research 224: 612–628. [CrossRef] [Google Scholar]
  • Bessoles B. 1977. Géologie de l’Afrique. Le Craton Ouest Africain. Memoire du BRGM 88: 402. [Google Scholar]
  • Block S, Ganne J, Baratoux L, Zeh A, Parra-Avila LA, Jessell M, et al. 2015. Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton. Journal of Metamorphic Geology, John Wiley & Sons, Ltd 33: 463–494. [CrossRef] [Google Scholar]
  • Block S, Baratoux L, Zeh A, Laurent O, Bruguier O, Jessell M, et al. 2016. Paleoproterozoic juvenile crust formation and stabilisation in the southeastern West African Craton (Ghana): New insights from U–Pb–Hf zircon data and geochemistry. Precambrian Research, Elsevier 287: 1–30. [CrossRef] [Google Scholar]
  • Boher M, Abouchami W, Michard A, Albarede F, Arndt NT. 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research: Solid Earth 97: 345–369. [CrossRef] [Google Scholar]
  • Bonzi WM-E, Vanderhaeghe O, Van Lichtervelde M, Wenmenga U, André-Mayer A-S, Salvi S, et al. 2021. Petrogenetic links between rare metal-bearing pegmatites and TTG gneisses in the West African Craton: The Mangodara district of SW Burkina Faso. Precambrian Research 364: 106359. [CrossRef] [Google Scholar]
  • Bosch D, Hammor D, Bruguier O, Caby R, Luck J-M. 2002. Monazite “in situ207Pb/206Pb geochronology using a small geometry high-resolution ion probe. Application to Archaean and Proterozoic rocks. Chemical Geology 184: 151–165. [CrossRef] [Google Scholar]
  • Bosch D, Garrido CJ, Bruguier O, Dhuime B, Bodinier J-L, Padròn-Navarta JA, et al. 2011. Building an island-arc crustal section: Time constraints from a LA-ICP-MS zircon study. Earth and Planetary Science Letters 309: 268–279. [CrossRef] [Google Scholar]
  • Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, et al. 2009. Fluid-induced disturbance of the monazite Th–Pb chronometer: In situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chemical Geology 261: 286–302. [CrossRef] [Google Scholar]
  • Bourges F, Debat P, Tollon F, Munoz M, Ingles J. 1998. The geology of the Taparko gold deposit, Birimian greenstone belt, Burkina Faso, West Africa. Mineralium Deposita 33: 591–605. [CrossRef] [Google Scholar]
  • Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers 5: 553–569. [CrossRef] [Google Scholar]
  • Brown M, Johnson T, Gardiner NJ. 2020. Plate tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences 48: 291–320. [CrossRef] [Google Scholar]
  • Bruguier O, Hammor D, Bosch D, Caby R. 2009. Miocene incorporation of peridotite into the Hercynian basement of the Maghrebides (Edough massif, NE Algeria): Implications for the geodynamic evolution of the Western Mediterranean. Chemical Geology 261: 172–184. [CrossRef] [Google Scholar]
  • Caby R, Delor C, Agoh O. 2000. Lithologie, structure et métamorphisme des formations birimiennes dans la région d’Odienné (Côte d’Ivoire) : rôle majeur du diapirisme des plutons et des décrochements en bordure du Craton de Man. Journal of African Earth Sciences, Elsevier 30: 351–374. [CrossRef] [Google Scholar]
  • Cagnard F, Durrieu N, Gapais D, Brun J-P, Ehlers C. 2006. Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova 18: 72–78. [CrossRef] [Google Scholar]
  • Cagnard F, Gapais D, Barbey P. 2007. Collision tectonics involving juvenile crust: The example of the southern Finnish Svecofennides. Precambrian Research 154: 125–141. [CrossRef] [Google Scholar]
  • Calado B de O, Costa FG, Gomes IP, Rodrigues JB. 2019. Evidence for ca. 2046 Ma high-grade metamorphism in Paleoproterozoic metasedimentary rocks of the northern Borborema Province, NE Brazil: Constraints from U–Pb (LA-ICP-MS) zircon ages. Journal of the Geological Survey of Brazil 2: 137–150. [CrossRef] [Google Scholar]
  • Camil J. 1981. Un exemple de métamorphisme prograde de la base du faciès des amphibolites au faciès des granulites dans la région de Man (Ouest de la Côte d’Ivoire). C. R. Acad. Sci. Paris 93: 513–518. [Google Scholar]
  • Camil J. 1984. Pétrographie, chronologie des ensembles granulitiques archéens et formations associées de la région de Man (Côte d’Ivoire) : implication pour l’histoire géologique du Craton Ouest-Africain. PhD Thesis, Université Félix Houphouët-Boigny, Abidjan, 306 p. [Google Scholar]
  • Camil J, Tempier P, Pin C. 1983. Âge Libérien des quartzites a magnétite de la région de Man (Côte d’Ivoire) et leur place dans l’orogène Libérien. C. R. Acad. Sci. Paris 296: 149–151. [Google Scholar]
  • Cawood PA, Hawkesworth CJ, Dhuime B. 2013. The continental record and the generation of continental crust. GSA Bulletin, GeoScienceWorld 125: 14–32. [CrossRef] [Google Scholar]
  • Chardon D, Bamba O, Traoré K. 2020. Eburnean deformation pattern of Burkina Faso and the tectonic significance of shear zones in the West African Craton. Bulletin de la Société Géologique de France 191: 2. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cherniak DJ, Watson EB, Grove M, Harrison TM. 2004. Pb diffusion in monazite: A combined RBS/SIMS study1 (1Associate editor: Y. Amelin). Geochimica et Cosmochimica Acta 68: 829–840. [CrossRef] [Google Scholar]
  • Cocherie A, Legendre O, Peucat JJ, Kouamelan AN. 1998. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th–U–total lead determination: Implications for lead behaviour in monazite. Geochimica et Cosmochimica Acta 62: 2475–2497. [CrossRef] [Google Scholar]
  • Coggon R, Holland TJB. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology 20: 683–696. [CrossRef] [Google Scholar]
  • Condie KC. 1994. Archean crustal evolution. Amsterdam: Elsevier, 528 p. [Google Scholar]
  • Condie KC. 2018. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga? Geoscience Frontiers 9: 51–60. [CrossRef] [Google Scholar]
  • Copeland P, Parrish RR, Harrison TM. 1988. Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics. Nature, Nature Publishing Group 333: 760–763. [CrossRef] [Google Scholar]
  • Cruden AR, Nasseri MHB, Pysklywec R. 2006. Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models. Geological Society, London, Special Publications, The Geological Society of London 253: 79–104. [CrossRef] [Google Scholar]
  • Cutts K, Lana C, Alkmim F, Peres GG. 2018. Metamorphic imprints on units of the southern Araçuaí belt, SE Brazil: The history of superimposed Transamazonian and Brasiliano orogenesis. Gondwana Research 58: 211–234. [CrossRef] [Google Scholar]
  • da Rosa-Costa LT, Lafon J-M, Cocherie A, Delor C. 2008. Electron microprobe U–Th–Pb monazite dating of the Transamazonian metamorphic overprint on Archean rocks from the Amapá Block, southeastern Guiana Shield, northern Brazil. Journal of South American Earth Sciences 26: 445–462. [CrossRef] [Google Scholar]
  • de Capitani C, Brown TH. 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta 51: 2639–2652. [CrossRef] [Google Scholar]
  • de Capitani C, Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95: 1006–1016. [CrossRef] [Google Scholar]
  • De Roever EW, Lafon JM, Delor C, Cocherie A, Guerrot C. 2015. Orosirian magmatism and metamorphism in Suriname: New geochronological constraints. Contribuiç oes a Geologia da Amazônia 9: 359–372. [Google Scholar]
  • De Waele B, Lacorde M, Vergara F, Chan G. 2015. New insights on proterozoic tectonics and sedimentation along the peri-Gondwanan West African margin based on zircon U–Pb SHRIMP geochronology. Precambrian Research 259: 156–175. [CrossRef] [Google Scholar]
  • de Wit MJ. 1998. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambrian Research 91: 181–226. [CrossRef] [Google Scholar]
  • Debat P, Nikiéma S, Mercier A, Lompo M, Béziat D, Bourges F, et al. 2003. A new metamorphic constraint for the Eburnean orogeny from Paleoproterozoic formations of the Man Shield (Aribinda and Tampelga countries, Burkina Faso). Precambrian Research 123: 47–65. https://doi.org/10.1016/S0301-9268(03)00046-9. [CrossRef] [Google Scholar]
  • Delor C, Siméon Y, Vidal M. 1995. Peri-plutonic gravity driven deformations and transcurrent tectonics between 2.2 and 2.1 By: A case study from the Birimian Cycle in Ivory Coast. EUG 102. [Google Scholar]
  • Delor C, Lahondère D, Egal E, Lafon J-M, Cocherie A, Guerrot C, et al. 2003. Transamazonian crustal growth and reworking as revealed by the 1:500 000-scale geological map of French Guiana. Géologie de la France 2-4: 5–57. [Google Scholar]
  • Diallo M, Bouabdellah M, Levresse G, Yans J, Castorina F, Klugel A, et al. 2021. Mineralogy, fluid inclusion, and C–O–Sr isotope geochemistry to unravel the evolution of the magmatic-hydrothermal system at the Igoudrane Silver-rich deposit (Imiter District, Eastern Anti-Atlas, Morocco). Minerals 11. https://doi.org/10.3390/min11090997. [CrossRef] [Google Scholar]
  • Doumbia S, Pouclet A, Kouamelan A, Peucat JJ, Vidal M, Delor C. 1998. Petrogenesis of juvenile-type Birimian (Paleoproterozoic) granitoids in Central Côte-d’Ivoire, West Africa: Geochemistry and geochronology. Precambrian Research 87: 33–63. [CrossRef] [Google Scholar]
  • Eglinger A, Thébaud N, Zeh A, Davis J, Miller J, Parra-Avila LA, et al. 2017. New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African Craton (Guinea): Implications for gold mineral system. Precambrian Research 292: 258–289. [CrossRef] [Google Scholar]
  • Ennih N, Liégeois J-P. 2008. The boundaries of the West African Craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geological Society, London, Special Publications 297: 1–17. [CrossRef] [Google Scholar]
  • Ernst WG, Liou JG. 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. American Mineralogist 93: 1771–1786. [CrossRef] [Google Scholar]
  • Fabre R. 1995. Évolution géodynamique des terrains d’un proterozoïque inférieur (birimien) dans le centre de la Côte d’Ivoire (Afrique de l’Ouest) : une mise au point. Thèse de doctorat, Habilitation à Diriger des Recherches, Université de Bordeaux, France, 422 p. [Google Scholar]
  • Feybesse J-L, Milési J-P. 1994. The Archaean/Proterozoic contact zone in West Africa: A mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons? Precambrian Research 69: 199–227. [CrossRef] [Google Scholar]
  • Feybesse J-L, Milesi J-P, Ouedraogo MF, Prost A. 1990. La ceinture protérozoïque inférieur de Boromo-Goren (Burkina Faso) : un exemple d’interférence entre deux phases transcurrentes éburnéennes. Paris : Gauthier-Villars, pp. 1353–1360. [Google Scholar]
  • Feybesse J-L, Billa M, Guerrot C, Duguey E, Lescuyer J-L, Milesi J-P, et al. 2006. The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling. Precambrian Research 149: 149–196. [CrossRef] [Google Scholar]
  • Fraga LM, Cordani U. 2019. Early Orosirian tectonic evolution of the Central Guiana Shield: Insights from new U–Pb SHRIMP data. In: 11th Inter Guiana Geological Conference: Tectonics and Metallogenesis of NE South America, pp. 59–62. [Google Scholar]
  • Fraga LM, Reis NJ, Dall’Agnol R, Armstrong R. 2008. Cauarane–Coeroene belt – The tectonic southern limit of the preserved rhyacian crustal domain in the Guyana Shield, northern Amazonian Craton. In: International Geological Congress (Vol. 33). [Google Scholar]
  • Fraga LMF, Reis NJ, Dall’Agnol A. 2009. Cauarane–Coeroeni belt – The main tectonic feature of the central Guyana Shield, northern Amazonian Craton. Extended abstract. In: Simpósio de Geologia da Amazônia, Vol. 11, Amazonas, Manaus. [Google Scholar]
  • Fraga LM, Cordani U, Kroonenberg S, Roever ED, Nadeau S, Maurer VC. 2017. U–Pb SHRIMP new data on the high-grade supracrustal rocks of the Cauarane–Coeroeni belt – Insights on the tectonic Eo-Orosirian evolution of the Guiana Shield. In: Conference: Anais Do 15° Simpósio De Geologia Da Amazônia, Belém, Brasil, pp. 486–490. [Google Scholar]
  • Ganne J, De Andrade V, Weinberg RF, Vidal O, Dubacq B, Kagambega N, et al. 2012. Modern-style plate subduction preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, Nature Publishing Group 5: 60–65. https://doi.org/10.1038/ngeo1321. [CrossRef] [Google Scholar]
  • Ganne J, Gerbault M, Block S. 2014. Thermo-mechanical modeling of lower crust exhumation – Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton. Precambrian Research 243: 88–109. [CrossRef] [Google Scholar]
  • Gapais D, Potrel A, Machado N, Hallot E. 2005. Kinematics of long-lasting Paleoproterozoic transpression within the Thompson Nickel Belt, Manitoba, Canada. Tectonics 24. [Google Scholar]
  • Gapais D, Pelletier A, Ménot R-P, Peucat J-J. 2008. Paleoproterozoic tectonics in the Terre Adélie Craton (East Antarctica). Precambrian Research 162: 531–539. [CrossRef] [Google Scholar]
  • Gasquet D, Barbey P, Adou M, Paquette JL. 2003. Structure, Sr-Nd isotope geochemistry and zircon U–Pb geochronology of the granitoids of the Dabakala area (Côte d’Ivoire): Evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa? Precambrian Research 127: 329–354. [CrossRef] [Google Scholar]
  • Guergouz C, Martin L, Vanderhaeghe O, Thébaud N, Fiorentini M. 2018. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy. Lithos 308-309: 1–18. [CrossRef] [Google Scholar]
  • Günther D, Heinrich CA. 1999. Comparison of the ablation behaviour of 266 nm Nd:YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, Royal Society of Chemistry 14: 1369–1374. [CrossRef] [Google Scholar]
  • Hamilton WB. 2011. Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123: 1–20. [CrossRef] [Google Scholar]
  • Hirdes W, Davis DW. 2002. U–Pb Geochronology of Paleoproterozoic rocks in the southern part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: Evidence for diachronous accretionary development of the Eburnean Province. Precambrian Research 118: 83–99. [CrossRef] [Google Scholar]
  • Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16: 309–343. [Google Scholar]
  • Holland T, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145: 492–501. [CrossRef] [Google Scholar]
  • Holness MB, Cesare B, Sawyer EW. 2011. Melted rocks under the microscope: microstructures and their interpretation. Elements 7: 247–252. [CrossRef] [Google Scholar]
  • Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM. 2003. Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, The Royal Society of Chemistry 18: 837–846. [CrossRef] [Google Scholar]
  • Jessell MW, Amponsah PO, Baratoux L, Asiedu DK, Loh GK, Ganne J. 2012. Crustal-scale transcurrent shearing in the Paleoproterozoic Sefwi-Sunyani-Comoé region, West Africa. Precambrian Research 212-213: 155–168. [CrossRef] [Google Scholar]
  • Jessell M, Santoul J, Baratoux L, Youbi N, Ernst RE, Metelka V, et al. 2015. An updated map of West African mafic dykes. Journal of African Earth Sciences 112: 440–450. [CrossRef] [Google Scholar]
  • Kelsey DE, Powell R. 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–ZrO2 system. Journal of Metamorphic Geology 29: 151–166. [CrossRef] [Google Scholar]
  • Kelsey DE, Clark C, Hand M. 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology 26: 199–212. [CrossRef] [Google Scholar]
  • Kirkland CL, Erickson TM, Johnson TE, Danišík M, Evans NJ, Bourdet J, et al. 2016. Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway. Chemical Geology 424: 96–110. [CrossRef] [Google Scholar]
  • Koffi AY, Thébaud N, Kouamelan AN, Baratoux L, Bruguier O, Vanderhaeghe O, et al. 2022. Archean to Paleoproterozoic crustal evolution in the Sassandra-Cavally domain (Côte d’Ivoire, West Africa): Insights from Hf and U–Pb zircon analyses. Precambrian Research 382: 106875. [CrossRef] [Google Scholar]
  • Kone J. 2020. Structure et métamorphisme de la ceinture Eburnéenne au Sénégal Oriental : signification en termes de contexte tectonique et de l’évolution thermomécanique de la croûte Eburnéenne. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), Université Cheikh Anta Diop de Dakar, 167 p. [Google Scholar]
  • Kone J, Vanderhaeghe O, Diatta F, Baratoux L, Thebaud N, Bruguier O, et al. 2020. Source and deposition age of the Dialé-Daléma metasedimentary series (Kédougou-Kéniéba Inlier, Senegal) constrained by U–Pb geochronology on detrital zircon grains. Journal of African Earth Sciences 165: 103801. https://doi.org/10.1016/j.jafrearsci.2020.103801. [CrossRef] [Google Scholar]
  • Kouadio J-LH. 2017. Étude pétrostructurale des formations géologiques du Sud-Ouest de la Côte d’Ivoire (secteur Bliéron Grand-Béréby) : apport de la géochimie et du couple déformation-métamorphisme. Mémoire de thèse, Université Félix Houphouët-Boigny, UFR STRM, 276 p. [Google Scholar]
  • Kouamelan A-N. 1996. Géochronologie et geochimie des formations archeennes et proterozoïques de la Dorsale de Man en Côte d’Ivoire. Implications pour la transition Archéen-Protéozoïque. Thèse de doctorat, Université Rennes 1. [Google Scholar]
  • Kouamelan AN, Delor C, Peucat J-J. 1997. Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Côte d’Ivoire (Man Rise-West African Craton). Precambrian Research 86: 177–199. [CrossRef] [Google Scholar]
  • Kouamelan AN, Djro SC, Allialy ME, Paquette J-L, Peucat J-J. 2015. The oldest rock of Ivory Coast. Journal of African Earth Sciences 103: 65–70. [CrossRef] [Google Scholar]
  • Kouamelan AN, Kra KSA, Djro SC, Paquette J-L, Peucat J-J. 2018. The Logoualé Band: A large Archean crustal block in the Kenema-Man domain (Man-Leo rise, West African Craton) remobilized during Eburnean orogeny (2.05 Ga). Journal of African Earth Sciences 148: 6–13. [CrossRef] [Google Scholar]
  • Kranendonk MJV. 2010. Two types of Archean continental crust: Plume and plate tectonics on early Earth. American Journal of Science 310: 1187–1209. [CrossRef] [Google Scholar]
  • Kroonenberg SB, Roever EWF de, Fraga LM, Reis NJ, Faraco T, Lafon J-M, et al. 2016. Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model. Netherlands Journal of Geosciences, Cambridge University Press 95: 491–522. [CrossRef] [Google Scholar]
  • Krýza O, Závada P, Shu T, Semerád J. 2022. Modes and geometry of crustal-scale detachment folding in hot orogens – Insights from physical modeling. Frontiers in Earth Science 10. [Google Scholar]
  • Labou I, Benoit M, Baratoux L, Grégoire M, Ndiaye PM, Thebaud N, et al. 2020. Petrological and geochemical study of Birimian ultramafic rocks within the West African Craton: Insights from Mako (Senegal) and Loraboué (Burkina Faso) lherzolite/harzburgite/wehrlite associations. Journal of African Earth Sciences 162: 103677. [CrossRef] [Google Scholar]
  • Ledru P, Pons J, Milesi JP, Feybesse JL, Johan V. 1991. Transcurrent tectonics and polycyclic evolution in the lower proterozoic of Senegal–Mali. Precambrian Research 50: 337–354. [CrossRef] [Google Scholar]
  • Ledru P, Johan V, Milési JP, Tegyey M. 1994. Markers of the last stages of the Palaeoproterozoic collision: Evidence for a 2 Ga continent involving circum-South Atlantic provinces. Precambrian Research, Elsevier 69: 169–191. [CrossRef] [Google Scholar]
  • Leite C de MM, Barbosa JSF, Goncalves P, Nicollet C, Sabaté P. 2009. Petrological evolution of silica-undersaturated sapphirine-bearing granulite in the Paleoproterozoic Salvador-Curaçá Belt, Bahia, Brazil. Gondwana Research 15: 49–70. [CrossRef] [Google Scholar]
  • Lemoine S. 1988. Évolution géologique de la région de Dabakala (NE de la Côte d’Ivoire) au Protérozoïque inférieur : possibilités d’extension au reste de la Côte d’Ivoire et au Burkina Faso. Thèse d’État, Université de Clermont-Ferrand, 388 p. [Google Scholar]
  • Lemoine S, Tempier P, Bassot JP, Caen-Vachette M, Vialette Y, Wenmenga U, et al. 1985. The Burkinian, an orogenic cycle, precursor of the Eburnean of West Africa. Coll. Afr. Geol. 13th 27. [Google Scholar]
  • Leube A, Hirdes W, Mauer R, Kesse GO. 1990. The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precambrian Research 46: 139–165. [CrossRef] [Google Scholar]
  • Liégeois J-P, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B. 2005. The Hoggar swell and volcanism: Reactivation of the Precambrian Tuareg Shield during Alpine convergence and West African Cenozoic volcanism. In: Plates, plumes and paradigms. Geological Society of America, Vol. 388. [Google Scholar]
  • Lin S, Jiang D, Williams PF. 1998. Transpression (or transtension) zones of triclinic symmetry: Natural example and theoretical modelling. Geological Society, London, Special Publications, The Geological Society of London 135: 41–57. [CrossRef] [Google Scholar]
  • Lompo M. 2009. Geodynamic evolution of the 2.25–2.0 Ga Palaeoproterozoic magmatic rocks in the Man-Leo Shield of the West African Craton. A model of subsidence of an oceanic plateau. Geological Society, London, Special Publications. The Geological Society of London 323: 231–254. [CrossRef] [Google Scholar]
  • Lompo M. 2010. Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics. Journal of African Earth Sciences 58: 19–36. [CrossRef] [Google Scholar]
  • Louis-Napoléon A, Gerbault M, Bonometti T, Thieulot C, Martin R, Vanderhaeghe O. 2020. 3-D numerical modelling of crustal polydiapirs with volume-of-fluid methods. Geophysical Journal International 222: 474–506. [CrossRef] [Google Scholar]
  • Louis-Napoléon A, Gerbault M, Bonometti T, Vanderhaeghe O, Martin R. 2021. Modeling gravitational instabilities in the partially molten crust with a Volume-Of-Fluid method. In: Paper presented at the EGU General Assembly Conference Abstracts EGU21-5892. [Google Scholar]
  • Ludwig KR. 2003. User’s manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0). Berkeley Geochronology Center, Special Publication 4: 1–71. [Google Scholar]
  • Machado N, Noce CM, Ladeira EA, De Oliveira OB. 1992. U–Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil. GSA Bulletin 104: 1221–1227. [CrossRef] [Google Scholar]
  • Mahar EM, Baker JM, Powell R, Holland TJB, Howell N. 1997. The effect of Mn on mineral stability in metapelites. Journal of Metamorphic Geology 15: 223–238. [CrossRef] [Google Scholar]
  • Martin H. 1994. Chapter 6: The Archean grey gneisses and the genesis of continental crust. In: Condie KC, ed. Developments in Precambrian Geology. Elsevier, pp. 205–259. [CrossRef] [Google Scholar]
  • Maruyama S, Santosh M, Azuma S. 2018. Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers 9: 1033–1048. [CrossRef] [Google Scholar]
  • McFarlane H. 2018. The geodynamic and tectonic evolution of the Palaeoproterozoic Sefwi Greenstone Belt, West African Craton (Ghana). PhD Thesis, Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), Monash University (Australie). [Google Scholar]
  • McFarlane CRM, Connelly JN, Carlson WD. 2006. Contrasting response of monazite and zircon to a high-T thermal overprint. Lithos 88: 135–149. [CrossRef] [Google Scholar]
  • McFarlane HB, Ailleres L, Betts P, Ganne J, Baratoux L, Jessell MW, et al. 2019. Episodic collisional orogenesis and lower crust exhumation during the Palaeoproterozoic Eburnean Orogeny: Evidence from the Sefwi Greenstone Belt, West African Craton. Precambrian Research 325: 88–110. [CrossRef] [Google Scholar]
  • Medeiros Júnior EB, Degler R, Jordt-Evangelista H, Queiroga GN, Schulz B, Marques RA. 2016. Electron microprobe Th–U–Pb monazite dating and metamorphic evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil. Rem: Revista Escola de Minas 69: 21–32. [CrossRef] [Google Scholar]
  • Milési J-P, Heinry C, Sylvain J-P. 1989. Minéralisations aurifères de l’Afrique de l’ouest leurs relations avec l’évolution lithostructurale au Proterozoique inférieur. Bureau de recherches géologiques et minières 497: 3–98. [Google Scholar]
  • Milési J-P, Ledru P, Feybesse J-L, Dommanget A, Marcoux E. 1992. Early proterozoic ore deposits and tectonics of the Birimian orogenic belt, West Africa. Precambrian Research 58: 305–344. [CrossRef] [Google Scholar]
  • Miyashiro A. 1961. Evolution of metamorphic belts. Journal of Petrology 2: 277–311. [CrossRef] [Google Scholar]
  • Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A. 1996. Electron microprobe dating of monazite. Chemical Geology 131: 37–53. [CrossRef] [Google Scholar]
  • Ndiaye PM, Robineau B, Moreau C. 1989. Deformation et metamorphisme des formations birrimiennes en relation avec la mise en place du granite eburneen de Saraya (Sénégal Oriental). Bulletin de la Société Géologique de France V: 619–625. [CrossRef] [Google Scholar]
  • Noce CM, Machado N, Teixeira W. 1998. U–Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco Craton): Age constraints for Archean and Paleoproterozoic magmatism and metamorphism. Revista Brasileira de Geociências 28: 95–102. [CrossRef] [Google Scholar]
  • Nomade S, Chen Y, Pouclet A, Féraud G, Théveniaut H, Daouda BY, et al. 2003. The Guiana and the West African Shield Palaeoproterozoic grouping: New palaeomagnetic data for French Guiana and the Ivory Coast. Geophysical Journal International 154: 677–694. [CrossRef] [Google Scholar]
  • Onstott TC, Hargraves RB. 1981. Proterozoic transcurrent tectonics: Palaeomagnetic evidence from Venezuela and Africa. Nature, Nature Publishing Group 289: 131–136. [CrossRef] [Google Scholar]
  • Opare-Addo E, Browning P, John BE. 1993. Pressure-temperature constraints on the evolution of an Early proterozoic plutonic suite in southern Ghana, West Africa. Journal of African Earth Sciences (and the Middle East) 17: 13–22. [CrossRef] [Google Scholar]
  • Palin RM, Santosh M, Cao W, Li S-S, Hernández-Uribe D, Parsons A. 2020. Secular metamorphic change and the onset of plate tectonics. Earth-Science Reviews 207: 103172. [CrossRef] [Google Scholar]
  • Papon A. 1973. Géologie et minéralisations du Sud-Ouest de la Côte d’Ivoire : synthèse des travaux de l’opération SASCA. [Google Scholar]
  • Parra-Avila LA, Kemp AIS, Fiorentini ML, Belousova E, Baratoux L, Block S, et al. 2017. The geochronological evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton. Precambrian Research 300: 1–27. https://doi.org/10.1016/j.precamres.2017.07.036. [CrossRef] [Google Scholar]
  • Peucat J-J, Capdevila R, Drareni A, Mahdjoub Y, Kahoui M. 2005. The Eglab massif in the West African Craton (Algeria), an original segment of the Eburnean orogenic belt: Petrology, geochemistry and geochronology. Precambrian Research 136: 309–352. [CrossRef] [Google Scholar]
  • Peucat J-J, Figueiredo Barbosa JS, Conceição de Araújo Pinho I, Paquette J-L, Martin H, Fanning CM, et al. 2011. Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U–Pb zircon ages. Journal of South American Earth Sciences 31: 397–413. [CrossRef] [Google Scholar]
  • Pitra P, Kouamelan AN, Ballevre M, Peucat J-J. 2010a. Palaeoproterozoic high-pressure granulite overprint of the Archean continental crust: Evidence for homogeneous crustal thickening (Man Rise, Ivory Coast). Journal of Metamorphic Geology, Wiley Online Library 28: 41–58. [CrossRef] [Google Scholar]
  • Poitrasson F, Chenery S, Shepherd TJ. 2000. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U–Th–Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta 64: 3283–3297. [CrossRef] [Google Scholar]
  • Pons J, Barbey P, Dupuis D, Léger JM. 1995. Mechanisms of pluton emplacement and structural evolution of a 2.1 Ga juvenile continental crust: The Birimian of southwestern Niger. Precambrian Research, Elsevier 70: 281–301. [CrossRef] [Google Scholar]
  • Potrel A, Peucat JJ, Fanning CM, Auvray B, Burg JP, Caruba C. 1996. 3.5 Ga old terranes in the West African Craton, Mauritania. Journal of the Geological Society, The Geological Society of London 153: 507–510. [CrossRef] [Google Scholar]
  • Pouclet A, Vidal M, Delor C, Simeon Y, Alric G. 1996. Le volcanisme birimien du nord-est de la Côte-d’Ivoire, mise en evidence de deux phases volcano-tectoniques distinctes dans l’evolution geodynamique du Paleoproterozoique. Bulletin de la Société géologique de France, Société Géologique de France 167: 529–541. [Google Scholar]
  • Pouclet A, Doumbia S, Vidal M. 2006. Geodynamic setting of the Birimian volcanism in central Ivory Coast (western Africa) and its place in the Palaeoproterozoic evolution of the Man Shield. Bulletin de la Société Géologique de France, GeoScienceWorld 177: 105–121. [CrossRef] [Google Scholar]
  • Rey PF, Houseman G. 2006. Lithospheric scale gravitational flow: The impact of body forces on orogenic processes from Archaean to Phanerozoic. Geological Society, London, Special Publications, The Geological Society of London 253: 153–167. [CrossRef] [Google Scholar]
  • Rollinson H. 2016. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research 281: 1–12. [CrossRef] [Google Scholar]
  • Rollinson HR, Cliff RA. 1982. New Rb–Sr age determinations on the Archaean basement of Eastern Sierra Leone. Precambrian Research 17: 63–72. [CrossRef] [Google Scholar]
  • Rubatto D, Williams IS, Buick IS. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology 140: 458–468. [CrossRef] [Google Scholar]
  • Schmidt C, Rickers K, Bilderback DH, Huang R. 2007. In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800 °C. Lithos 95: 87–102. [CrossRef] [Google Scholar]
  • Schrank A, Machado N. 1996. Idades U–Pb em monazitas e zircões das minas de Morro Velho e Passagem de Mariana-Quadrilátero Ferrífero (MG). SBG, Cong. Bras. Geol 39: 470–472. [Google Scholar]
  • Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J,et al. 2008. Vertical extrusion and horizontal channel flow of orogenic lower crust: Key exhumation mechanisms in large hot orogens? Journal of Metamorphic Geology 26: 273–297. [CrossRef] [Google Scholar]
  • Seydoux-Guillaume A-M, Montel J-M, Bingen B, Bosse V, de Parseval P, Paquette J-L, et al. 2012. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chemical Geology 330-331: 140–158. [CrossRef] [Google Scholar]
  • Silva LJHD-R, Oliveira JG de, Gaál EG. 1996. Implication of the caraíba deposit’s structural controls on the emplacement of the cu-bearing hypersthenites of the Curaçá Valley, Bahia Brazil. Universidade Federal do Paraná – Pró-Reitoria de pesquisa e pós-graduação. [Google Scholar]
  • Stern RJ. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33: 557–560. [CrossRef] [Google Scholar]
  • Štípská P, Chopin F, Skrzypek E, Schulmann K, Pitra P, Lexa O, et al. 2012. The juxtaposition of eclogite and mid-crustal rocks in the Orlica-Śnieżnik Dome, Bohemian Massif. Journal of Metamorphic Geology 30: 213–234. [CrossRef] [Google Scholar]
  • Tagini B. 1971. Esquisse structurale de la Côte d’Ivoire. Essai de géotectonique régionale. Thèse Université de Lausanne, Société d’État pour le Développement minière de la Côte d’Ivoire. [Google Scholar]
  • Teufel S, Heinrich W. 1997. Partial resetting of the U–Pb isotope system in monazite through hydrothermal experiments: An SEM and U–Pb isotope study. Chemical Geology 137: 273–281. [CrossRef] [Google Scholar]
  • Thiéblemont D. 2016. An updated geological map of Africa at 1/10 000 000 scale. In: Paper presented at the 35th International Geological Congress: IGC 2016. [Google Scholar]
  • Thiéblemont D, Delor C, Cocherie A, Lafon JM, Goujou JC, Baldé A, et al. 2001. A 3.5 Ga granite–gneiss basement in Guinea: Further evidence for early archean accretion within the West African Craton. Precambrian Research 108: 179–194. [CrossRef] [Google Scholar]
  • Thiéblemont D, Goujou JC, Egal E, Cocherie A, Delor C, Lafon JM, et al. 2004. Archean evolution of the Leo Rise and its Eburnean reworking. Journal of African Earth Sciences 39: 97–104. [CrossRef] [Google Scholar]
  • Traoré K, Chardon D, Naba S, Wane O, Bouaré ML. 2022. Paleoproterozoic collision tectonics in West Africa: Insights into the geodynamics of continental growth. Precambrian Research 376: 106692. [CrossRef] [Google Scholar]
  • Triboulet C, Feybesse J-L. 1998. Les métabasites birimiennes et archéennes de la région de Toulepleu-Ity (Côte-d’lvoire) : des roches portées à 8 kbar (≈ 24 km) et 14 kbar (≈ 42 km) au Paléoprotérozoïque. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 327: 61–66. [Google Scholar]
  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL. 2001. Data reduction software for LA-ICP-MS: Appendix. In: Sylvester PJ, ed. Laser Ablation-ICP Mass Spectrometry in the Earth Sciences: Principles and applications, pp. 239–243. [Google Scholar]
  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477: 119–134. [CrossRef] [Google Scholar]
  • Vanderhaeghe O. 2012. The thermal-mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. Journal of Geodynamics 56-57: 124–145. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics, Partial Melting of Crust and Flow of Orogens 342: 451–472. https://doi.org/10.1016/S0040-1951(01)00175-5. [Google Scholar]
  • Vanderhaeghe O, Ledru P, Thiéblemont D, Egal E, Cocherie A, Tegyey M, et al. 1998. Contrasting mechanism of crustal growth: Geodynamic evolution of the Paleoproterozoic granite-greenstone belts of French Guiana. Precambrian Research 92: 165–193. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Kruckenberg SC, Gerbault M, Martin L, Duchêne S, Deloule E. 2018. Crustal-scale convection and diapiric upwelling of a partially molten orogenic root (Naxos dome, Greece). Tectonophysics 746: 459–469. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Guergouz C, Fabre C, Duchêne S, Baratoux D. 2019. Secular cooling and crystallization of partially molten Archaean continental crust over 1 Ga. Comptes Rendus Geoscience 351: 562–573. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Laurent O, Gardien V, Moyen J-F, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: The geologic record of the French Massif Central. Bulletin de la Société Géologique de France 191: 25. https://doi.org/10.1051/bsgf/2020013. [Google Scholar]
  • Vidal M, Delor C, Pouclet A, Simeon Y, Alric G. 1996. Geodynamic evolution of the West Africa between 2.2 and 2 Ga: The Archaean style of the Birimian greenstone belts and the sedimentary basins in northeastern Ivory Coast. Bulletin de la Societe Geologique de France 167: 307–319. [Google Scholar]
  • Vidal M, Gumiaux C, Cagnard F, Pouclet A, Ouattara G, Pichon M. 2009. Evolution of a Paleoproterozoic “weak type” orogeny in the West African Craton (Ivory Coast). Tectonophysics 477: 145–159. [CrossRef] [Google Scholar]
  • Vlach SRF, Neto MC, Caby R, Basei MAS. 2003. Contact metamorphism in metapelites from the Nova Lima group, Rio Das Velhas Supergroup, Quadrila. Tero ferrifero: A monazite Th–U–Pbt dating by the electron-probe microanalyser. In: IV South American Symposium on Isotope Geology, Salvador. Short Papers, pp. 307–310. [Google Scholar]
  • Wane O, Liégeois J-P, Thébaud N, Miller J, Metelka V, Jessell M. 2018. The onset of the Eburnean collision with the Kenema-Man Craton evidenced by plutonic and volcano sedimentary rock record of the Masssigui region, southern Mali. Precambrian Research 305: 444–478. [CrossRef] [Google Scholar]
  • WAXI report, AMIRA Global. 2018. West African Exploration Initiative Stage 3. Australia: AMIRA International Limited, 925 p. [Google Scholar]
  • White RW, Powell R. 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology 20: 621–632. [Google Scholar]
  • White RW, Powell R, Holland TJB, Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology 18: 497–511. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25: 511–527. [Google Scholar]
  • White A, Burgess R, Charnley N, Selby D, Whitehouse M, Robb L, et al. 2014. Constraints on the timing of late-Eburnean metamorphism, gold mineralisation and regional exhumation at Damang mine, Ghana. Precambrian Research 243: 18–38. [CrossRef] [Google Scholar]
  • Williams HR. 1988. The archaean kasila group of Western Sierra Leone: Geology and relations with adjacent granite-greenstone terrane. Precambrian Research 38: 201–213. [CrossRef] [Google Scholar]
  • Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ. 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology 283: 218–225. [CrossRef] [Google Scholar]
  • Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society 171: 465–479. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.