Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 1
Number of page(s) 19
DOI https://doi.org/10.1051/bsgf/2023016
Published online 08 January 2024
  • Abdulwahid WM, Pradhan B. 2017. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 14: 1057–1076. [CrossRef] [Google Scholar]
  • Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318: 101–111. [Google Scholar]
  • Agharroud K, Siame LL, Ben Moussa A, et al. 2021. Seismo-tectonic model for the southern pre-rif border (northern morocco): insights from morphochronology. Tectonics 40: https://doi.org/10.1029/2020TC006633 [CrossRef] [Google Scholar]
  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9: 93–106. [CrossRef] [Google Scholar]
  • Antonini G, Ardizzone F, Cardinali M, et al. 2002. Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes. Boll della Soc Geol Ital 121: 843–853. [Google Scholar]
  • Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1: 73–81. [CrossRef] [Google Scholar]
  • Bălteanu D, Micu M, Jurchescu M, et al. 2020. National-scale landslide susceptibility map of Romania in a European methodological framework. Geomorphology 371: 107432. [CrossRef] [Google Scholar]
  • Bao Y, Zhai S, Chen J, et al. 2020. The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 351: 106970. [CrossRef] [Google Scholar]
  • Bardi F, Raspini F, Frodella W, et al. 2017. Monitoring the rapid-moving reactivation of earth flows by means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens 9: 165. [CrossRef] [Google Scholar]
  • Bargach K, Ruano P, Chabli A, et al. 2004. Recent tectonic deformations and stresses in the frontal part of the Rif Cordillera and the Saïss Basin (Fes and Rabat regions, Morocco). Pure Appl Geophys 161: 521–540. [CrossRef] [Google Scholar]
  • Beguería S. 2006. Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74: 196–206. [CrossRef] [Google Scholar]
  • Belle P, Aunay B, Lachassagne P, et al. 2018. Control of tropical landcover and soil properties on landslides’ aquifer recharge, piezometry and dynamics. Water 10: 1491. [CrossRef] [Google Scholar]
  • Boualla O, Mehdi K, Fadili A, et al. 2019. GIS-based landslide susceptibility mapping in the Safi region, West Morocco. Bull Eng Geol Environ 78: 2009–2026. https://doi.org/10.1007/s10064-017-1217-y [CrossRef] [Google Scholar]
  • Bounab A, Agharroud K, El Kharim Y, et al. 2022. The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: the case of Ain Lahcen commune (Tetouan, Northern : Geocarto International 37, 25 (2022): 9967–9997. https://doi.org/10.1080/10106049.2022.2028905 [Google Scholar]
  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M. 2015. GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74: 337–355. [CrossRef] [Google Scholar]
  • Brunetti MT, Guzzetti F, Cardinali M, et al. 2014. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth Planet Sci Lett 405: 156–168. https://doi.org/10.1016/J.EPSL.2014.08.025 [CrossRef] [Google Scholar]
  • Burbank DW. 2002. Rates of erosion and their implications for exhumation. Mineral Mag 66: 25–52. [CrossRef] [Google Scholar]
  • Byou T, Obda K, Taous A, Obda I. 2020. Susceptibilité aux glissements de terrain dans la ville d’Al Hoceima et sa périphérie: application de la méthode de la théorie de l’évidence. Geomatica 75: 1–27. https://doi.org/10.1139/geomat-2019-0025 [CrossRef] [Google Scholar]
  • Cao Y, Wei X, Fan W, et al. 2021. Landslide susceptibility assessment using the weight of evidence method: a case study in Xunyang area, China. PLoS One 16: e0245668. [Google Scholar]
  • Cardinali M, Antonini G, Reichenbach P, Guzzetti F. 2001. Photo geological and landslide inventory map for the Upper Tiber River basin. CNR, Grup Naz per la Dif dalle Catastr Idrogeol Publ. [Google Scholar]
  • Catani F, Casagli N, Ermini L, et al. 2005. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2: 329–342. [CrossRef] [Google Scholar]
  • Chabok M, Bahrami H, Asakereh A, Jaafarzadeh NA. 2019. Landfills site selection in southern cities of Khuzestan province with using fuzzy set and AHP method. J Adv Appl Geol 9: 142–155. [Google Scholar]
  • Chacón J, Irigaray C, Fernandez T, El Hamdouni R. 2006. Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65: 341–411. [CrossRef] [Google Scholar]
  • Chalouan A, Gil AJ, Galindo-Zaldívar J, et al. 2014. Active faulting in the frontal Rif Cordillera (Fes region, Morocco): constraints from GPS data. J Geodyn 77: 110–122. [CrossRef] [Google Scholar]
  • Charroud M, Cherai B, Benabdelhadi M, Falguères C. 2007. Impact de la néotectonique quaternaire sur la dynamique sédimentaire du Saïs (Maroc): du bassin d’avant fosse pliocène au plateau continental quaternaire. Quat Rev l’Association française pour l’étude du Quat 18: 327–334. [Google Scholar]
  • Chaudhary P, Chhetri SK, Joshi KM, et al. 2016. Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: a case study from Kathmandu Metropolitan City, Nepal. Socioecon Plann Sci 53: 60–71. [CrossRef] [Google Scholar]
  • Chung C-JF, Fabbri AG. 1999. Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sensing 65: 1389–1399. [Google Scholar]
  • Chung C-JF, Fabbri AG. 2003. Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30: 451–472. [CrossRef] [Google Scholar]
  • Chung CF, Fabbri AG. 2005. Systematic procedures of landslide hazard mapping for risk assessment using spatial prediction models. Landslide hazard risk 139–174. [CrossRef] [Google Scholar]
  • Conforti M, Pascale S, Robustelli G, Sdao F. 2014. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113: 236–250. [CrossRef] [Google Scholar]
  • Corominas J, Moya J. 2008. A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102: 193–213. [CrossRef] [Google Scholar]
  • Costanzo D, Rotigliano E, Irigaray C, et al. 2012. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci 12: 327–340. [CrossRef] [Google Scholar]
  • Crozier MJ. 1984. Field assessment of slope instability. Slope Instab 103–142. [Google Scholar]
  • Davis JC. 1973. Statistics and data analysis in geology. New York: John Wiley. [Google Scholar]
  • DeGRAFF JV. 1985. Using isopleth maps of landslide deposits as a tool in timber sale planning. Bull Assoc Eng Geol 22: 445–453. [Google Scholar]
  • Del Soldato M, Bianchini S, Calcaterra D, et al. 2017. A new approach for landslide-induced damage assessment. Geomatics, Nat Hazards Risk 8: 1524–1537. [Google Scholar]
  • Demir G, Aytekin M, Akgün A, et al. 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65: 1481–1506. [CrossRef] [Google Scholar]
  • DGM Direction Générale de la Météorologie. Fez-Boulemane [Google Scholar]
  • Donati L, Turrini MC. 2002. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63: 277–289. [CrossRef] [Google Scholar]
  • El Kharim Y, Bounab A, Ilias O, et al. 2021. Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): inventory and case study. Nat Hazards 107: 355–373. [CrossRef] [Google Scholar]
  • Feizizadeh B, Blaschke T. 2013. GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65: 2105–2128. [CrossRef] [Google Scholar]
  • Feizizadeh B, Jankowski P, Blaschke T. 2014. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci 64: 81–95. [CrossRef] [Google Scholar]
  • Fell R, Corominas J, Bonnard C, et al. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102: 99–111. [CrossRef] [Google Scholar]
  • Fernández T, Irigaray C, El Hamdouni R, Chacón J. 2003. Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain) [Google Scholar]
  • Fu S, Chen L, Woldai T, et al. 2020. Landslide hazard probability and risk assessment at the community level: a case of western Hubei, China. Nat Hazards Earth Syst Sci 20: 581–601. [CrossRef] [Google Scholar]
  • Gaidzik K, Ramírez-Herrera MT. 2021. The importance of input data on landslide susceptibility mapping. Sci Rep 11: 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Galli M, Ardizzone F, Cardinali M, et al. 2008. Comparing landslide inventory maps. Geomorphology 94: 268–289. https://doi.org/10.1016/J.GEOMORPH.2006.09.023 [CrossRef] [Google Scholar]
  • Garcia-Chevesich P, Wei X, Ticona J, et al. 2021. The impact of agricultural irrigation on landslide triggering: a review from chinese, english, and Spanish literature. Water (Switzerland) 13. [Google Scholar]
  • García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J. 2010. Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124: 250–259. [CrossRef] [Google Scholar]
  • Goodchild MF. 1986. Spatial autocorrelation. Geo Books. [Google Scholar]
  • Goodman LA, Kruskal WH. 1979. Measures of association for cross classifications. Meas Assoc cross Classif 2–34. [Google Scholar]
  • Guns M, Vanacker V. 2013. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70: 2941–2952. https://doi.org/10.1007/s12665-013-2352-9 [CrossRef] [Google Scholar]
  • Guns M, Vanacker V. 2014. Shifts in landslide frequency-area distribution after forest conversion in the tropical Andes. Anthropocene 6: 75–85. https://doi.org/10.1016/J.ANCENE2014.08.001 [CrossRef] [Google Scholar]
  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A. 2000. Comparing landslide maps: a case study in the Upper Tiber River Basin, Central Italy. Environ Manage 25: [Google Scholar]
  • Guzzetti F, Galli M, Reichenbach P, et al. 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci 6: 115–131. [CrossRef] [Google Scholar]
  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P. 2002. Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195: 169–183. https://doi.org/10.1016/S0012-821X(01)00589-1 [CrossRef] [Google Scholar]
  • Guzzetti F, Reichenbach P, Cardinali M, et al. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72: 272–299. [CrossRef] [Google Scholar]
  • Hansen A. 1984. Landslide hazard analysis. Slope Instab 523–602. [Google Scholar]
  • Harmouzi H, Nefeslioglu HA, Rouai M, et al. 2019. Landslide susceptibility mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial neural networks (ANN). Arab J Geosci 12:. https://doi.org/10.1007/s12517-019-4892-0 [CrossRef] [Google Scholar]
  • Hasekioğulları GD, Ercanoglu M. 2012. A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards 63: 1157–1179. [CrossRef] [Google Scholar]
  • Hassan T, Benoît D, Abdel-Ali C, et al. 2015. Neotectonic and mass movements on the new Fez-Taza highway (Northern Morocco). In: Engineering Geology for Society and Territory-Volume 6. Springer, pp. 95–99. [CrossRef] [Google Scholar]
  • Heusch B. 1970. L’érosion du pré-Rif. Une étude quantitative de l’érosion hydraulique dans les collines marneuses du pré-Rif occidental. [Google Scholar]
  • Hölbling D, Friedl B, Eisank C. 2015. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci Informatics 8: 327–335. [CrossRef] [Google Scholar]
  • Holec J, Bednarik M, Šabo M, et al. 2013. A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat Hazards 69: 1081–1107. [CrossRef] [Google Scholar]
  • Hong H, Chen W, Xu C, et al. 2017. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int 32: 139–154. [Google Scholar]
  • Hovius N, Stark CP, Allen PA. 1997. Sediment flux from a mountain belt derived by landslide mapping. Geology 25: 231–234. [CrossRef] [Google Scholar]
  • Hovius N, Stark CP, Hao-Tsu C, Jiun-Chuan L. 2000. Supply and removal of sediment in a landslide-dominated mountain belt: central range, Taiwan. J Geol 108: 73–89. [CrossRef] [Google Scholar]
  • Howard AD. 2009. Badlands and gullying. In: Geomorphology of desert environments. Springer, pp. 265–299. [CrossRef] [Google Scholar]
  • Huang F, Yao C, Liu W, et al. 2018. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine. Geomatics, Nat Hazards Risk 9: 919–938. [CrossRef] [Google Scholar]
  • Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides 11: 167–194. [CrossRef] [Google Scholar]
  • Irigaray C. 1995. Movimientos de ladera: inventario, análisis y cartografía de susceptibilidad mediante un sistema de información geográfica (SIG). Aplicación a las zonas de Colmenar (Ma), Rute (Co) y Montefrío (Gr). [Google Scholar]
  • Irigaray C, Fernández T, El Hamdouni R, Chacón J. 2007. Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (Southern Spain). Nat Hazards 41: 61–79. https://doi.org/10.1007/s11069-006-9027-8 [CrossRef] [Google Scholar]
  • Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J. 2009. Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Natural Hazards 571–590. [CrossRef] [Google Scholar]
  • Kannan M, Saranathan E, Anabalagan R. 2013. Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arab J Geosci 6: 2901–2913. [CrossRef] [Google Scholar]
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11: 425–439. [CrossRef] [Google Scholar]
  • Kavzoglu, T., Kutlug Sahin, E., & Colkesen, I. (2015). An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Natural Hazards, 76: 471–496. [Google Scholar]
  • Komac M. 2006. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74: 17–28. [CrossRef] [Google Scholar]
  • Korup O, Densmore AL, Schlunegger F. 2010. The role of landslides in mountain range evolution. Geomorphology 120: 77–90. [CrossRef] [Google Scholar]
  • Krivoguz D, Bespalova L. 2017. Spatial analysis of topography of Kerch peninsula using GIS and its impact on landslides. Int J Prof Sci 19–32. [Google Scholar]
  • Lakhdar A, Ntarmouchant A, Ribeiro ML, et al. 2006. Nouvelle approche géologique et géodinamique du Complexe Hydrothermal de Moulay Yacoub, bordure septentrionale du Sillon Sud Rifain. [Google Scholar]
  • Lazzari M, Danese M, Gioia D. 2012. The contribution of fluvial and mass wasting processes to sedimentary budget in mountain catchments of the southern Apennines, Italy. In: EGU General Assembly Conference Abstracts. p. 10740. [Google Scholar]
  • Lee S, Choi J. 2004. Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18: 789–814. [CrossRef] [Google Scholar]
  • Lee S, Sambath T. 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50: 847–855. https://doi.org/10.1007/s00254-006-0256-7 [CrossRef] [Google Scholar]
  • Li L, Lan H, Guo C, et al. 2017. A modified frequency ratio method for landslide susceptibility assessment. Landslides 14: 727–741. https://doi.org/10.1007/s10346-016-0771-x [CrossRef] [Google Scholar]
  • Li L, Lan H, Wu Y. 2016. How sample size can effect landslide size distribution. Geoenvironmental Disasters 3: 1–11. https://doi.org/10.1186/S40677-016-0052-Y/FIGURES/7 [CrossRef] [Google Scholar]
  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P. 2004. Landslide inventories and their statistical properties. Earth Surf Process Landforms 29: 687–711. https://doi.org/10.1002/ESP1064 [CrossRef] [Google Scholar]
  • Marino P, Peres DJ, Cancelliere A, et al. 2020. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 17: 2041–2054. [CrossRef] [Google Scholar]
  • Mastere M, Van Vliet-Lanoë B, Brahim LA. 2013. Cartographie de l’occupation des sols en relation avec les mouvements gravitaires et le ravinement dans le Rif nord-occidental (Maroc). Géomorphologie Reli Process Environ 19: 335–352. [CrossRef] [Google Scholar]
  • Mind’je R, Li L, Nsengiyumva JB, et al. 2020. Landslide susceptibility and influencing factors analysis in Rwanda. Environ Dev Sustain 22: 7985–8012. [CrossRef] [Google Scholar]
  • Monsieurs E, Dewitte O, Demoulin A. 2019. A susceptibility-based rainfall threshold approach for landslide occurrence. Nat Hazards Earth Syst Sci 19: 775–789. [CrossRef] [Google Scholar]
  • Neuhäuser B, Damm B, Terhorst B. 2012. GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9: 511–528. [CrossRef] [Google Scholar]
  • Notti D, Galve JP, Mateos RM, et al. 2015. Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 12:. https://doi.org/10.1007/s10346-015-0612-3 [CrossRef] [Google Scholar]
  • Obda I, El Kharim Y, Bounab A, et al. 2022. Multi-criteria assessment approach of slow-moving urban landslide hazard: the case of Moulay Yacoub, Morocco. Can J Earth Sci 99: 1–18. [Google Scholar]
  • Obda I, El Kharim Y, Bounab A, et al. 2021. Multi criteria assessing approach of the slow-moving urban landslide hazard, the case of Moulay Yacoub town (Morocco). Can J Earth Sci. [Google Scholar]
  • Osna T, Sezer EA, Akgun A. 2014. GeoFIS: an integrated tool for the assessment of landslide susceptibility. Comput Geosci 66: 20–30. [CrossRef] [Google Scholar]
  • Othman, A. A., Gloaguen, R., Andreani, L., & Rahnama, M. (2015). Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE Iraq: a comparison of different statistical models. Natural Hazards and Earth System Sciences Discussions, 3: 1789–1833. [Google Scholar]
  • Pantelidis L. 2011. An innovative landslide risk assessment system: application to highway embankments. In: Geo-Risk 2011: Risk Assessment and Management. pp. 1012–1019. [Google Scholar]
  • Park S, Choi C, Kim B, Kim J. 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68: 1443–1464. [CrossRef] [Google Scholar]
  • Pereira S, Zêzere JL, Bateira C. 2012. Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12: 979–988. https://doi.org/10.5194/nhess-12-979-2012 [CrossRef] [Google Scholar]
  • Petley DN, Dunning SA, Rosser NJ. 2005. The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In: Landslide risk management. CRC Press, pp. 377-384. [Google Scholar]
  • Picarelli L, Urciuoli G, Ramondini M, Comegna L. 2005. Main features of mudslides in tectonised highly fissured clay shales. Landslides 2: 15–30. [CrossRef] [Google Scholar]
  • Poujol A, Ritz J-F, Vernant P, et al. 2017. Which fault destroyed Fes city (Morocco) in 1755? A new insight from the Holocene deformations observed along the southern border of Gibraltar arc. Tectonophysics 712: 303–311. [CrossRef] [Google Scholar]
  • Pourghasemi HR, Pradhan B, Gokceoglu C. 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63: 965–996. [CrossRef] [Google Scholar]
  • Pourghasemi HR, Rahmati O. 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena 162: 177–192. [CrossRef] [Google Scholar]
  • Pourghasemi HR, Yansari ZT, Panagos P, Pradhan B. 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013-2016). Arab J Geosci 11: 1–12. [CrossRef] [Google Scholar]
  • Kavzoglu, T., Kutlug Sahin, E., & Colkesen, I. (2015). An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Natural Hazards, 76, 471-496. [Google Scholar]
  • Qin C-Z., Zhu A-X., Pei T, et al. 2011. An approach to computing topographic wetness index based on maximum downslope gradient. Precis Agric 12: 32–43. [CrossRef] [Google Scholar]
  • Qiu H, Hu S, Yang D, et al. 2020. Comparing landslide size probability distribution at the landscape scale (Loess Plateau and the Qinba Mountains, Central China) using double Pareto and inverse gamma. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-020-02037-w [Google Scholar]
  • Razavizadeh S, Solaimani K, Massironi M, Kavian A. 2017. Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci 76: 1–16. [CrossRef] [Google Scholar]
  • RGPH. 2014. Morocco population and housing census, high commission for planning. [Google Scholar]
  • Roering JJ, Schmidt KM, Stock JD, et al. 2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40: 237–253. [CrossRef] [Google Scholar]
  • Rogers NW, Selby MJ. 1980. Mechanisms of shallow translational landsliding during summer rainstorms: North Island, New Zealand. Geogr Ann Ser A, Phys Geogr 62: 11–21. [Google Scholar]
  • Rouai M, Jaaidi EB. 2003. Scaling properties of landslides in the Rif mountains of Morocco. Eng Geol 68: 353–359. [CrossRef] [Google Scholar]
  • Rybar J, Stemberk J, Wagner P. 2002. Landslides: Proceedings of the First European Conference on Landslides, Prague, Czech Republic, 24–26 June 2002. CRC Press. [Google Scholar]
  • Sahrane R, Ali B, El Kharim Y. Investigating the effects of landslides inventory completeness on susceptibility mapping and frequency-area distributions: case of Taounate Province, Northern Morocco. North Morocco. [Google Scholar]
  • Sahrane R, El Kharim Y, Bounab A. 2022. Investigating the effects of landscape characteristics on landslide susceptibility and Frequency-area distributions: the case of Taounate province, Northern Morocco. Geocarto Int 1–22. [Google Scholar]
  • Schicker, R., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161: 40–57. [Google Scholar]
  • Schuster RL. 1996. Socioeconomic significance of landslides. Landslides Investig Mitigation Washingt Natl Acad Press Transp Res Board Spec Rep 247: 12–35. [Google Scholar]
  • Schuster RL, Highland L. 2001. Socioeconomic and environmental impacts of landslides in the western hemisphere. Citeseer. [Google Scholar]
  • Schuster RL, Varnes DJ, Savage WZ. 1996. The Slumgullion earth flow: a large-scale natural laboratory. US Geol Surv Bull 2130: [Google Scholar]
  • Schwarz M, Lehmann P, Or D. 2010. Quantifying lateral root reinforcement in steep slopes-from a bundle of roots to tree stands. Earth Surf Process Landforms J Br Geomorphol Res Gr 35: 354–367. [CrossRef] [Google Scholar]
  • Sendide O. 2002. Etude qualitative des eaux de la nappe phréatique du bassin de Fès-Meknés, caractérisation, évaluation, modélisation mathématique et moyen de protection. [Google Scholar]
  • Sidle R, Ochiai H. 2006. Processes, prediction, and land use. Water Resour Monogr Am Geophys Union, Washingt. [Google Scholar]
  • Soeters R, Van Westen CJ. 1996. Slope instability recognition, analysis and zonation. Landslides Investig Mitig 247: 129–177. [Google Scholar]
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol 281:. https://doi.org/10.1016/j.enggeo.2020.105972 [Google Scholar]
  • Sun X, Chen J, Bao Y, et al. 2018. Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS Int J Geo-Information 7: 438. [CrossRef] [Google Scholar]
  • Süzen, M. L., & Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental geology, 45: 665–679. [Google Scholar]
  • Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science (80-) 240: 1285–1293. [CrossRef] [PubMed] [Google Scholar]
  • Tanyaş H, van Westen CJ, Allstadt KE, Jibson RW. 2019. Factors controlling landslide frequency-area distributions. Earth Surf Process Landforms 44: 900–917. https://doi.org/10.1002/ESP4543 [CrossRef] [Google Scholar]
  • Thiery Y, Malet J-P., Sterlacchini S, et al. 2007. Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92: 38–59. [CrossRef] [Google Scholar]
  • Tien Bui D, et al. 2019. New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed. Forests 10: 743. [CrossRef] [Google Scholar]
  • Tribak A. 1997. Quelques exemples de mouvements de terrain dans le Prérif oriental (Maroc). Méditerranée 86: 61–66. [Google Scholar]
  • Tribak A, El Garouani A, Abahrour M. 2009. Evaluation quantitative de l’érosion hydrique sur les terrains marneux du PréRif oriental (Maroc): cas du sous-bassin de l’oued Tlata. Sci Chang Planétaires/Sécheresse 20: 333–337. [Google Scholar]
  • Vakhshoori V, Zare M. 2016. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Nat Hazards Risk 7: 1731–1752. [Google Scholar]
  • van Beek LPH. 2002. Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. [Google Scholar]
  • Van Den Eeckhaut M, Poesen J, Govers G, et al. 2007. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256: 588–603. [CrossRef] [Google Scholar]
  • Van Den Eeckhaut F M, Poesen J, Verstraeten G, et al. 2005. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67: 351–363. [CrossRef] [Google Scholar]
  • Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., & Demoulin, A. (2007). Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth and Planetary Science Letters, 256: 588–603. [Google Scholar]
  • Van Den Eeckhaut, M., Marre, A., & Poesen, J. (2010). Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphology, 115: 141–155. [Google Scholar]
  • Vanwalleghem T, Van Den Eeckhaut F M, Poesen J, et al. 2008. Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: application of rare event logistic regression. Geomorphology 95: 504–517. [CrossRef] [Google Scholar]
  • Varnes DJ, Cruden DM. 1996. Landslide types and processes. Landslides Investig mitigation, Transp Res Board Spec Rep 247: [Google Scholar]
  • Wang W-D., Guo J, Fang L-G., Chang X-S. 2012. A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ Earth Sci 65: 1705–1714. [CrossRef] [Google Scholar]
  • WBG. 2021. Climate risk country profile (Morocco). [Google Scholar]
  • Winckel A. 2002. Etablissement d’une typologie des eaux thermales par une approche hydrochimique, isotopique et tectonique: exemple du Maroc. [Google Scholar]
  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85: 274–287. [CrossRef] [Google Scholar]
  • Youssef AM, Al-Kathery M, Pradhan B. 2015. Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J 19: 113–134. https://doi.org/10.1007/s12303-014-0032-8 [CrossRef] [Google Scholar]
  • Zêzere JL, Pereira S, Melo R, et al. 2017. Mapping landslide susceptibility using data-driven methods. Sci Total Environ 589: 250–267. [CrossRef] [Google Scholar]
  • Zhang Y xing, Lan H xing, Li L ping et al. 2020. Optimizing the frequency ratio method for landslide susceptibility assessment: a case study of the Caiyuan Basin in the southeast mountainous area of China. J Mt Sci 17: 340–357. https://doi.org/10.1007/s11629-019-5702-6 [CrossRef] [Google Scholar]
  • Zhou C, Yin K, Cao Y, et al. 2018. Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci 112: 23–37. [CrossRef] [Google Scholar]
  • Zhou S, Chen G, Fang L, Nie Y. 2016. GIS-based integration of subjective and objective weighting methods for regional landslides susceptibility mapping. Sustainability 8: 334. [CrossRef] [Google Scholar]
  • Zieher T, Perzl F, Rössel M, et al. 2016. A multi-annual landslide inventory for the assessment of shallow landslide susceptibility-two test cases in Vorarlberg, Austria. Geomorphology 259: 40–54. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.