Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 194, 2023
Article Number 13
Number of page(s) 26
DOI https://doi.org/10.1051/bsgf/2023009
Published online 26 October 2023
  • Adatte T, Arnaud-Vanneau A, Arnaud H, Bodin S, Carrio-Schaffhauser E, Föllmi KB, et al. 2005. The Hauterivian-lower Aptian sequence stratigraphy from Jura platform to vocontian basin: a multidisciplinary approach. Field-trip of the 7th International Symposium on the Cretaceous (September 1–4, 2005); Série “Colloques et Excursions” n°7, Université Joseph Fournier, Grenoble 1-Université de Neuchâtel, UNINE, 181 pp. https://hal-insu.archives-ouvertes.fr/insu-00723810/file/Hauterivian-2005.pdf. [Google Scholar]
  • Ahr WM. 1998. Carbonate ramps, 1973–1996: a historical review. Geological Society, London, Special Publications 149: 7–14. https://doi.org/10.1144/GSL.SP1999.149.01.02. [CrossRef] [Google Scholar]
  • Alsharhan AS. 1995. Facies variation, diagenesis, and exploration potential of the Cretaceous rudist-bearing carbonates of the Arabian Gulf. American Association of Petroleum Geologists Bulletin 79: 531–550. https://doi.org/10.1306/8D2B1584-171E-11D7-8645000102C1865D. [Google Scholar]
  • Alsharhan AS. 1993. Bu Hasa Field – United Arab Emirates, Rub al Khali Basin, Abu Dhabi. Treatise of Petroleum Geology, Atlas of Oil and Gas Fields: Structural Traps VIII: 99–127. [Google Scholar]
  • Argenio BD, Ferreri V, Amodio S, Pelosi N. 1997. Hierarchy of high-frequency orbital cycles in Cretaceous carbonate platform strata. Sedimentary Geology 113: 169–193. [CrossRef] [Google Scholar]
  • Arnaud-Vanneau A. 1979. Répartition de la microfaune dans les différents paléomilieux urgoniens. Geobios 3: 255–275. [CrossRef] [Google Scholar]
  • Arnaud-Vanneau A. 1980. Micropaléontologie, paléoécologie, et sédimentologie d’une plate-forme carbonatée de la marge passive de la Téthys : l’Urgonien du Vercors septentrional et de la Chartreuse (Alpes occidentales). PhD Thesis, Université Scientifique et Médicale de Grenoble, Géologie Alpine, Mémoire n°11, 1128 pp. [Google Scholar]
  • Arnaud-Vanneau A, Arnaud H. 1976. L’évolution paléogéographique du Vercors au Barrémien et à ĺAptien inférieur (Chaînes subalpines septentrionales, France). Geologie Alpine 52: 5–30. [Google Scholar]
  • Arnaud-Vanneau A, Arnaud H. 2005. Carbonate facies and microfacies of the Lower Cretaceous carbonate platforms. In: Adatte T, Arnaud-Vanneau A, Arnaud H, Bodin S, Carrio-Schaffhauser E, Föllmi KB, Godet A, Chaker Raddadi M, Vermeulen J, (Eds.), The Hauterivian-lower Aptian sequence stratigraphy from Jura platform to vocontian basin: a multidisciplinary approach. Field-trip of the 7th International symposium on the Cretaceous (September 1-4, 2005) ; Série spéciale “Colloques et Excursions” n°7, Université de Grenoble – Université de Neuchâtel pp. 97–126. Available at: https://hal-insu.archives-ouvertes.fr/insu-00723810/file/Hauterivian-2005.pdf. [Google Scholar]
  • Arnaud-Vanneau A, Arnaud H, Cotillon P, Ferry S, Masse JP. 1982. Caractères et Evolution des Plates-formes Carbonatées Périvocontiennes au Crétacé Inférieur ( France Sud-Est). Cretaceous Research 3: 3–18. [CrossRef] [Google Scholar]
  • Arnaud-Vanneau A, Arnaud H, Adatte T, Argot M, Rumley G, Thieuloy JP. 1987. The Lower Cretaceous from the Jura Platform to the Vocontian Basin (Swiss Jura, France). In: 3rd Int. Cretaceous Symp, Field Guide Excursion D (August 26–September 9, 1987), Tübingen, Université de Grenoble–Université de Neuchâtel, 128 pp. [Google Scholar]
  • Barbarand J, Préhaud P, Baudin F, Missenard Y, Matray JM, François T, et al. 2020. Where are the limits of Mesozoic intracontinental sedimentary basins of southern France? Marine and Petroleum Geology 121: 104589. https://doi.org/10.1016/j.marpetgeo.2020.104589. [Google Scholar]
  • Bastide F. 2014. Synthèse de l’évolution de la plateforme urgonienne (Barrémien tardif à Aptien précoce) du Sud-Est de la France : Faciès, micropaléontologie, géochimie, géométries, paléotectonique et géomodélisation. PhD Thesis, Université de Grenoble, 298 pp. [Google Scholar]
  • Betzler C, Brachert TC, Nebelsick J. 1997. The warm temperate carbonate province – A review of facies, zonations, and delimitations. Courier Forschungs-Institut Senckenberg 201: 83–99. [Google Scholar]
  • Bièvre G, Quesne D. 2004. Synsedimentary collapse on a carbonate platform margin (lower Barremian, southern Vercors, SE France). Geodiversitas 26: 169–184. [Google Scholar]
  • Blanc Aletru MC. 1995. Importance des discontinuités dans l’enregistrement sédimentaire de l’urgonien jurassien : micropaléontologie, sédimentologie, minéralogie et stratigraphie séquentielle. PhD Thesis, Université de Neuchâtel, Géologie Alpine, Mémoire n°24, 299 pp. [Google Scholar]
  • Bodin S. 2006. Palaeoceanographic and palaeoclimatic changes during the Late Hauterivian–Barremian and their impact on the northern Tethyan margin: A combined sedimentological and geochemical approach. PhD Thesis, Université de Neuchâtel, 272 pp. [Google Scholar]
  • Bodin S, Godet A, Vermeulen J, Linder P, Föllmi KB. 2006. Biostratigraphy, sedimentology and sequence stratigraphy of the latest Hauterivian–Early Barremian drowning episode of the Northern Tethyan margin (Altmann Member, Helvetic nappes, Switzerland). Eclogae Geologicae Helvetiae 99: 157–174. https://doi.org/10.1007/s00015-006-1188-7. [CrossRef] [Google Scholar]
  • Bonvallet L. 2015. Evolution of the Helvetic shelf ( Switzerland) during the Barremian-early Aptian: paleoenvironmental, paleogeographic and paleoceanographic controlling factors. PhD Thesis, Université de Neuchâtel, 217 pp. [Google Scholar]
  • Bonvallet L, Arnaud-Vanneau A, Arnaud H, Adatte T, Spangenberg JE, Stein M, et al. 2019. Evolution of the Urgonian shallow-water carbonate platform on the Helvetic shelf during the late Early Cretaceous. Sedimentary Geology 387: 18–56. https://doi.org/10.1016/j.sedgeo.2019.04.005. [CrossRef] [Google Scholar]
  • Borgomano J, Masse JP, Al Maskiry S. 2002. The lower Aptian Shuaiba carbonate outcrops in Jebel Akhdar, northern Oman: Impact on static modeling for Shuaiba petrol eum reservoirs. AAPG Bulletin 86: 1513–1529. https://doi.org/10.1306/61EEDCE2-173E-11D7-8645000102C1865D. [Google Scholar]
  • Borgomano JRF, Fournier F, Viseur S, Rijkels L. 2008. Stratigraphic well correlations for 3-D static modeling of carbonate reservoirs. AAPG Bulletin 92: 789–824. https://doi.org/10.1306/02210807078. [CrossRef] [Google Scholar]
  • Borgomano J, Masse JP, Fenerci-Masse M, Fournier F. 2013. Petrophysics of Lower Cretaceous platform carbonate outcrops in provence (SE France): Implications for carbonate reservoir characterisation. Journal of Petroleum Geology 36: 5–41. https://doi.org/10.1111/jpg.12540. [CrossRef] [Google Scholar]
  • Borgomano J, Lanteaume C, Philippe L, Fournier F, Montaggioni L, Masse JP. 2020. Quantitative carbonate sequence stratigraphy: Insights from stratigraphic forward models. AAPG Bulletin 1–28. https://doi.org/10.1306/11111917396. [Google Scholar]
  • Bosellini FR, Vescogni A, Kiessling W, Zoboli A, Di Giuseppe D, Papazzoni CA. 2020. Revisiting reef models in the oligocene of northern Italy (venetian southern alps). Bollettino della Societa Paleontologica Italiana 59: 337–348. https://doi.org/10.4435/BSPI.2020.12. [Google Scholar]
  • Bover-Arnal T, Salas R, Moreno-Bedmar JA, Bitzer K. 2009. Sequence stratigraphy and architecture of a late Early-Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sedimentary Geology 219: 280–301. https://doi.org/10.1016/j.sedgeo.2009.05.016. [CrossRef] [Google Scholar]
  • Bover-Arnal T, Salas R, Guimerà J, Moreno-Bedmar JA. 2022. Eustasy in the Aptian world: A vision from the eastern margin of the Iberian Plate. Global and Planetary Change 214: 103849. https://doi.org/10.1016/j.gloplacha.2022.103849. [CrossRef] [Google Scholar]
  • Brigaud B, Bonifacie M, Pagel M, Blaise T, Calmels D, Haurine F, Landrein P. 2020. Past hot fluid flows in limestones detected by Δ47-(U-Pb) and not recorded by other geothermometers. Geology 48: 851–856. https://doi.org/10.1130/G47358.1. [CrossRef] [Google Scholar]
  • Budd DA, Hajek EA, Purkis SJ. 2016. Introduction to autogenic dynamics and self-organization in sedimentary systems. SEPM Special Publications 106: 1–4. [Google Scholar]
  • Burla S, Heimhofer U, Hochuli PA, Weissert H, Skelton P. 2008. Changes in sedimentary patterns of coastal and deep-sea successions from the North Atlantic (Portugal) linked to Early Cretaceous environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 257: 38–57. https://doi.org/10.1016/j.palaeo.2007.09.010. [CrossRef] [Google Scholar]
  • Cantrell DL, Nicholson PG, Hughes GW, Miller MA, Buhllar AG, Abdelbagi ST, et al. 2014. Tethyan petroleum systems of Saudi Arabia. AAPG Memoir 106: 613–639. https://doi.org/10.1036/13431867M1063615. [Google Scholar]
  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, et al. 2011. Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy 44: 173–245. https://doi.org/10.1127/0078-0421/2011/0011. [CrossRef] [Google Scholar]
  • Clavel B, Charollais J-J, Busnardo R, Granier B, Conrad M, Desjacques P, et al. 2014. La plate-forme carbonatée urgonienne (Hauterivien supérieur–Aptien inférieur) dans le Sud-Est de la France et en Suisse : synthèse. Archives des Sciences 67: 1–97. [Google Scholar]
  • Collinson JD. 1969. The sedimentology of the Grindslow shales and the Kinderscout grit; a deltaic complex in the Namurian of northern England. Journal of Sedimentary Research 39: 194–221. [Google Scholar]
  • Davies RB, Casey DM, Horbury AD, Sharland PR, Simmons MD. 2002. Early to mid-Cretaceous mixed carbonate-clastic shelfal systems: Examples, issues and models from the Arabian Plate. GeoArabia 7: 541–598. [Google Scholar]
  • Douvillé H. 1900. Sur la distribution géographique des Rudistes, des Orbitolines et des Orbitoides. Bulletin de la Société géologique de France 28: 222–235. [Google Scholar]
  • Edwards J, Lallier F, Caumon G, Carpentier C. 2018. Uncertainty management in stratigraphic well correlation and stratigraphic architectures: A training-based method. Computers and Geosciences 111: 1–17. https://doi.org/10.1016/j.cageo.2017.10.008. [CrossRef] [Google Scholar]
  • Everts AJW, Stafleu JAN, Schlager W, Fouke BW, Zwart EW. 1995. Stratal patterns, sediment composition, and sequence stratigraphy at the margin of the Vercors carbonate platform (Lower Cretaceous, SE France). Journal of Sedimentary Research B65: 119–131. [Google Scholar]
  • Fenerci-Masse M, Masse JP, Chazottes V. 2005. Quantitative analysis of rudist assemblages: a key for palaeocommunity reconstructions. The late Barremian record from SE France. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 133–147. [Google Scholar]
  • Ferry S, Grosheny D. 2019. Growth faults affecting depositional geometry, facies and sequence stratigraphy record on a carbonate platform edge (South Vercors Urgonian platform, SE France). Bulletin de la Société Géologique de France 190: 2–9. [CrossRef] [EDP Sciences] [Google Scholar]
  • Flügel E. 2004. Microfacies of carbonate rocks Analysis, Interpretation and Application. Berlin, Springer, 976 p. [Google Scholar]
  • Föllmi KB. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35: 230–257. https://doi.org/10.1016/j.cretres.2011.12.005. [Google Scholar]
  • Föllmi KB, Godet A. 2013. Palaeoceanography of Lower Cretaceous Alpine platform carbonates. Sedimentology 60: 131–151. https://doi.org/10.1111/sed.12004. [CrossRef] [Google Scholar]
  • Föllmi KB, Gertsch B, Renevey JP, De Kaenel E, Stille P. 2008. Stratigraphy and sedimentology of phosphate-rich sediments in Malta and south-eastern Sicily (latest Oligocene to early Late Miocene). Sedimentology 55: 1029–1051. https://doi.org/10.1111/j.1365-3091.2007.00935.x. [Google Scholar]
  • Föllmi KB, Godet A, Bodin S, Linder P. 2006. Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21: 1–16. https://doi.org/10.1029/2006PA001313. [Google Scholar]
  • Follmi KB, Weissert H, Bisping M, Funk H. 1994. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of America Bulletin 106: 729–746. https://doi.org/10.1130/0016-7606(1994)106<0729:PCISAC>2.3.CO;2. [Google Scholar]
  • Fouke BW, Everts A-JW, Zwart EW, Schlager W, Smalley PC, Weissert H. 1996. Subaerial exposure unconformities on the Vercors carbonate platform (SE France ) and their sequence stratigraphic significance. Geological Society, London, Special Publications 104: 295–319. https://doi.org/10.1144/GSL.SP1996.104.01.17. [CrossRef] [Google Scholar]
  • Frau C, Pictet A, Spangenberg JE, Masse J-P, Tendil AJB, Lanteaume C. 2017. New insights on the age of the post-Urgonian marly cover of the Apt region (Vaucluse, SE France) and its implications on the demise of the North Provence carbonate platform. Sedimentary Geology 359: 44–61. https://doi.org/10.1016/j.sedgeo.2017.08.003. [CrossRef] [Google Scholar]
  • Frau C, Tendil AJ-B, Lanteaume C, Masse J-P, Pictet A, Bulot LG, et al. 2018. Late Barremian-early Aptian ammonite bioevents from the Urgonian-type series of Provence, southeast France: Regional stratigraphic correlations and implications for dating the peri-Vocontian carbonate platforms. Cretaceous Research 90: 222–253. https://doi.org/10.1016/j.cretres.2018.04.008. [CrossRef] [Google Scholar]
  • Frau C, Tendil AJB, Pohl A, Lanteaume C. 2020. Revising the timing and causes of the Urgonian rudistid-platform demise in the Mediterranean Tethys. Global and Planetary Change 187: 103124. https://doi.org/10.1016/j.gloplacha.2020.103124. [CrossRef] [Google Scholar]
  • Frau C, Tendil AJ-B, Masse J-P, Richet R, Borgomano JR, Lanteaume C, et al. 2021. Revised biostratigraphy and regional correlations of the Urgonian southern Vercors carbonate platform, southeast France. Cretaceous Research 104773. https://doi.org/10.1016/j.cretres.2021.104773. [CrossRef] [Google Scholar]
  • Gili E, Götz S. 2018. Paleoecology of rudists. The University of Kansas, Treatise Online 103, Part N, Revised, Volume 2, Chapter 26B, 29 pp. https://doi.org/10.17161/to.v0i0.7183. [Google Scholar]
  • Gili E, Masse JP, Skelton PW. 1995. Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeography, Palaeoclimatology, Palaeoecology 118: 245–267. https://doi.org/10.1016/0031-0182(95)00006-X. [CrossRef] [Google Scholar]
  • Gili E, Skelton PW, Bover-Arnal T, Salas R, Obrador A, Fenerci-Masse M. 2016. Depositional biofacies model for post-OAE1a Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 453: 101–114. https://doi.org/10.1016/j.palaeo.2016.03.029. [CrossRef] [Google Scholar]
  • Ginsburg RN. 1956. Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments. AAPG Bulletin 40: 2384–2427. https://doi.org/10.1306/5CEAE598-16BB-11D7-8645000102C1865D. [Google Scholar]
  • Godet A. 2006. The evolution of the Urgonian platform in the western Swiss Jura realm and its interactions with palaeoclimatic and palaeoceanographic change along the Northern Tethyan Margin (Hauterivian-earliest Aptian). PhD Thesis, Université de Neuchâtel, 405 pp. Available from http://doc.rero.ch/search.py?recid=6348&ln=fr. [Google Scholar]
  • Godet A, Föllmi KB, Bodin S, de Kaenel E, Matera V, Adatte T. 2010. Stratigraphic, sedimentological and palaeoenvironmental constraints on the rise of the Urgonian platform in the western Swiss Jura. Sedimentology 57: 1088–1125. https://doi.org/10.1111/j.1365-3091.2009.01137.x. [CrossRef] [Google Scholar]
  • Godet A, Durlet C, Spangenberg JE, Föllmi KB. 2016. Estimating the impact of early diagenesis on isotope records in shallow-marine carbonates: A case study from the Urgonian Platform in western Swiss Jura. Palaeogeography, Palaeoclimatology, Palaeoecology 454: 125–138. https://doi.org/10.1016/j.palaeo.2016.04.029. [CrossRef] [Google Scholar]
  • Handford R, Loucks RG. 1993. Carbonate depositional sequences and systems tracts - Responses of carbonate platforms to relative sea-level changes. In: Loucks RG, Sarg JF (Eds.), Carbonate Sequence Stratigraphy Recent Developments and Applications. AAPG Memoir 57: 3–41. https://doi.org/10.1306/M57579C1. [Google Scholar]
  • Hughes GW. 1997. The Great Pearl Bank Barrier of the Arabian Gulf as a possible Shu’aiba analogue. GeoArabia 2: 279–304. [CrossRef] [Google Scholar]
  • Immenhauser A. 2009. Estimating palaeo-water depth from the physical rock record. Earth-Science Reviews 96: 107–139. https://doi.org/10.1016/j.earscirev.2009.06.003. [CrossRef] [Google Scholar]
  • Jacquin T, Arnaud-Vanneau A, Arnaud H, Ravenne C, Vail PR. 1991. Systems tracts and depositional sequences in a carbonate setting: a study of continuous outcrops from platform to basin at the scale of seismic lines. Marine and Petroleum Geology 8: 122–139. https://doi.org/10.1016/0264-8172(91)90001-H. [Google Scholar]
  • James NP. 1997. The cool-water carbonate depositional realm, in: James NP, Clarke JAD (Eds.), Cool-Water Carbonates. SEPM Special Publication 56, pp. 1-20. https://doi.org/10.2110/pec.97.56. [Google Scholar]
  • Kenter J, Harris PM, Playton T. 2009. Getting Started in Carbonate Sequence Stratigraphy: A Compendium of Influential Papers. AAPG/Datapages 107–132. [Google Scholar]
  • Kiessling W, Flügel E, Golonka J. 2003. Patterns of Phanerozoic carbonate platform sedimentation, Lethaia 36: 195–226. https://doi.org/10.1080/00241160310004648. [CrossRef] [Google Scholar]
  • Kindler P, Wilson MEJ. 2010. Carbonate grain associations: their use and environmental significance, a brief review. Carbonate systems during the Oligocene-Miocene climate transition. Chichester (West Sussex): International Association of Sedimentologists Special Publications Wiley-Blackwell, pp. 35–48. [Google Scholar]
  • Lallier F, Caumon G, Borgomano J, Viseur S, Royer JJ, Antoine C. 2016. Uncertainty assessment in the stratigraphic well correlation of a carbonate ramp: Method and application to the Beausset Basin, SE France. Comptes Rendus – Geoscience 348: 499–509. https://doi.org/10.1016/j.crte.2015.10.002. [CrossRef] [Google Scholar]
  • Lanteaume C, Fournier F, Pellerin M, Borgomano J. 2018. Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling. Leading Edge 37: 672–680. https://doi.org/10.1190/tle37090672.1. [CrossRef] [Google Scholar]
  • Léonide P, Borgomano J, Masse JP, Doublet S. 2012. Relation between stratigraphic architecture and multi-scale heterogeneities in carbonate platforms: The Barremian-lower Aptian of the Monts de Vaucluse, SE France. Sedimentary Geology 265: 87–109. https://doi.org/10.1016/j.sedgeo.2012.03.019. [CrossRef] [Google Scholar]
  • Lokier SW, Al Junaibi M, Pufahl P. 2016. The petrographic description of carbonate facies: are we all speaking the same language? Sedimentology 63: 1843–1885. https://doi.org/10.1111/sed.12293. [CrossRef] [Google Scholar]
  • Madjid MYA, Vandeginste V, Hampson G, Jordan CJ, Booth AD. 2018. Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping. Marine and Petroleum Geology 91: 723–734. https://doi.org/10.1016/j.marpetgeo.2018.02.002. [Google Scholar]
  • Masse J-P. 1966. Etude lithologique et paléocéanographique de la série marine d’Orgon (Bouche-du-Rhône). Rec. Trav. Stat. Mar. Endoume 40: 267–297. [Google Scholar]
  • Masse J-P. 1976. Les calcaires urgoniens de Provence, Valanginien-Aptien inférieur. Stratigraphie, paléontologie, les paléoenvironments et leur évolution. PhD Thesis, Université de Marseille, 445 pp. [Google Scholar]
  • Masse J-P. 1991. The Lower Cretaceous Mesogean benthic ecosystems: palaeoecologic aspects and palaeobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 91: 331–345. https://doi.org/10.1016/0031-0182(92)90075-G. [Google Scholar]
  • Masse JP. 1992. The Lower Cretaceous Mesogean benthic ecosystems: palaeoecologic aspects and palaeobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 91: 331–345. https://doi.org/10.1016/0031-0182(92)90075-G. [Google Scholar]
  • Masse J-P. 1993. Valanginian-Early Aptian Carbonate Platforms from Provence, Southeastern France. AAPG Memoir 53: 363–374. https://doi.org/10.1306/M56578. [Google Scholar]
  • Masse J-P, Philip J. 1981. Cretaceous coral-rudist buildups of France. SEPM Special Publication 30: 399–426. [Google Scholar]
  • Masse J-P, Montaggioni LF. 2001. Growth history of shallow-water carbonates: Control of accommodation on ecological and depositional processes. International Journal of Earth Sciences 90: 452–469. https://doi.org/10.1007/s005310000143. [CrossRef] [Google Scholar]
  • Masse J-P, Fenerci-Masse M. 2008. Time contrasting palaeobiogeographies among Hauterivian-Lower Aptian rudist bivalves from the Mediterranean Tethys, their climatic control and palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 269: 54–65. https://doi.org/10.1016/j.palaeo.2008.07.024. [CrossRef] [Google Scholar]
  • Masse J-P, Fenerci-Masse M. 2011. Drowning discontinuities and stratigraphic correlation in platform carbonates. The late Barremian-early Aptian record of southeast France. Cretaceous Research 32: 659–684. https://doi.org/10.1016/j.cretres.2011.04.003. [Google Scholar]
  • Masse J-P, Fenerci-Masse M. 2015. Evolution of the rudist bivalve (Radiolitidae,Hippuritida) from the Mediterranean region. Palaeontology 58: 71–100. https://doi.org/10.1111/pala.12118. [CrossRef] [Google Scholar]
  • Masse J-P, Borgomano J, Al Maskiry S. 1998. A platform-to-basin transition for lower Aptian carbonates (Shuaiba Formation) of the northeastern Jebel Akhdar (Sultanate of Oman). Sedimentary Geology 119: 297–309. https://doi.org/10.1016/S0037-0738(98)00068-2. [Google Scholar]
  • Masse JP, Villeneuve M, Leonforte E, Nizou J. 2009. Block tilting of the North Provence early Cretaceous carbonate margin: Stratigraphic, sedimentologic and tectonic data. Bulletin de la Societe Geologique de France 180: 105–115. https://doi.org/10.2113/gssgfbull.180.2.105. [Google Scholar]
  • Masse J-P, Fenerci-Masse M, Pernarcic E. 2003. Palaeobathymetric reconstruction of peritidal carbonates Late Barremian, Urgonian, sequences of Provence (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology 200: 65–81. https://doi.org/10.1016/S0031-0182(03)00445-0. [CrossRef] [Google Scholar]
  • Masse J-P, Frau C, Tendil AJ-B, Fenerci-Masse M. 2020. Evidence for three successive upper Barremian-lower Aptian rudist faunas in the Urgonian-type deposits of southeastern France and their stratigraphic value. Cretaceous Research 115: 104561. [CrossRef] [Google Scholar]
  • Masse J-P, Frau C, Aubert F, Gesbert D. 2022. Non-rudist infralittoral bivalves from the Urgonian-type carbonate platforms of southeast France and the neighbouring regions: biodiversity, palaeoecological significance and relationships with rudists. Cretaceous Research 105294. [CrossRef] [Google Scholar]
  • Massonnat GJ, Rolando J, Danquigny C. 2017. The ALBION Project: An Observatory in the Heart of a Carbonate Reservoir ALBION dynamic outcrop analogue: a disruptive methodology. Abu Dhabi International Petroleum Exhibition & Conference, November 13-16, UAE, 9 pp. https://doi.org/10.2118/188539-MS. [Google Scholar]
  • McCall J, Rosen B, Darrell J. 1994. Carbonate deposition in accretionary prism settings: Early miocene coral limestones and corals of the Makran mountain range in Southern Iran. Facies 31: 141–177. https://doi.org/10.1007/BF02536938. [Google Scholar]
  • Michel J, Laugié M, Pohl A, Lanteaume C, Masse JP, Donnadieu Y, et al. 2019. Marine carbonate factories: a global model of carbonate platform distribution. International Journal of Earth Sciences 108: 1773–1792. https://doi.org/10.1007/s00531-019-01742-6. [CrossRef] [Google Scholar]
  • Parize O, Beaudoin B, Champanhet J-M, Friès G, Imbert P, Labourdette R, et al. 2007. A Methodological Approach to Clastic Injectites: From Field Analysis to Seismic Modeling—Examples of the Vocontian Aptian and Albian Injectites (Southeast France). AAPG Memoir 87: 783–807. https://doi.org/10.1306/1209861M873262. [Google Scholar]
  • Paumard V, Zuckmeyer E, Boichard R, Jorry SJ, Bourget J, Borgomano J, et al. 2017. Evolution of Late Oligocene – Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar. Marine and Petroleum Geology 81: 361–387. https://doi.org/10.1016/j.marpetgeo.2016.12.012. [CrossRef] [Google Scholar]
  • Pérès JM, Picard J. 1964. Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil de la Station Marine d’Endoume 31: 137 pp. Available from http://paleopolis.rediris.es/BrachNet/REF/Download/Manuel.html. [Google Scholar]
  • Peters SE, Loss DP. 2012. Storm and fair-weather wave base: A relevant distinction? Geology 40: 511–514. https://doi.org/10.1130/G32791.1. [Google Scholar]
  • Philip J. 2003. Peri-Tethyan neritic carbonate areas: Distribution through time and driving factors. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 19–37. https://doi.org/10.1016/S0031-0182(03)00311-0. [CrossRef] [Google Scholar]
  • Pohl A, Laugié M, Borgomano J, Michel J, Lanteaume C, Scotese CR, et al. 2019. Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Palaeogeography, Palaeoclimatology, Palaeoecology 514: 222–232. https://doi.org/10.1016/j.palaeo.2018.10.017. [CrossRef] [Google Scholar]
  • Pohl A, Donnadieu Y, Godderis Y, Lanteaume C, Hairabian A, Frau C, et al. 2020. Carbonate platform production during the Cretaceous. GSA Bulletin 132: 2606–2610. https://doi.org/10.1130/B35680.1. [CrossRef] [Google Scholar]
  • Pomar L. 2001. Types of carbonate platforms: A genetic approach. Basin Research 13: 313–334. https://doi.org/10.1046/j.0950-091X2001.00152.x. [CrossRef] [Google Scholar]
  • Pomar L. 2020. Chapter 12 – Carbonate Systems, in: Roberts D, Bally AW (Eds.), Regional Geology and Tectonics (Second Edition), Volume 1: Principles of Geologic Analysis, pp. 235–311. https://doi.org/10.1016/B978-0-444-64134-2.00013-4. [Google Scholar]
  • Pomar L, Morsilli M, Hallock P, Bádenas B. 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Science Reviews 111: 56–81. https://doi.org/10.1016/j.earscirev.2011.12.005. [CrossRef] [Google Scholar]
  • Pomar L, Aurell M, Bádenas B, Morsilli M, Al-Awwad SF. 2015. Depositional Model for a Prograding Oolitic Wedge, Upper Jurassic, Iberian basin. Marine and Petroleum Geology 67: 556–582. https://doi.org/10.1016/j.marpetgeo.2015.05.025. [CrossRef] [Google Scholar]
  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D. 2017. Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Marine and Petroleum Geology 83: 261–304. https://doi.org/10.1016/j.marpetgeo.2017.03.015. [CrossRef] [Google Scholar]
  • Purkis S, Casini G, Hunt D, Colpaert A. 2015. Morphometric patterns in Modern carbonate platforms can be applied to the ancient rock record: Similarities between Modern Alacranes Reef and Upper Palaeozoic platforms of the Barents Sea. Sedimentary Geology 321: 49–69. 10.1016/j.sedgeo.2015.03.001. [Google Scholar]
  • Purkis SJ, Harris PM, Cavalcante G. 2019. Controls of depositional facies patterns on a modern carbonate platform: Insight from hydrodynamic modeling. The Depositional Record 5: 421–437. https://doi.org/10.1002/dep2.61. [CrossRef] [Google Scholar]
  • Quesne D. 1998. Propositions pour une nouvelle interprétation sequentielle du Vercors. Bulletin de la Société Géologique de France 169: 537–546. [Google Scholar]
  • Quesne D, Bénard D. 2006. Interprétations nouvelles sur les relations entre calcarénites et calcaires à rudistes du Barrémien inférieur dans le Vercors méridional (sud-est de la France). Geodiversitas 28: 421–432. [Google Scholar]
  • Rankey EC. 2002. Spatial Patterns of Sediment Accumulation on a Holocene Carbonate Tidal Flat, Northwest Andros Island, Bahamas. Journal of Sedimentary Research 72: 591–601. https://doi.org/10.1306/020702720591. [CrossRef] [Google Scholar]
  • Rat P. 1983. L’Urgonien évolution des idées et des usages. Travaux du Comité français d’Histoire de la Géologie 93–106. [Google Scholar]
  • Rat P, Pascal A. 1979. De l’étage aux systèmes bio-sédimentairesurgoniens. Geobios 12: 385–399. 10.1016/S0016-6995(79)80076-5. [Google Scholar]
  • Reading HG. 1996. Sedimentary environments: Processes, facies and stratigraphy. 3rd edition, Wiley-Blackwell, Oxford, 704 pp. [Google Scholar]
  • Richet R. 2011. High-resolution 3D stratigraphic modelling of the Gresse-en-Vercors Lower Cretaceous carbonate platform (SE France): from digital outcrop modeling to carbonate sedimentary system characterization. PhD Thesis, Université Aix-Marseille, 175 pp. [Google Scholar]
  • Richet R, Borgomano J, Adams EW, Masse JP, Viseur S. 2011. Numerical outcrop geology applied to stratigraphical modeling of ancient carbonate platforms: The Lower Cretaceous Vercors carbonate platform (SE France). SEPM Special Publication Vol. 10, Outcrops revitalized: Tools, techniques and applications, 195–209. https://doi.org/10.2110/sepmcsp.10.195. [Google Scholar]
  • Rosen BR, Taylor PD. 1990. Reefs and carbonate builds-ups, in: Palaeobiology: A Synthesis. p. 341. [Google Scholar]
  • Sarg JF. 1988. Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Kendall CGsC, Posamentier HW, Ross CA, Van Wagoner JC, eds. Sea Level Changes - an Integrated Approach. SEPM Special Publication 42, pp. 155–181. https://doi.org/10.2110/pec.88.01.0155. [Google Scholar]
  • Schlager W. 1981. The paradox of drowned reefs and carbonate platforms. GSA Bulletin 92: 197–211. https://doi.org/10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2. [CrossRef] [Google Scholar]
  • Schlager W. 2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences 92: 445–464. https://doi.org/10.1007/s00531-003-0327-x. [CrossRef] [Google Scholar]
  • Schlager W. 2005. Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology No. 8, Tulsa, Oklahoma, 200 pp. https://doi.org/10.2110/csp.05.08. [Google Scholar]
  • Skelton PW. 2003. The Cretaceous world. Cambridge University Press, New York, 360 pp. [Google Scholar]
  • Skelton. 2018. Part N, Volume 1, Chapter 26A: Introduction to the Hippuritida (rudists): Shell structure, anatomy, and evolution. Treatise Online 104: 1–37. [Google Scholar]
  • Skelton PW, Gili E. 2012. Rudists and carbonate platforms in the Aptian: A case study on biotic interactions with ocean chemistry and climate. Sedimentology 59: 81–117. https://doi.org/10.1111/j.1365-3091.2011.01292.x. [CrossRef] [Google Scholar]
  • Skelton PW, Castro JM, Ruiz-Ortiz PA. 2019. Aptian carbonate platform development in the Southern Iberian Palaeomargin (Prebetic of Alicante, SE Spain). BSGF – Earth Sciences Bulletin 190(3): 1–19. https://doi.org/10.1051/bsgf/2019001. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stein M, Arnaud-Vanneau A, Adatte T, Fleitmann D, Spangenberg JE, Föllmi KB. 2012. Palaeoenvironmental and palaeoecological change on the northern Tethyan carbonate platform during the Late Barremian to earliest Aptian. Sedimentology 59: 939–963. https://doi.org/10.1111/j.1365-3091.2011.01286.x. [CrossRef] [Google Scholar]
  • Steuber T. 2000. Skeletal growth rates of Upper Cretaceous rudist bivalves: implications for carbonate production and organism-environment feedbacks, in: Insalaco E, Skelton PW, Palmer TJ (Eds.), Carbonate Platform Systems: Components and Interactions. Geol. Soc, London, Spec. Publ 178: 21–32. [Google Scholar]
  • Steuber T, Rauch M, Masse J-P, Graaf J, Malkoc M. 2005. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature 437: 1341–1344. https://doi.org/10.1038/nature04096. [CrossRef] [Google Scholar]
  • Stössel IP. 1999. Rudists and Carbonate Platform Evolution: the Late Cretaceous Maiella Carbonate Platform Margin, Abruzzi, Italy. Memorie de Scienze Geologiche 51(2): 333–413. Padova. [Google Scholar]
  • Teillet T, Fournier F, Montaggioni LF, BouDagher-Fadel M, Borgomano J, Braga JC, Villeneuve Q, Hong F. 2020. Development patterns of an isolated oligo-mesophotic carbonate buildup, early Miocene, Yadana field, offshore Myanmar. Marine and Petroleum Geology 111: 440–460. https://doi.org/10.1016/j.marpetgeo.2019.08.039. [CrossRef] [Google Scholar]
  • Tendil A. 2018. Contrôles tectoniques, climatiques et paléogéographiques sur l’architecture stratigraphique de la plateforme carbonatée urgonienne provençale (France) : approches sédimentologiques, géochimiques et numériques intégrées. [Google Scholar]
  • Tendil AJ-B, Frau C, Léonide P, Fournier F, Borgomano JR, Lanteaume C, Masse J-P, Massonnat G, Rolando J-P. 2018. Platform-to-basin anatomy of a Barremian-Aptian Tethyan carbonate system: New insights into the regional to global factors controlling the stratigraphic architecture of the Urgonian Provence platform (southeast France). Cretaceous Research 91: 382–411. https://doi.org/10.1016/j.cretres.2018.05.002. [CrossRef] [Google Scholar]
  • Tišljar J, Vlahovic I, Velic I, Maticec D, Robson J. 1998. Carbonate Facies Evolution from the Late Albian to Middle Cenomanian in Southern Istria (Croatia): Influence of Synsedimentary Tectonics and Extensive Organic Carbonate Production. Facies 38: 137–157. [CrossRef] [Google Scholar]
  • Tomassetti L, Petracchini L, Brandano M, Trippetta F, Tomassi A. 2018. Modeling lateral facies heterogeneity of an upper Oligocene carbonate ramp (Salento, southern Italy). Marine and Petroleum Geology 96: 254–270. https://doi.org/10.1016/j.marpetgeo.2018.06.004. [CrossRef] [Google Scholar]
  • Tucker ME, Wright VP. 1990. Carbonate sedimentology. Blackwell Science Ltd, 482 pp. https://doi.org/10.1002/9781444314175. [CrossRef] [Google Scholar]
  • van Buchem FSP, Pittet B, Hillgärtner H, Français I, Grötsch J, Mansouri A, Billing IM, Droste HHJ, Oterdoom WH. 2002. High-resolution sequence stratigraphic architecture of Barremian/Aptian carbonate systems in northern Oman and the United Arab Emirates (Kharaib and Shuaiba Formations). GeoArabia 7: 461–500. [CrossRef] [Google Scholar]
  • Vilas L, Masse JP, Arias C. 1995. Orbitolina episodes in carbonate platform evolution: the early Aptian model from SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 119: 35–45. https://doi.org/10.1016/0031-0182(95)00058-5. [Google Scholar]
  • Walker RG. 1967. Turbidite sedimentary structures and their relationship to proximal and distal depositional environments. Journal of Sedimentary Research 37: 25–43. https://doi.org/10.1306/74D71645-2B21-11D7-8648000102C1865D. [CrossRef] [Google Scholar]
  • Walker RG. 1992. Facies, facies models and modern stratigraphic concepts, in: Walker RG, James NP (Eds.), Facies models: response to sea-level change. Geological Association of Canada, St. John’s, Newfoundland, Canada pp. 1–14. [Google Scholar]
  • Wermeille S. 1996. Étude sédimentologique micropaleontologique et minéralogique des calcaires Urgoniens de la région SubAlpine (Savoie, France). Unpubl. Dipl. Université de Neuchâtel, 130 pp. [Google Scholar]
  • Wilkinson BH, Diedrich NW, Drummond CN. 1996. Facies successions in peritidal carbonate sequences. Journal of Sedimentary Research 66: 1065–1078. [Google Scholar]
  • Wilkinson BH, Drummond CN. 2004. Facies mosaics across the Persian Gulf and around Antigua—Stochastic and deterministic products of shallow-water sediment accumulation. Journal of Sedimentary Research 74: 513–526. https://doi.org/10.1306/123103740513. [CrossRef] [Google Scholar]
  • Wilson JL. 1975. Carbonate Facies in Geologic History. Springer-Verlag, Berlin Heidelberg New York, 471 pp. https://doi.org/10.1007/978-1-4612-6383-8. [CrossRef] [Google Scholar]
  • Wright VP, Burgess PM. 2005. The carbonate factory continuum, facies mosaics and microfacies: An appraisal of some of the key concepts underpinning carbonate sedimentology. Facies 51: 17–23. https://doi.org/10.1007/s10347-005-0049-6. [CrossRef] [Google Scholar]
  • Yose LA, Ruf AS, Strohmenger CJ, Al-Hosani I, Al-Maskary S, Bloch G, et al. 2006. Three-dimensional characterization of a Heterogeneous Carbonate Reservoir, Lower Cretaceous, Abu Dhabi (United Arab Emirates), in: Harris PM, Weber LJ (Eds.), Giant hydrocarbon reservoirs of the world: from rocks to reservoir characterization and modeling. AAPG Memoir Vol. 88 and SEPM Special Publication, pp. 173-212. https://doi.org/10.1306/1215877M882562. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.