Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Article Number 12
Number of page(s) 20
DOI https://doi.org/10.1051/bsgf/2023008
Published online 10 August 2023
  • Adams CE, Roberts HH. 1993. A model of the effects of sedimentation rate on the stability of Mississippi Delta sediments. Geo-Marine Letters 13(1): 17–23. [CrossRef] [Google Scholar]
  • Albertz M, Beaumont C, Shimeld JW, Ings SJ, Gradmann S. 2010. An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models. Tectonics 29(4). https://doi.org/10.1029/2009TC002539. [Google Scholar]
  • Barrier L, Nalpas T, Gapais D, Proust J-N. 2013. Impact of synkinematic sedimentation on the geometry and dynamics of compressive growth structures: Insights from analogue modelling. Tectonophysics 608: 737–752. [CrossRef] [Google Scholar]
  • Bilotti F, Shaw JH. 2005. Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. AAPG Bulletin 89(11): 1475–1491. [CrossRef] [Google Scholar]
  • Borgia A. 1994. Dynamic basis of volcanic spreading. Journal of Geophysical Research 99(B9): 17791–17804. [CrossRef] [Google Scholar]
  • Borgia A, Treves B. 1992. Volcanic plates overriding the ocean crust: Structure and dynamics of Hawaiian volcanoes. Geological Society, London, Special Publications 60(1): 277–299. [CrossRef] [Google Scholar]
  • Borgia A, Ferrari L, Pasquarè G. 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357(6375): 231–235. [CrossRef] [Google Scholar]
  • Boudon G, Balcone-Boissard H. 2021. Volcanological evolution of Montagne Pelée (Martinique): A textbook case of alternating Plinian and dome-forming eruptions. Earth-Science Reviews 221: 103754. [CrossRef] [Google Scholar]
  • Boudon GA, Le Friant B, Villemant B, Viode J-P. 2005. Martinique. In: Lindsay JM et al., eds. Volcanic Atlas of the Lesser Antilles. Trinidad and Tobago: University of the West Indies, Seismic Research Unit, pp. 65–102. [Google Scholar]
  • Boudon G, Le Friant A, Komorowski J-C, Deplus C, Semet MP. 2007. Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence. Journal of Geophysical Research 112(B8): B08205. https://doi.org/10.1029/2006JB004674. [CrossRef] [Google Scholar]
  • Bouysse P, Westercamp D, Andreieff P. 1990. The Lesser Antilles arc. In: Moore JC, Mascle A, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results 110, pp. 29–44. [Google Scholar]
  • Briggs SE, Davies RJ, Cartwright JA, Morgan R. 2006. Multiple detachment levels and their control on fold styles in the compressional domain of the deepwater West Niger Delta. Basin Research 18(4): 435–450. [CrossRef] [Google Scholar]
  • Brun JP, Choukroune P. 1983. Normal faulting, block tilting, and décollement in a stretched crust. Tectonics 2(4): 345–356. [CrossRef] [Google Scholar]
  • Brun JP, Fort X. 2011. Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology 28(6): 1123–1145. [CrossRef] [Google Scholar]
  • Brunet M. 2015. Caractérisation des processus d’instabilité affectant les îles volcaniques : application au volcan de la Montagne Pelée en Martinique à partir de l’exploitation des forages de l’Expédition IODP 340. Thèse de doctorat, Institut de Physique du Globe de Paris. [Google Scholar]
  • Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, et al. 2016. Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems 17(3): 699–724. [CrossRef] [Google Scholar]
  • Brunet M, Moretti L, Le Friant A, Mangeney A, Nieto EDF, Bouchut F. 2017. Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: From volcano flank collapse to submarine emplacement. Natural Hazards 87(2): 1189–1222. [CrossRef] [Google Scholar]
  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ. 2005. Explaining the Storegga slide. Marine and Petroleum Geology 22(1-2): 11–19. [CrossRef] [Google Scholar]
  • Burollet PF. 1975. Tectonique en radeaux en Angola. Bulletin de la Société Géologique de France 7(4): 503–504. [CrossRef] [Google Scholar]
  • Byrne PK, Holohan EP, Kervyn M, van Wyk de Vries BVW, Troll VR, Murray JB. 2013. A sagging-spreading continuum of large volcano structure. Geology 41(3): 339–342. [CrossRef] [Google Scholar]
  • Cassidy M, Trofimovs J, Watt SFL, Palmer MR, Taylor RN, Gernon TM, et al. 2014. Multi-stage collapse events in the South Soufrière Hills, Montserrat as recorded in marine sediment cores. Geol. Soc. London 39: 383–397. [CrossRef] [Google Scholar]
  • Cloos E. 1968. Experimental analysis of Gulf Coast fracture patterns. AAPG Bulletin 52(3): 420–444. [Google Scholar]
  • Cobbold PR, Szatmari P. 1991. Radial gravitational gliding on passive margins. Tectonophysics 188: 249–289. [CrossRef] [Google Scholar]
  • Cobbold PR, Castro L. 1999. Fluid pressure and effective stress in sandbox models. Tectonophysics 301(1-2): 1–19. [CrossRef] [Google Scholar]
  • Cobbold P, Rossello E, Vendeville B. 1989. Some experiments on interacting sedimentation and deformation above salt horizons. Bulletin de la Société Géologique de France (3): 453–460. [CrossRef] [Google Scholar]
  • Cobbold PR, Meisling KE, Mount VS. 2001. Reactivation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin 85(11): 1925–1944. [Google Scholar]
  • Cobbold PR, Clarke BJ, Løseth H. 2009. Structural consequences of fluid overpressure and seepage forces in the outer thrust belt of the Niger Delta. Petroleum Geoscience 15(1): 3–15. [CrossRef] [Google Scholar]
  • Cohen HA, Hardy S. 1996. Numerical modelling of stratal architectures resulting from differential loading of a mobile substrate. Geological Society, London, Special Publications 100(1): 265–273. [CrossRef] [Google Scholar]
  • Cohen HA, McClay K. 1996. Sedimentation and shale tectonics of the northwestern Niger Delta front. Marine and Petroleum Geology 13(3): 313–328. [CrossRef] [Google Scholar]
  • Corredor F, Shaw JH, Bilotti F. 2005. Structural styles in the deep-water fold and thrust belts of the Niger Delta. AAPG Bulletin 89(6): 753–780. [CrossRef] [Google Scholar]
  • Crans W, Mandl G, Haremboure J. 1980. On the theory of growth faulting: A geomechanical delta model based on gravity sliding. Journal of Petroleum Geology 2(3): 265–307. [CrossRef] [Google Scholar]
  • Crutchley GJ, Karstens J, Berndt C, Talling PJ, Watt SFL, Vardy ME, et al. 2013. Insights into the emplacement dynamics of volcanic landslides from high resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles. Mar. Geol. 335: 1–15. https://doi.org/10.1016/j.margeo.2012.10.004. [CrossRef] [Google Scholar]
  • Damuth JE. 1994. Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology 11(3): 320–346. [CrossRef] [Google Scholar]
  • Davy P, Cobbold PR. 1991. Experiments on shortening of a 4-layer model of continental lithosphere. Tectonophysics 188: 1–25. [CrossRef] [Google Scholar]
  • Delcamp A, van Wyk de Vries B, James MR. 2008. The influence of edifice slope and substrata on volcano spreading. Journal of Volcanology and Geothermal Research 177(4): 925–943. [CrossRef] [Google Scholar]
  • Delcamp A, van Wyk de Vries BVW, James MR, Gailler LS, Lebas E. 2012. Relationships between volcano gravitational spreading and magma intrusion. Bulletin of Volcanology 74(3): 743–765. [CrossRef] [Google Scholar]
  • DeMets C, Jansma PE, Mattioli GS, Dixon TH, Farina F, Bilham R, et al. 2000. GPS geodetic constraints on Caribbean-North America plate motion. Geophysical Research Letters 27: 437–440. [CrossRef] [Google Scholar]
  • Deplus C, Le Friant A, Boudon G, Komorowski J-C, Villemant B, Harford C, et al. 2001. Submarine evidence for large-scale debris avalanches in the Lesser Antilles arc. Earth and Planetary Science Letters 192(2): 145–157. [CrossRef] [Google Scholar]
  • Deplus C, Le Friant A, Boudon G, Komorowski J-C, Sparks S, Harford C. 2002. Numerous DADs off the southern part of Monserrat revealed by recent oceanographic cruises. In: Paper presented at International Congress on Montagne Pelée 1902–2002, IPGP-INSU-IAVCEI, Martinique Island, 12–16 May. [Google Scholar]
  • Déramond J. 1979. Déformation et déplacement des nappes : exemple de la nappe de Gavarnie (Pyrénées centrales). Thèse, Faculté de Science, Toulouse, 409 p. [Google Scholar]
  • Doust H, Omatsola E. 1990. AAPG Memoir 48: 201–238. [Google Scholar]
  • Faugère E, Brun JP. 1984. Modélisation expérimentale de la distension continentale. Comptes Rendus de l’Académie des Sciences, Série II 299: 365–370. [Google Scholar]
  • Feuillet N, Leclerc F, Tapponnier P, Beauducel F, Boudon G, Le Friant A, et al. 2010. Active faulting induced by slip partitioning in Montserrat and link with volcanic activity: New insights from the 2009 GWADASEIS marine cruise data. Geophys. Res. Lett. 37: L00E15. https://doi.org/10.1029/2010GL042556. [Google Scholar]
  • Fletcher P, Gay NC. 1971. Analysis of gravity sliding and orogenic translation: Discussion. Geological Society of America Bulletin 82(9): 2677–2682. [CrossRef] [Google Scholar]
  • Fort X, Brun JP, Chauvel F. 2004. Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin 88(11): 1523–1544. [CrossRef] [Google Scholar]
  • Frey-Martínez J, Cartwright J, James D. 2006. Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology 23: 585–604. [CrossRef] [Google Scholar]
  • Gaullier V, Vendeville BC. 2005. Salt tectonics driven by sediment progradation: Part II – Radial spreading of sedimentary lobes prograding above salt. AAPG Bulletin 89(8): 1081–1089. [CrossRef] [Google Scholar]
  • Ge H, Jackson MPA, Vendeville BC. 1997. Kinematics and dynamics of salt tectonics driven by progradation. American Association of Petroleum Geologists Bulletin 81: 398–423. [Google Scholar]
  • Gemmer L, Ings SJ, Medvedev S, Beaumont C. 2004. Salt tectonics driven by differential sediment loading: Stability analysis and finite- element experiments. Basin Research 16(2): 199–218. [CrossRef] [Google Scholar]
  • Gemmer L, Beaumont C, Ings SJ. 2005. Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research 17(3): 383–402. [CrossRef] [Google Scholar]
  • Germa A, Quidelleur X, Lahitte P, Labanieh S, Chauvel C. 2011. The K-Ar Cassignol–Gillot technique applied to western Martinique lavas: A record of Lesser Antilles arc activity from 2 Ma to Mount Pelée volcanism. Quaternary Geochronology 6(3): 341–355. [CrossRef] [Google Scholar]
  • Germa A, Lahitte P, Quidelleur X. 2015. Construction and destruction of Mount Pelée volcano: Volumes and rates constrained from a geomorphological model of evolution. J. Geophys. Res. Earth Surf. 120: 1206–1226. https://doi.org/10.1002/2014JF003355. [CrossRef] [Google Scholar]
  • Graham RH. 1981. Gravity sliding in the Maritime Alps. In: McClay KR, Price NJ, eds. Thrust and Nappe Tectonics. Geol. Soc. London Spec. Publ. 9, pp. 335–352. [Google Scholar]
  • Haack RC, Sundararaman P, Diedjomahor JO, Xiao H, Gant NJ, May ED, et al. 2000. Chapter 16: Niger Delta Petroleum Systems, Nigeria. AAPG Memoir 73: 213–231. [Google Scholar]
  • Hornbach MJ, Manga M, Genecov M, Valdez R, Miller P, Saffer D, et al. 2015. Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure. Journal of Geophysical Research: Solid Earth 120(12): 7986–8011. [CrossRef] [Google Scholar]
  • Hsü KJ, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology 12(1-2): 11–25. [CrossRef] [Google Scholar]
  • Hubbert MK. 1937. Theorie of scale models as applied to the study of geologic structures. Bull. Geol. Soc. Am. 48: 1459–1520. [CrossRef] [Google Scholar]
  • Hubbert MK, Rubey WW. 1959. Role of fluid pressure in mechanics of overthrust faulting. I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 70: 115–166. [CrossRef] [Google Scholar]
  • Hudlestone PJ. 1976. Recumbent folding in the base of the Barnes ice cap, Baffin Island, Norwest Territories, Canada. Geol. Soc. Amer. Bull. 70: 115–116. [Google Scholar]
  • Hudlestone PJ. 1977. Similar folds, recumbent folds and gravity Tectonics in ice and rocks. J. Geol. 85: 113–122. [CrossRef] [Google Scholar]
  • Hudlestone PJ. 1980. Strains patterns in ice cap and implications for strain variations in shear zones. J. Struct. Geol. 5: 455–463. [Google Scholar]
  • Imbo Y, De Batist M, Canals M, Prieto MJ, Baraza J. 2003. The Gebra slide: A submarine slide on the Trinity Peninsula Margin, Antarctica. Marine Geology 193(3-4): 235–252. [CrossRef] [Google Scholar]
  • Ings SJ, Beaumont C. 2010. Continental margin shale tectonics: Preliminary results from coupled fluid-mechanical models of large-scale delta instability. Journal of the Geological Society 167(3): 571–582. [CrossRef] [Google Scholar]
  • IODP Expedition 340 Scientists. 2012. Lesser Antilles volcanism and landslides: Implications for hazard assessment and long-term magmatic evolution of the arc. IODP Prel. Rept. 340. [Google Scholar]
  • Kehle RO. 1970. Analysis of gravity sliding and orogenic translation. Geological Society of America Bulletin 81(6): 1641–1664. [CrossRef] [Google Scholar]
  • Kelfoun K, Druitt T, van Wyk de Vries BVW, Guilbaud MN. 2008. Topographic reflection of the Socompa debris avalanche, Chile. Bulletin of Volcanology 70(10): 1169–1187. [CrossRef] [Google Scholar]
  • Kervyn M, van Wyk de Vries B, Walter TR, Njome MS, Suh CE, Ernst GGJ. 2014. Directional flank spreading at Mount Cameroon volcano: Evidence from analogue modeling. Journal of Geophysical Research: Solid Earth 119(10): 7542–7563. [CrossRef] [Google Scholar]
  • Kligfield R. 1979. The Northern Apennines as a collisional orogen. American Journal of Science 279(6): 676–691. [CrossRef] [Google Scholar]
  • Klinkmüller M, Schreurs G, Rosenau M, Kemnitz H. 2016. Properties of granular analogue model materials: A community wide survey. Tectonophysics 684: 23–38. [CrossRef] [Google Scholar]
  • Knappe E, Manga M, Le Friant A, IODP Expedition 340 Scientists. 2020. Rheology of Natural Sediments and its influence on the settling of dropstones in hemipelagic marine sediment. Earth and Space Science 7(3): e2019EA000876. [CrossRef] [Google Scholar]
  • Koyi H. 1996. Salt flow by aggrading and prograding overburdens. Geological Society, London, Special Publications 100(1): 243–258. [CrossRef] [Google Scholar]
  • Krantz RW. 1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics 188(1-2): 203–207. [CrossRef] [Google Scholar]
  • Lafuerza S, Le Friant A, Manga M, Boudon G, Villemant B, Stroncik N, et al. 2014. Geomechanical characterization of submarine volcano-flank sediments, Martinique, Lesser Antilles Arc. In: Submarine mass movements and their consequences. Cham: Springer, pp. 73–81. [CrossRef] [Google Scholar]
  • Le Friant A, Boudon G, Deplus C, Villemant B. 2003a. Large-scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. Journal of Geophysical Research 108(B1): 1–15. https://doi.org/10.1029/2001JB001624. [CrossRef] [Google Scholar]
  • Le Friant A, Heinrich P, Deplus C, Boudon G. 2003b. Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophys. Res. Lett. 30(2): 1034. [CrossRef] [Google Scholar]
  • Le Friant A, Boudon G, Arnulf A, Robertson RE. 2009. Debris avalanche deposits offshore St. Vincent (West Indies): Impact of flank-collapse events on the morphological evolution of the island. Journal of Volcanology and Geothermal Research 179(1): 1–10. [CrossRef] [Google Scholar]
  • Le Friant A, Ishizuka O, Stroncik NA, IODP Expedition 340 Scientists. 2013. Integrated Ocean Drilling Program Management International, Inc. In: Proceedings of the Integrated Ocean Drilling Program, Tokyo University of Marine Science and Technology, Tokyo, Japan. https://doi.org/10.2204/iodp.proc.340.2013. [Google Scholar]
  • Le Friant A, Ishizuka O, Boudon G, Palmer MR, Talling PJ, Villemant B, et al. 2015. Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochemistry, Geophysics, Geosystems 16(2): 420–442. [CrossRef] [Google Scholar]
  • Lebas E, Le Friant A, Boudon G, Watt SFL, Talling PJ, Feuillet N, et al. 2011. Multiple widespread landslides during the long-term evolution of a volcanic island: Insights from high-resolution seismic data, Montserrat, Lesser Antilles. Geochemistry, Geophysics and Geosystems 12: Q05006. https://doi.org/10.1029/2010GC003451. [Google Scholar]
  • Letouzey J, Colletta B, Vially R, Chermette JC. 1995. Evolution of salt-related structures in compressional settings. AAPG Memoir 65: 41–60. [Google Scholar]
  • Leynaud D, Sultan N, Mienert J. 2007. The role of sedimentation rate and permeability in the slope stability of the formerly glaciated Norwegian continental margin: The Storegga slide model. Landslides 4(4): 297. [CrossRef] [Google Scholar]
  • Llopart J, Lafuerza S, Le Friant A, Urgeles R, Watremez L. 2021. Long-term and long-distance deformation in submarine volcanoclastic sediments: Coupling of hydrogeology and debris avalanche emplacement off W Martinique Island. Basin Research 33(4): 2179–2201. [CrossRef] [Google Scholar]
  • Locat J, Lee HJ. 2002. Submarine landslides: Advances and challenges. Canadian Geotechnical Journal 39: 193–212. [CrossRef] [Google Scholar]
  • Maloney D, Davies R, Imber J, Higgins S, King S. 2010. New insights into deformation mechanisms in the gravitationally driven Niger Delta deep-water fold and thrust belt. AAPG Bulletin 94(9): 1401–1424. [CrossRef] [Google Scholar]
  • Martin-Kaye PHA. 1969. A summary of the geology of the Lesser Antilles. Overseas Geology and Mineral Resources 10(2): 172–206. [Google Scholar]
  • Mauduit T, Guerin G, Brun JP, Lecanu H. 1997. Raft tectonics: The effects of basal slope angle and sedimentation rate on progressive extension. Journal of Structural Geology 19(9): 1219–1230. [CrossRef] [Google Scholar]
  • McClay KR, Dooley T, Lewis G. 1998. Analog modeling of progradational delta systems. Geology 26(9): 771–774. [CrossRef] [Google Scholar]
  • McClay K, Dooley T, Zamora G. 2003. Analogue models of delta systems above ductile substrates. Geological Society, London, Special Publications 216(1): 411–428. [CrossRef] [Google Scholar]
  • Mencaroni D, Llopart J, Urgeles R, Lafuerza S, Gràcia E, Le Friant A, et al. 2020. From gravity cores to overpressure history: The importance of measured sediment physical properties in hydrogeological models. Geological Society, London, Special Publications 500(1): 289–300. [CrossRef] [Google Scholar]
  • Merle O. 1982. Cinématique et déformation de la nappe du Parpaillon (flysch à Helminthoïdes de l’Embrunais-Ubaye, Alpes occidentales). Thèse de doctorat, Université Rennes 1. [Google Scholar]
  • Merle O, Borgia A. 1996. Scaled experiments of volcanic spreading. Journal of Geophysical Research: Solid Earth 101(B6): 13805–13817. https://doi.org/10.1029/95JB03736. [CrossRef] [Google Scholar]
  • Mourgues R, Cobbold PR. 2003. Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling. Tectonophysics 376(1-2): 75–97. [CrossRef] [Google Scholar]
  • Mourgues R, Lecomte E, Vendeville B, Raillard S. 2009. An experimental investigation of gravity-driven shale tectonics in progradational delta. Tectonophysics 474(3): 643–656. [CrossRef] [Google Scholar]
  • Nalpas T, Györfi I, Guillocheau F, Lafont F, Homewood P. 1999. Influence de la charge sédimentaire sur le développement d’anticlinaux synsédimentaires. Modélisation analogique et exemples de terrain (Bordure sud du bassin de Jaca). Bulletin de la Société Géologique de France 170(5): 733–740. [Google Scholar]
  • Oehler JF, van Wyk de Vries B, Labazuy P. 2005. Landslides and spreading of oceanic hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): An analogue modeling approach. Journal of Volcanology and Geothermal Research 144(1-4): 169–189. https://doi.org/10.1016/j.jvolgeores.2004.11.023. [CrossRef] [Google Scholar]
  • Osborne MJ, Swarbrick RE. 1997. Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin 81(6): 1023–1041. [Google Scholar]
  • Paguican EMR, van Wyk de Vries BVW, Lagmay AMF. 2014. Hummocks: How they form and how they evolve in rockslide-debris avalanches. Landslides 11(1): 67–80. [CrossRef] [Google Scholar]
  • Price NJ. 1977. Aspect of gravity tectonics and the development of listric faults. J. Geol. Soc. Lond. 133: 311–327. [CrossRef] [Google Scholar]
  • Ramberg H. 1977. Some remarks on the mechanism of nappe movement. Geologiska Föreningen i Stockholm Förhandlingar 99(2): 110–117. [CrossRef] [Google Scholar]
  • Ramberg H. 1981. Gravity, deformation and the Earth’s crust. London: Academic Press. [Google Scholar]
  • Rettger RE. 1935. Experiments on soft-rock deformation. AAPG Bulletin 19(2): 271–292. [Google Scholar]
  • Rouby D, Nalpas T, Jermannaud P, Robin C, Guillocheau F, Raillard S. 2011. Gravity driven deformation controlled by the migration of the delta front: The Plio-Pleistocene of the Eastern Niger Delta. Tectonophysics 513(1): 54–67. [CrossRef] [Google Scholar]
  • Schellart WP. 2000. Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling. Tectonophysics 324: 1–16. [CrossRef] [Google Scholar]
  • Shea T, van Wyk de Vries BVW, Pilato M. 2008. Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua) provided by structural and facies analysis. Bulletin of Volcanology 70(8): 899–921. [CrossRef] [Google Scholar]
  • Siddans AWB. 1984. Thrust tectonics – A mechanistic view from the West and Central Alps. Tectonophysics 104(3): 257–281. [CrossRef] [Google Scholar]
  • Solaro C, Boudon G, Le Friant A, Balcone-Boissard H, Emmanuel L, Paterne M, et al. 2020. New insights into the recent eruptive and collapse history of Montagne Pelée (Lesser Antilles Arc) from offshore marine drilling site U1401A (IODP Expedition 340). Journal of Volcanology and Geothermal Research 403: 107001. [CrossRef] [Google Scholar]
  • Szatmari P, Guerra MCM, Pequeno MA. 1996. Genesis of large counter-regional normal fault by flow of Cretaceous salt in the South Atlantic Santos Basin, Brazil. Geological Society, London, Special Publications 100(1): 259–264. [CrossRef] [Google Scholar]
  • Talbot CJ. 1979. Fold trains in a glacier of salt in southern Iran. Journal of Structural Geology 1(1): 5–18. [CrossRef] [Google Scholar]
  • Talbot CJ. 1981. Sliding and other deformation mechanisms in a glacier of salt, S Iran. Geological Society, London, Special Publications 9(1): 173–183. [CrossRef] [Google Scholar]
  • Trofimovs J, Talling PJ, Fisher JK, Sparks RSJ, Watt SFL, Hart MB, et al. 2013. Timing, origin and emplacement dynamics of mass flows offshore of SE Montserrat in the last 110 ka: Implications for landslide and tsunami hazards, eruption history, and volcanic island evolution. Geochem. Geophys. Geosyst. 14: 385–406. https://doi.org/10.1002/ggge.20052. [CrossRef] [Google Scholar]
  • van Wyk de Vries B. 1993. Tectonics and magma evolution of Nicaragua volcanic systems. Unpublished PhD thesis, Department of Earth Sciences, The Open University, UK. [Google Scholar]
  • van Wyk de Vries B, Francis PW. 1997. Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387(6631): 387–390. [CrossRef] [Google Scholar]
  • van Wyk de Vries B, Matela R. 1998. Styles of volcano-induced deformation: Numerical models of substratum flexure, spreading and extrusion. Journal of Volcanology and Geothermal Research 81(1): 1–18. [CrossRef] [Google Scholar]
  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L. 2001. A gravitational spreading origin for the Socompa debris avalanche. Journal of Volcanology and Geothermal Research 105(3): 225–247. [CrossRef] [Google Scholar]
  • Vendeville B. 1987. Champs de failles et tectonique en extension. Rennes : Université de Rennes 1, 395 p. [Google Scholar]
  • Vendeville BC. 2005. Salt tectonics driven by sediment progradation: Part I – Mechanics and kinematics. AAPG Bulletin 89(8): 1071–1079. [CrossRef] [Google Scholar]
  • Vendeville BC, Jackson MPA. 1992. The fall of diapirs during thin-skinned extension. Marine and Petroleum Geology 9(4): 354–371. [CrossRef] [Google Scholar]
  • Vendeville B, Gaullier V. 2003. Role of pore-fluid pressure and slope angle in triggering submarine mass movements: Natural examples and pilot experimental models. In: Locat J, Mienert J, eds. Submarine mass movements and their consequences. Dordrecht (Pays-Bas): Kluwer Academic Publishers, pp. 137–144. [CrossRef] [Google Scholar]
  • Vendeville B, Cobbold P, Davy P, Brun JP, Choukroune P. 1987. Physical models of extensional tectonics at various scales. In: Coward JF, Dewey JF, Hancock PL, eds. Continental extensional tectonics. Geological Society of London Special Publications 28, pp. 95–107. [Google Scholar]
  • Vliet-Lanoë V. 1995. Solifluxion et transferts illuviaux dans les formations périglaciaires litées. État de la question [Solifluction and translocation processes in bedded periglacial formations. State of the art]. Géomorphologie : Relief, processus, environnement 1(2): 85–113. [CrossRef] [Google Scholar]
  • von Terzaghi K. 1923. Die Berechnung der Durchassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungs. erscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2A, 132: 105–124 (in the text and the “References” section). [Google Scholar]
  • Wadge G. 1984. Comparison of volcanic production-rates and subduction rates in the Lesser Antilles and Central America. Geology 12(9): 555–558. [CrossRef] [Google Scholar]
  • Walter TR. 2003. Buttressing and fractional spreading of Tenerife; an experimental approach on the formation of rift zones. Geophysical Research Letters 30(6): 1296. https://doi.org/10.1029/2002GL016610. [CrossRef] [Google Scholar]
  • Walter TR, Troll VR. 2003. Experiments on rift zone evolution in unstable volcanic edifices. Journal of Volcanology and Geothermal Research 127(1): 107–120. [CrossRef] [Google Scholar]
  • Walter TR, Amelung F. 2006. Volcano–earthquake interaction at Mauna Loa volcano, Hawaii. Journal of Geophysical Research: Solid Earth (1978–2012) 111(B5). [Google Scholar]
  • Watt SFL, Talling PJ, Vardy ME, Heller V, Huehnerbach V, Urlaub M, et al. 2012a. Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation. Earth and Planetary Science Letters 319: 228–240. https://doi.org/10.1016/j.epsl.2011.11.032. [CrossRef] [Google Scholar]
  • Watt SFL, Talling PJ, Vardy ME, Masson DG, Henstock TJ, Huehnerbach TA, et al. 2012b. Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology 232-325: 69–94. https://doi.org/10.1016/j.margeo.2012.08.002. [CrossRef] [Google Scholar]
  • Watt SFL, Karstens J, Berndt C. 2021. Volcanic-Island lateral collapses and their submarine deposits. In: Roverato M, Dufresne A, Procter J, eds. Volcanic debris avalanches. Advances in volcanology (An official book series of the International Association of Volcanology and Chemistry of the Earth’s interior). Cham: Springer. https://doi.org/10.1007/978-3-030-57411-6_10. [Google Scholar]
  • Wise DU. 1963. Keystone faulting and gravity sliding driven by basement uplift of Owl Creek Mountains, Wyoming. AAPG Bulletin 47(4): 586–598. [Google Scholar]
  • Wu S, Bally AW, Mohriak W, Talwani M. 2000. Slope tectonics-comparisons and contrasts of structural styles of salt and shale tectonics of the northern Gulf of Mexico with shale tectonics of offshore Nigeria in Gulf of Guinea. Geophysical Monograph-American Geophysical Union 115: 151–172. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.