Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Special Issue Messinian Crisis
Article Number 2
Number of page(s) 25
DOI https://doi.org/10.1051/bsgf/2023012
Published online 08 January 2024
  • Abbouda M, Bouhadad Y, Benfedda A, Slimani A. 2018. Seismotectonic and seismological aspects of the Mostaganem (Western Algeria) May 22, 2014 (Mw 4.9) seismic event. Arab J Geosci 11 (57): 1–9. https://doi.org/10.1007/s12517-018-3404-y [CrossRef] [Google Scholar]
  • Aguirre J, Jiménez AP. 1998. Fossil analogues of present-day Cladocora caespitosa coral banks: sedimentary setting, dwelling community, and taphonomy (Late Pliocene, W Mediterranean). Coral Reefs 17: 203–213 [Google Scholar]
  • Altuna A, Poliseno A. 2019. Taxonomy, genetics and biodiversity of mediterranean deep-sea corals and cold-water corals. In Orejas C, Jiménez C. eds. Mediterranean Cold-Water Corals: Past, Present and Future, Coral Reefs of the World 9. Springer Nature, 14: 121–156. https://doi. org/10. 1007/978-3-319-91608-8_14 [Google Scholar]
  • Ameur-Chehbeur A. 1992. Age accuracy of some Hipparion fossiliferous sites in Algeria. In Spitz FG, Janeau G, Gonzalez S, Aulagniern xx, eds. Ongulés/Ungulates, 91, S.F.E.P.M.–I.R.G.M., Paris: Toulouse, pp. 27–30 [Google Scholar]
  • Anderson RVV. 1936. Geology in the coastal Atlas of western Algeria, Mem Soc Geol Amer 4–450. https://doi.org/10.1130/MEM4-p1. [Google Scholar]
  • Andreetto F, Mancini AM, Flecker R, Gennari R, Lewis J, Lozar F et al. 2022. Multi-proxy investigation of the post-evaporitic succession of the Piedmont Basin (Pollenzo section, NW Italy): A new piece in the Stage 3 puzzle of the Messinian Salinity Crisis. Palaeogeogr Palaeoclimatol Palaeoecol 594: 110961. [Google Scholar]
  • Andreetto F, Aloisi G, Raad F, Heida H, Flecker R, Agiadi K et al. 2021. Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis. Earth Sci Rev 216, 103577: 1–47. https://doi.org/10.1016/j.earscirev.2021.103577. [Google Scholar]
  • Arab M, Bracene R, Roure F, Zazoun RS, Mahjoub Y, Badji R. 2015.Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria). Mar Pet Geol 64: 363–385. https://doi.org/10.1016/j.marpetgeo.2015.03.017. [Google Scholar]
  • Arambourg C. 1927. Les poissons fossiles d’Oran. Matériaux carte géol. d’Algérie. Sér 1, Palaeontol 6: 291. [Google Scholar]
  • Atif KFT, Bessedik M, Belkebir L, Mansour B, Saint Martin JP. 2008. Le passage mio-pliocène dans le bassin du Bas Chélif (Algérie). Biostratigraphie et paléoenvironnements. Geodiversitas 30 (1): 97–116. http://sciencepress.mnhn.fr/fr/periodiques/geodiversitas/30/1/le-passage-mio-pliocene-dans-le-bassin-du-bas-chelif-algerie-biostratigraphie-et-paleoenvironnements [Google Scholar]
  • Bache F, Gargani J, Suc JP, Gorini C, Rabineau M, Popescu SM et al. 2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Mar Pet Geol 66: 262–277. https://doi.org/10.1016/j.marpetgeo.2014.12.013. [CrossRef] [Google Scholar]
  • Bache F, Popescu SM, Rabineau M, Gorini C, Suc JP, Clauzon G et al. 2012. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res 24: 125–153. https://doi.org/10.1111/j. 1365-2117. 2011.00521.x. [CrossRef] [Google Scholar]
  • Backman J, Raffi I, Rio D, Fornaciari E, Pälike H. 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsl Stratigr 47(2) : 221–244. https://doi.org/10.1127/0078-0421/2012/0022. [Google Scholar]
  • Bassetti MA, Miculan P, Sierro FJ. 2006. Evolution of depositional environments after the end of Messinian Salinity Crisis in Nijar basin (SE Betic Cordillera). Sediment Geol 188-189: 279–295. https://doi.org/10.1016/j.sedgeo.2006.03.009. [Google Scholar]
  • Belhadji A, Belkebir L, Saint Martin JP, Mansour B, Bessedik M, Conesa G. 2008. Apports des foraminifères planctoniques à la biostratigraphie du Miocène supérieur et du Pliocène de Djebel Diss (bassin du Chélif, Algérie). Geodiversitas 30 (1): 79–96. http://sciencepress.mnhn.fr/fr/periodiques/geodiversitas/30/1/apports-des-foraminiferes-planctoniques-la-biostratigraphie-du-miocene-superieur-et-du-pliocene-de-djebel-diss-bassin-du-chelif-algerie [Google Scholar]
  • Belkebir L. 1986 Le Néogène de la bordure nord occidentale du massif de Dahra (Algérie). Biostratigraphie, paléoécologie, paléogéographie. France: Doctorat Sci, Provence University, 289 p. (umpublished). [Google Scholar]
  • Belkebir L, Anglada R. 1985. Le Néogène de la bordure nord-occidentale du massif du Dahra. 110è Congr. natl. Soc. savantes, Sciences 6: 279–290. Montpellier. https://cths.fr/ed/edition.php?id=156. [Google Scholar]
  • Belkebir L, Bessedik M, Ameur-Chehbeur A, Anglada R. 1996. Le Miocène des bassins nord-occidentaux d’Algérie : Biostratigraphie et eustatisme. Géologie de l’Afrique et de l’Atlantique Sud : Actes Colloques Angers 1994: 553–561, Edit Elf Aquitaine. −: 0181–0901. - ISBN : 2- 901026–419. [Google Scholar]
  • Belkebir L, Labdi A, Mansour B, Bessedik M, Saint Martin JP. 2008. Biostratigraphie et lithologie des séries serravallo-tortoniennes du massif du Dahra et du bassin du Chélif (Algérie). Implications sur la position de la limite serravallo-tortonienne. Geodiversitas 30 (1) : 9–19. http://sciencepress.mnhn.fr/fr/periodiques/geodiversitas/30/1/biostratigraphie-et-lithologie-des-series-serravallo-tortoniennes-du-massif-du-dahra-et-du-bassin-du-chelif-algerie-implications-sur-la-position-de-la-limite-serravallo-tortonienne [Google Scholar]
  • Ben Moussa A. 1994. Les bivalves néogènes du Maroc septentrional (façades atlantiques et méditerranéenne) : biostratigraphie, paléobiogéographie et paléoécologie. Docum Lab Géol Lyon 132: 281. [Google Scholar]
  • Bendella M, Benyoucef M, Mukilas R, Bouchemla I, Ferré B. 2021. Shallow to marginal marine ichnoassemblages from the Upper Pliocene Slama Formation (Lower Chelif Basin, NW Algeria). Geol Carpathica. http://dx.doi.org/10.31577/GeolCarp.72.4.9 [Google Scholar]
  • Benyoucef M, Bendella M, Brunetti M, Ferré B, Koci T, Bouchemla I et al. 2021. Upper Pliocene bivalve shell concentrations from the Lower Chelif basin (NW Algeria): Systematics, sedimentologic and taphonomic framework. Ann Paléontol 107, 102509: 1–23. https://doi.org/10.1016/j.annpal.2021.102509 [Google Scholar]
  • Bessedik M, Belkebir L, Mansour B. 2002. Révision de l’âge miocène inférieur (au sens des anciens auteurs) des dépôts du Bassin du Bas Chélif (Oran, Algérie) : conséquences biostratigraphique et géodynamique. Mém Serv Géol Algérie 11: 167–186. [Google Scholar]
  • Bessedik M, Benammi M, Jaeger JJ, Ameur-Chehbeur R, Belkebir L, Mansour B. 1997. Gisement à rongeurs d’âge tortonien dans des dépôts lagunaires et marins de transition en Oranie: corrélation marin continental. Actes du congrès BiochroM’97, In Aguilar JP, Legendre S, Michaux J. eds. Mém. Trav. EPHE, Inst. Montpellier, V 21, pp. 293–300. [Google Scholar]
  • Bizon G, Bizon JJ. 1972. Atlas des principaux foraminifères planctoniques du Bassin méditerranéen Oligocène à Quaternaire. Technip (édit.), Paris, 316 p. [Google Scholar]
  • Blow WH. 1969. Late Middle Eocene to Recent planctonic foraminiferal biostratigraphy. Proc lst lnt Conf Plankt Microfossils, Genève 1, pp. 199–422. [Google Scholar]
  • Bonaduce G, Sgarrella F. 1999. Paleoecological interpretation of the latest Messinian sediments from southern Sicily (Italy). Soc Geol Ital Mem 54: 83–91. [Google Scholar]
  • Brive A. 1897. La carte géologique de Renault au 1/50 000è, n° 104 et notice explicative. Edition du Service géographique de l’Armée. [Google Scholar]
  • Butler RWH, McClelland E, Jones RE. 1999. Calibrating the duration and timing of the Messinian salinity crisis in the Mediterranean: linked tectonoclimatic signals in thrust-top basins of Sicily. J Geol Soc London 156: 827–835. https://doi.org/10.1144/gsjgs.156.4.0827. [Google Scholar]
  • Carbonnel G, Ballesio R. 1982. Les ostracodes pliocènes du Sud-Est de la France. Docum Lab Géol Lyon 85: 113. [Google Scholar]
  • Carnevale G, Longinelli A, Caputo D, Barbieri M, Landini W. 2008. Did the Mediterranean marine reflooding precede the Mio-Pliocene boundary? Paleontological and geochemical evidence from upper Messinian sequences of Tuscany, Italy. Palaeogeogr Palaeoclimatol Palaeoecol 257: 81–105. https://doi.org/10.1016/j.palaeo.2007.09.005. [Google Scholar]
  • Caruso A, Blanc-Valleron MM, Da Prato S, Pierre C, Rouchy JM. 2020. The late Messinian “lago-Mare” event and the Zanclean reflooding in the Mediterranean Sea: insights from the Cuevas del Almanzora section (Vera Basin, South-Eastern Spain). Earth Sci Rev 200 (102993): 1–20. https://doi.org/10.1016/j.earscirev.2019.102993. [Google Scholar]
  • Cavazza W, DeCelles PG. 1998. Upper Messinian siliciclastic rocks in southeastern Calabria (southern Italy): paleotectonic and eustatic implications for the evolution of the central Mediterranean region. Tectonophysics 298 : 223–241. https://doi.org/10.1016/S0040-1951(98) 00186-3. [CrossRef] [Google Scholar]
  • Channell JET, Di Stefano E, Sprovieri R. 1992. Calcareous plankton biostratigraphy and paleoclimatic history of the Plio-Pleistocene Monte San Nicola Section (Southern Sicily). Boll Soc Paleontol Ital 31: 351–382. [Google Scholar]
  • Channell JET, Rio D, Thunell RC. 1988. Miocene/Pliocene magnetostratigraphy at Capo Spartivento, Calabria, Italy. Geology 16: 1096–1099. https://doi.org/10.1130/0091-7613(1988)016<1096:MPBMAC>2.3.CO;2 [Google Scholar]
  • Chikhi H. 1992. Une palynoflore méditerranéenne à subtropicale au Messinien pré évaporitique en Algérie. Géol Méditer, Marseille, 19 (1): 19–30. [Google Scholar]
  • CIESM. 2008. Executive summary. In: the Messinian Salinity Crisis from mega-deposits to microbiology a consensus report (Ed F. Briand). CIESM Workshop Monographs 33: 7–28. http://www.ciesm.org/online/monographs/Almeria.html [Google Scholar]
  • Cita MB. 1975. Studi sul Pliocene e egli strati di passagio dal Miocene al Pliocene. VII. Planktonic foraminiferal biozonation of the Mediterranean Pliocene deep-sea record, a revision. Riv Ital Paleontol Stratigr 81: 527–544. [Google Scholar]
  • Clauzon G, Suc JP, Do Couto D, Jouannic G, Melinte-Dobrinescu MC, Jolivet L et al. 2015. New insights on the Sorbas Basin (SE Spain): the onshore reference of the Messinian Salinity Crisis. Mar Petrol Geol 66: 71–100. https://doi.org/10.1016/j.marpetgeo.2015.02.016. [Google Scholar]
  • Clauzon G, Suc JP, Gautier F, Berger A, Loutre, MF. 1996. Alternate interpretation of the Messinian salinity crisis, controversy resolved ? Geology 24: 363–366. [CrossRef] [Google Scholar]
  • Clauzon G, Suc JP, Popescu SM, Marunteanu M, Rubino JL, Marinescu F et al. 2005. Influence of the Mediterranean sea-level changes over the Dacic Basin (Eastern Paratethys) in the Late Neogene. The Mediterranean Lago Mare facies deciphered. Basin Res 17: 437–462. https://doi.org/10.1111/j. 1365-2117. 2005.00269.x. [Google Scholar]
  • Cornée JJ, Saint Martin JP, Conesa G, Muller J. 1994. Geometry, palaeoenvironments and relative sea level (accommodation space) changes in the Messinian Murdjadjo carbonate platform (Oran, western Algeria): consequences. Sed Geol 89 (1-2): 143–158. https://doi.org/10.1016/0037-0738(94)90087-6. [Google Scholar]
  • Cornée JJ, Saint Martin JP, Conesa G, Münch P, André JP, Saint Martin S et al. 2004. Correlations and sequence stratigraphic model for Messinian carbonate platforms of the western and central Mediterranean. Int J Earth Sci (Geol Rundsch) 93: 621–633. https://doi.org/10.1007/s00531-004- 0400-0. [Google Scholar]
  • Cunningham KJ, Benson RH, Rakic-El Bied K, McKenna LW. 1997. Eustatic implications of Late Miocene depositional sequences in the Melilla Basin, northeastern Morocco. Sediment Geol 107: 147–165. https://doi.org/10.1016/S0037-0738(96) 00037-1. [Google Scholar]
  • Cunningham KJ, Collins LS. 2002. Controls on facies and sequence stratigraphy of an upper Miocene carbonate ramp and platform, Melilla basin, NE Morocco. Sediment Geol 146 (3-4): 285–304. https://doi.org/10.1016/S0037-0738(01) 00131-2. [Google Scholar]
  • DeCelles PG, Cavazza W. 1995. Upper Messinian conglomerates in Calabria, southern Italy: Response to orogenic wedge adjustment following Mediterranean sea-level changes. Geology 23 (9): 775–778. [Google Scholar]
  • Delfaud J, Michaux J, Neurdin J, Revert J. 1973. Un modèle paléogéographique de la bordure méditerranéenne : évolution de la région oranaise (Algérie) au Miocène supérieur. Conséquences stratigraphiques. Bull Soc Hist Nat Afr Nord Alger 64: 219–241. [Google Scholar]
  • Derder MEM, Henry B, Maouche S, Bayou B, Amenna M, Besse J et al. 2013. Transpressive tectonics along a major E-W crustal structure on the Algerian continental margin: Blocks rotations revealed by a paleomagnetic analysis. Tectonophysics 593: 183–192. https://doi.org/10.1016/j.tecto.2013.03.007. [Google Scholar]
  • Di Stefano A, Sturiale G. 2010. Refinements of calcareous nannofossil biostratigraphy at the Miocene/Pliocene boundary in the Mediterranean region. Geobios 43: 5–20. [Google Scholar]
  • Do Couto D, Popescu SM, Suc JP, Melinte-Dobrinescu MC, Barhoun N, Gorini C et al. 2014. Lago Mare and the Messinian salinity crisis: evidence from the Alboran Sea (S. Spain). Mar Pet Geol 52: 57–76. https://doi.org/10.1016/j.marpetgeo.2014.01.018. [CrossRef] [Google Scholar]
  • El Euch-El Koundi N, Ferry S, Suc J-P., Clauzon G,Melinte-Dobrinescu MC, Gorini C et al. 2009. Messinian deposits and erosion in northern Tunisia: inferences on Strait of Sicily during the Messinian Salinity Crisis. Terra Nova 21 : 41–48. [Google Scholar]
  • Emig CC. 1988. Les brachiopods actuels sont-ils des indicateurs (paléo) bathymétriques. Géologie Méditerranéenne, vo. XV, 1: 65–71. [Google Scholar]
  • Esteban M. 1979. Significance of the upper miocene coral reefs of the western Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 29: 169–188. https://doi.org/10.1016/0031-0182(79)90080-4. [Google Scholar]
  • Fenet B, Irr F. 1973. Observations sur le Pliocène inférieur et moyen de la région des Andalouses (littoral oranais, Algérie). CR Acad Sci, Paris, 276, D:;1; 2761–2764. [Google Scholar]
  • Gaudant J, Saint Martin JP, Bessedik M, Mansour B, Moissette P, Rouchy JM. 1997. Découverte d’une frayère de poissons téléostéens dans des diatomites messiniennes du Djebel Murdjadjo (environs d’Oran, Algérie). J African Earth Sci 24/4: 511–529. https://doi.org/10.1016/S0899-5362(97)00078-X. [Google Scholar]
  • Gautier F, Clauzon G, Suc JP, Cravatte J. 1994. Age et durée de la crise de salinité messinienne. CR Acad Sci, Paris, 318 (2): 1103–1109. [Google Scholar]
  • Gennari R, Iaccarino SM, Di Stefano A, Sturiale G, Cipollari P, Manzi V et al. 2008. The Messinian-Zanclean boundary in the Northern Apennine. Stratigraphy. 5., (3-4): 307–322. [Google Scholar]
  • Gliozzi E, Ceci ME, Grossi F, Ligios S. 2007. Paratethyan ostracod immigrants in Italy during the Late Miocene. Geobios 40 (3): 325–337. https://doi.org/10.1016/j. geobios.2006.10.004. [Google Scholar]
  • Gliozzi E, Grossi F, Cosentino D, Iadanza A. 2012. The late Messinian Lago-Mare biofacies in central Apennines: the ostracod perspective. Soc Geol Itaniana, Roma 23: 63–65. [Google Scholar]
  • Gliozzi E, Grossi F. 2008. Late Messinian lago-mare ostracod paleoecology: a correspondence analysis approach. Paleogeogr Paleoclimatol Paleoecol 264 (3-4): 288–295. https://doi.org/10.1016/j.paleo.2007.03.055. [Google Scholar]
  • Gliozzi E, Grossi, F, Cosentino D. 2006. Late Messinian biozonation in the Mediterranean area using Ostracodi: a proposal. R.C.M.N.S. Acta Naturalia de “L’Ateneo Parmense” 42: A. 21. [Google Scholar]
  • Gliozzi E. 1999. A late Messinian brackish water ostracod fauna of Paratethyan aspect from Le Vicenne Basin (Abruzzi, central Apennines, Italy). Paleogeogr Paleoclimatol Paleoecol 151 (1-3): 191–208. [Google Scholar]
  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2012. The geologic time scale. Vol 1, 1st edit, Elsevier. Publisher: 413 p. [Google Scholar]
  • Grossi F, Cosentino D, Gliozzi E. 2008. Late Messinian Lago-Mare ostracods and paleoenvironments of the central and eastern Mediterranean Basin. Boll Soc Paleontol Ital 47 (2): 131–146. [Google Scholar]
  • Grossi F, Gliozzi E, Anadón P, Castorina F, Voltaggio M. 2015. Is Cyprideis agrigentina. Decima a good paleosalinometer for the Messinian Salinity Crisis? Morphometrical and geochemical analyses from the Eraclea Minoa section (Sicily). Paleogeogr Paleoclimatol Paleoecol 419: 75–89. https://doi.org/10.1016/j.paleo.2014.09.024. [Google Scholar]
  • Grossi F, Gliozzi E, Cosentino D. 2011. Paratethyan ostracod immigrants mark the biostratigraphy of the Messinian Salinity Crisis. Joannea Geol Paläont 11: 66–68. [Google Scholar]
  • Guardia P. 1975. Géodynamique de la marge alpine du continent africain d’après l’étude de l’Oranie nord-occidentale. Thèse Doctorat d’Etat, Nice University. [Google Scholar]
  • Guardia P. 1976. Carte géologique de l’Oranie nord occidentale au 1/100 000è. CRGM: Nice University. [Google Scholar]
  • Guerra-Merchán A, Serrano F, Garcés M, Gofas S, Esu D, Gliozzi E et al. 2010. Messinian Lago-Mare deposits near the strait of Gibraltar (Malaga basin, S Spain). Paleogeogr Paleoclimatol Paleoecol 285 (3-4): 264–276. https://doi.org/10.1016/j.paleo.2009.11.019. [Google Scholar]
  • Hilgen FJ, Lourens LJ, Van Dam JA. 2012. The Neogene period. In: Gradstein et al. ed.,The geological Time scale 2012. 1st ed.Elsevier BV. Publisher, pp. 923–977. https://doi. org/10. 1016/j. palaeo. 2022. 110961 [Google Scholar]
  • Iaccarino S, Bossio A. 1999. Paleoenvironment of uppermost Messinian sequences in the western Mediterranean (Sites 974, 975, and 978). In: Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, Vol. 161, pp. 529–541. [Google Scholar]
  • Iaccarino SM, Premoli Silva I, Biolzi M, Foresi LM, Lirer F, Turco E et al. 2007. Practical manual of Neogene planktonic foraminifera. Perugia: Università di Perugia Press International School on Planktonic Foraminifera, (Neogene Planktonic Foraminifera), pp. 1–180. [Google Scholar]
  • Jiménez C, Achilleos K, Abu Alhaija R, Gili JM, Orejas C. 2016. Living in close quarters: epibionts on Dendrophyllia ramea deep-water corals (Cyprus and Menorca channel). Rapp Comm Int Mer Médit 41: 466. [Google Scholar]
  • Kersting DK, Linares C. 2009. Mass mortalities of Cladocora caespitosa in relation to water temperature in the Columbretes Islands (NW Mediterranean). Presented in ASLO Aquatic Sciences Meeting, Nice, France. [Google Scholar]
  • Kersting DK, Linares C. 2012. Cladocora caespitosa. bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33: 427–436. https://doi.org/10.1111/j. 1439-0485. 2011.00508.x [Google Scholar]
  • Krijgsman W, Fortuin AR, Hilgen FJ, Sierro FJ. 2001. Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sedim Geol 140: 43–60. [Google Scholar]
  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilsonk DS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, Macmillan Magazines Ltd, 652–655. [Google Scholar]
  • Kružić P, Požar-Domac A. 2003. Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22: 536. https://doi.org/10.1007/s00338-003-0345-y. [Google Scholar]
  • Kružić P, Sršen P, Benkovic L. 2012. The impact of seawter temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleratinia) in the eastern Adritic Sea. Facies 58: 477–491. [Google Scholar]
  • Laborel J, Laborel-Deguen F. 1978. Abondance du madréporaire Cladocora caespitosa (Linné, 1767) dans les herbiers de posidonies de la baie de Port-Cros. Travaux scientifiques du Parc national de Port-Cros 4: 273–274. [Google Scholar]
  • Laborel J. 1961. Sur un cas particulier de concrétionnement animal. Concrétionnement à Cladocora caespitosa (L.) dans le Golfe de Talante. Int Explor Sci Mer 16 (2): 429–432. [Google Scholar]
  • Langereis CG, Hilgen FJ. 1991. The Capo Rossello composite: a Mediterranean and global reference section for the early to early late Pliocene. Earth Planet Sci Lett 104 (2-4): 211–225. https://doi.org/10. 1016/0012-821X (91)90205-V. [Google Scholar]
  • Leprêtre R, de Lamotte DF, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF Earth Sciences Bulletin 189 (10): 1–35. https://doi.org/10.1051/bsgf/2018009. [Google Scholar]
  • Lirer F, Foresi LM, Iaccarino SM, Salvatorini G, Turco E, Cosentino C et al. 2019. Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth Sci Rev 196 (102869): 1–36. https://doi.org/10.1016/j.earscirev.2019.05.013. [Google Scholar]
  • Londeix L, Benzakour M, Suc JP, Turon JL. 2007. Messinian palaeoenvironments and hydrology in Sicily (Italy): the dinoflagellate cyst record. Geobios 40: 233–250. https://doi.org/10.1016/j.geobios.2006.12.001. [Google Scholar]
  • Lourens LJ, Hilgen FJ, Shackleton NJ, Laskar J, Wilson D. 2004. The Neogene period. In Gradstein FM, Ogg JG, Smith AG eds. A geologic time scale 200. Cambridge University Press, Vol. 21, pp. 409–440. [Google Scholar]
  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Rohl U et al. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435 (23): 1083–1087. https://doi.org/10.1038/nature03814. [Google Scholar]
  • Mahboubi S, Bennami, M, Jaeger JJ. 2015. New datation of the Tafna Basin (Algeria): a combination between biochronological and magnetostratigraphical data. Palaevertebrata, Montpellier, 39(1-e1): 1–11. [Google Scholar]
  • Mansour B, Saint Martin JP. 1999. Conditions de dépôt des diatomites messiniennes en contexte de plateforme carbonatée d’après l’étude des assemblages de diatomées: Exemple du Djebel Murdjadjo (Algérie). Geobios 32 (3): 395–408. https://doi.org/10.1016/S 0016-6995 (99) 80016-3. [Google Scholar]
  • Mansouri MEH, Bessedik M, Aubbry MP, Belkebir L, Mansour B, Beaufort L. 2008. Contribution biostratigraphiques et paléoenvironnementales de l’étude des nannofossiles calcaires des dépôts tortono messiniens du bassin du Chélif (Algérie). Geodiversitas 30 (1): 59–77. http://sciencepress.mnhn.fr/fr/periodiques/geodiversitas/30/1/contributions-biostratigraphiqueset-paleoenvironnementales-de-l-etudedes-nannofossiles-calcairesdes-depots-tortono-messiniens-du-bassin-du-chelif-algerie [Google Scholar]
  • Mansouri MEH. 2021. Les nannofossiles calcaires néogènes du Bassin du bas Chélif (systématique et biostratigraphie). Thèse de Doctorat Sciences, Université d’Oran 2, 206 p. [Google Scholar]
  • Manzi V, Gennari R, Hilgen F, Krijgsman W, Lugli S, Roveri M et al. 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 4: 315–322. https://doi.org/10.1111/ter.12038. [CrossRef] [Google Scholar]
  • Manzi V, Lugli S, Roveri M, Schreiber BC. 2009. A new facies model for the Upper Gypsum of Sicily (Italy): chronological and paleoenvironmental constraits for the Messinian salinity crisis in the Mediterranean. Sedimentology 56: 1937–1960. https://doi.org/10.1111/j.1365-3091.2009.01063.x. [Google Scholar]
  • Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the 2nd Planktonic Conference Roma, Vol. 2, pp. 739–785 [Google Scholar]
  • Mas G, Fornós JJ. 2020. The messinian salinity crisis in Mallorca: new insights for a western mediterranean stratigraphic scenario. Mar Pet Geol 104656. https://doi. org/10.1016/j.marpetgeo.2020.104656. [Google Scholar]
  • Mazzola C. 1971. Les foraminifères planctoniques du Mio-Pliocène de l’Algérie nord-occidentale. Proceeding on the Snd International Conference on the Planktonic Microfossils, Roma, 2: 787–818. [Google Scholar]
  • Meghraoui M, Cisternas A, Philip H. 1986. Seismotectonic of the Lower Cheliff Basin: Structural background of the El Asnam (Algeria) Earthquake. Tectonics 5, 6: 809–836. https://doi.org/10.1029/TC005i006p00809. [CrossRef] [Google Scholar]
  • Meghraoui M, Philip H, Albarède F, Cisternas A. 1988. Trenches investigations through the trace of the 1980 El-Asnam thrust fault: evidence for paleoseismicity. Bull Seismol Soc Amer 78 (2): 979–999. https://www.researchgate.net/publication/281263571. [Google Scholar]
  • Meghraoui M. 1982. Etude néotectonique de la région nord-est d’El-Asnam: relation avec le séisme du 10 octobre 1980. 3th cycle thesis, Paris7 Univ. , pp. 210. [Google Scholar]
  • Moulana ML, Hubert-Ferrari A, Guendouz M, Doutreloup S, Roubinet S, Collignon B et al. 2022. Karstic geomorphology of Carbonate Ouarsenis Piedmont (Boukadir Region, Chelif) in Algeria: the role of the Messinian Salinity Crisis. J African Earth Sci. https://doi.org/10.1016/j.jafrearsci.2022.104697. [Google Scholar]
  • Moulana ML, Hubert-Ferrari A, Guendouz M, El Ouahabi M, Boutaleb A, Boulvain F. 2021. Contribution to the sedimentology of the Messinian carbonates of the Chelif Basin (Boukadir, Algeria). Geol Bel 24/1-2: 85–104. [Google Scholar]
  • Neurdin-Trescartes J. 1992. Le remplissage sédimentaire du bassin néogène du Chélif, modèle de référence de bassins intramontagneux. Thèse doctorat d’état, Université de Pau & Pays de l’Adour, 1, 332 p. [Google Scholar]
  • Neurdin-Trescartes J. 1995. Paléogéographie du Bassin du Chélif (Algérie) au Miocène. Causes et conséquences. Géol Méditer 22 (2): 61–71. [Google Scholar]
  • Orszag-Sperber F. 2006. Changing perspectives in the concept of “Lago-Mare” in Mediterranean Late Miocene evolution. Sediment Geol 188 (189): 259–277. https://doi.org/10.1016/j.sedgeo.2006.03.008. [Google Scholar]
  • Orszag-Sperber F, Rouchy JM, Blanc-Valleron M. 2000. La transition Messinien-Pliocène en Méditerranée orientale (Chypre) : la période du Lago-Mare et sa signification. Comptes Rendus de l’Académie des Sciences Paris, Sci Terre et Planètes 331: 483–490. https://doi.org/10.1016/S1251-8050(00) 01433-6. [Google Scholar]
  • Osman MK, Bessedik M, Belkebir L, Mansouri MEH, Atik A, Belkhir A et al. 2021. Messinian to Piacenzian deposits, erosion, and subsequent marine bioevents in the Dahra Massif (Lower Chelif Basin, Algeria). Arab J Geosci 14, 684: 1–36. https://doi.org/10.1007/s12517-021- 06481-0. [CrossRef] [Google Scholar]
  • Ouda K, Ameur A. 1978. Contribution of the biostratigraphy of the Miocene sediments associated with primitive Hipparion fauna of Bouhanifia, North West Africa. Revista Española Micropaleontol 10 (3): 407–420. [Google Scholar]
  • Özalp HB, Alparslan M. 2011. The First Record of Cladocora caespitosa (Linnaeus, 1767) (Anthozoa, Scleractinia) from the Marmara Sea. Turkish J Zool 35: 701–705. [Google Scholar]
  • Peirano A, Morri C, Mastronuzzi G, Bianchi CN. 1998. The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Mem Descr Carta Geol Ital 52 (1994) 59–74. [Google Scholar]
  • Pellen R, Popescu SM, Suc JP, Melinte-Dobrinescu MC, Rubino JL, Rabineau M et al. 2017. The Apennine foredeep (Italy) during the latest Messinian: Lago Mare reflects competing brackish and marine conditions based on calcareous nannofossils and dinoflagellate cysts. ,Geobios 50 (3): 237–257. [CrossRef] [Google Scholar]
  • Perrodon A. 1957. Etude géologique des bassins néogènes sublittoraux de l’Algérie occidentale. Bulletin du Service de la Carte Géologique de l’Algérie, Alger, 12: 1–382. [Google Scholar]
  • Pierre C, Caruso A, Blanc-Valleron MM, Rouchy JM, OrszagSperber F. 2006. Reconstruction of the paleoenvironmental changes around the Messinian-Pliocene boundary along a West-East transect across the Mediterranean. Sediment Geol 188/189: 319–340. [Google Scholar]
  • Pomel A. 1892. Sur la classification des terrains miocènes de l’Algérie et réponses aux critiques de M. Peron. Bull Soc géol Fr 96, sér 3, 20: 166–174. [Google Scholar]
  • Popescu SM, Cavazza W Suc JP, Melinte-Dobrinescu MC, Barhoun N, Gorini C. 2021. Pre-Zanclean end of the Messinian Salinity Crisis: new evidence from central Mediterranean reference sections. J Geol Soc. https://doi.org/10.1144/jgs 2020-183. [Google Scholar]
  • Popescu SM, Dalibard M, Suc JP, Barhoun N, Melinte-Dobrinescu MC, Bassetti MA et al. 2015. Lago Mare episodes around the Messinian-Zanclean boundary in the deep southwestern Mediterranean. Mar Pet Geol 66: 55–70. https://doi.org/10.1016/j.marpetgeo.2015.04.002. [CrossRef] [Google Scholar]
  • Popescu SM, Melinte-Dobrinescu MC, Suc JP, Clauzon G, Quillévére F, Suto-Szentai M. 2007. Earliest Zanclean age for the Colombacci and uppermost Di Tetto formations of the “latest Messinian” northern Apennines: New palaeoenvironmental data from the Maccarone section (Marche Province, Italy). Geobios 40: 359–373. https://doi.org/10.1016/j.geobios.2006.11.005. [Google Scholar]
  • Popescu SM, Melinte-Dobrinescu MC, Suc JP, Do Couto F D. 2017. Ceratolithus acutus Gartner and Bukry 1974 (= C. armatus Müller 1974), calcareous nannofossil marker of the marine reflooding that terminated the Messinian salinity crisis: Comment on “Paratethyan ostracods in the Spanish Lago-Mare: More evidence for interbasinal exchange at high Mediterranean sea level” by Stoica et al., 2016. Palaeogeogr Palaeoclimatol Palaeoecol 441: 854–870. Palaeogeogr Palaeoclimatol Palaeoecol 485: 986-989. https://doi.org/10.1016/j.palaeo.2016.07.011. [Google Scholar]
  • Popescu SM, Melinte-Dobrinescu MC, Dalesme F, Sütö-Szentai M, Jouannic G, Bakrac K et al. 2009. Galeacysta etrusca complex, dinoflagellate cyst marker of Paratethyan influxes into the Mediterranean Sea before and after the peak of the Messinian Salinity Crisis. Palynology 33 (2): 105–134. https://doi.org/10.1080/01916122.2009.9989688. [Google Scholar]
  • Raffi I, Backman J, Fornaciari E, Pälike H, Rio D, Lourens L et al. 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quatern Sci Rev 25: 3113–3137. https://doi.org/10.1016/j.quascirev.2006.07.007. [Google Scholar]
  • Riding R, Braga JC, Martin JM, Sanchez-Almazo IM. 1998. Mediterranean Messinian salinity crisis: constraints from a coeval marginal basin, Sorbas, southern Spain. Mar Geol 146: 1–20. https://doi.org/10.1016/S0025-3227(97) 00136-9. [Google Scholar]
  • Rouchy JM. 1982a. La genèse des évaporites Messiniennes de Méditerranée. Mém Muséum Nat Hist Nat. Paris, Série C, Sciences de la Terre, L, 280 p. [Google Scholar]
  • Rouchy JM. 1982b. La crise évaporitique messinienne de Méditerranée : nouvelles propositions pour une interprétation génétique. Bull Mus Nation Hist Nat Paris, c, 3-4: 1–52. [Google Scholar]
  • Rouchy JM, Caruso A. 2006. The Messinian salinity crisis in the Mediterranean Basin: a reassessment of the data and an integrated scenario. Sediment Geol 188/189: 35–67. https://doi.org/10.1016/j.sedgeo.2006.02.005. [Google Scholar]
  • Rouchy JM, Caruso A, Pierre C, Blanc-Valleron MM, Bassetti MA. 2007. The end of the Messinian salinity crisis: Evidences from the Chelif Basin (Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 254: 386–417. https://doi.org/10.1016/j.palaeo.2007.06.015. [Google Scholar]
  • Rouchy JM, Saint Martin JP. 1992. Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations. Geology 20 (7): 629–632. [Google Scholar]
  • Roveri M, Manzi V, Bergamasco A, Falcieri FM, Gennari R, Lugli S et al. 2014a. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. Am J Sci 314: 751–784. https://doi.org/10.2475/05.2014.03. [Google Scholar]
  • Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V et al. 2014b. The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar Geol 352: 25–58. https://doi.org/10.1016/j.margeo.2014.02.002. [Google Scholar]
  • Roveri M, Gennari R, Lugli S, Manzi V, Minelli N, Reghizzi M et al. 2016. The Messinian salinity crisis : Open problems and possible implications for Mediterranean petroleum systems. Pet Geosci 22: 283–290. https://doi.org/10.1144/petgeo 2015-089. [Google Scholar]
  • Roveri M, Gennari R, Lugli S, Manzi V. 2009. The terminal carbonate complex: the record of sea-level changes during the Messinian salinity crisis. GeoActa 8: 67–77. [Google Scholar]
  • Roveri M, Lugli S, Manzi V, Reghizzi M, Rossi FP. 2020. Stratigraphic relationships between shallow-water carbonates and primary gypsum: insights from the Messinian succession of the Sorbas basin (Betic Cordillera, Southern Spain). Sedim Geol 404 (105678): 1–18. https://doi.org/10.1016/j.sedgeo.2020.105678. [Google Scholar]
  • Roveri M, Lugli S, Manzi V, Schreiber BC. 2008. The Messinian Sicilian stratigraphy revisited new insights for the Messinian salinity crisis. Terra Nova 20 (6): 483–488. https://doi.org/10.1111/j.13653121.2008.00842.x. [Google Scholar]
  • Rubino JL, Haddadi N, Camy-Peyret J, Clauzon G, Suc JP, Ferry S et al. 2010. Messinian Salinity Crisis expression along North African margin. SPE Conference, Le Caire, 129526 p. [Google Scholar]
  • Saint Martin JP, Cornée JJ, Conesa G, Bessedik M, Belkebir L, Mansour B et al. 1992. Un dispositif particulier de plate-forme carbonatée messinienne : la bordure méridionale du bassin du Bas Chélif (Algérie). CR Acad Sci, Paris, 315 (2): 1365–1372. [Google Scholar]
  • Saint Martin JP, Cornée JJ, Muller J. 1995. La disparition des récifs coralliens en Méditerranée à la fin du Messinien : un événement écologique majeur. In : La Méditerranée : variabilité climatique, environnement et biodiversité. Conference : Okeanos, Montpellier, xx pp. 70–74. https://www.researchgate.net/publication/262008605. [Google Scholar]
  • Saint Martin JP, Rouchy JM. 1990. Les plates-formes carbonatées messiniennes en Méditerranée occidentale : leur importance pour la reconstitution des variations du niveau marin au Miocène terminal. Bull Soc Géol Fr (8), VI, 1: 83–94. [Google Scholar]
  • Saint Martin JP. 1990. Les formations récifales coralliennes du Miocène supérieur d’Algérie et du Maroc. Mém Mus Nat Hist Nat Paris, 56: 366. [Google Scholar]
  • Satour L, Lauriat-Rage A, Belkebir L, Bessedik M. 2013. Biodiversity and taphonomy of bivalves assemblages of the Pliocene of Algeria (Bas Chelif basin). Arab J Geosci. https://doi.org/10.1007/s12517-013-1154-4, ISS N1866-7511. [Google Scholar]
  • Satour L, Saint Martin JP, Belkebir L, Bessedik M. 2020. Evolution de la diversité des bivalves messiniens de la bordure méridionale du bassin de Bas Chélif (Algérie nord occidentale). Rev Paléobiol, Genève, 39 (1): 249–263. [Google Scholar]
  • Satour L. 2021. Palaeoenvironmental distribution of late Miocene oysters in the northwestern Algerian basins. Arab J Geosci 14 (1890): 1–15. https://doi.org/10.1007/s12517-021-08248-z. [Google Scholar]
  • Sissingh W. 1972. Ostracodes from the sahelian near Carnot, N. Algeria. Kkl Nederl Akad Wetensch Amsterdam, Proc Sér B,75 (1): 84–95. [Google Scholar]
  • Sissingh W. 1976. Tentative middle Miocene to Holocene Ostracode biostratigraphy of the central and eastern Mediterranean basin, I, II. Kkl Nederl Akad Wetensch, Amsterdam, Proc Sér B, 79 (4): 271–299. [Google Scholar]
  • Snel E, Mărunţeanu M, Meulenkamp JL. 2006. Calcareous nannofossils biostratigraphy and magnetostratigraphy of the Upper Miocene and Lower Pliocene of the Northern Aegean (Orphanic Gulf-Strymon Basin areas), Greece. Palaeogeogr Palaeoclimatol Palaeoecol 238: 125–150. https://doi.org/10.1016/j.palaeo.2006.03.022. [Google Scholar]
  • Spadini V. 2019. Pliocene scleratinians from Estepona (Malaga, Spain). Atti Soc Tosc Sci Nat Mem, Serie A, 126: 75–94, https://doi.org/10.2424/ASTSN.M 2019.14. [Google Scholar]
  • Sprovieri R, Sprovieri M, Caruso A, Pelosi N, Bonomo S, Ferraro L. 2006. Astronomic forcing on the planktonic foraminifera assemblage in the Piacenzian Punta Piccola section (southern Italy). Paleoceanography 21, PA4204: 1–21. https://doi.org/10.1029/2006 PA001268. [Google Scholar]
  • Sprovieri R. 1993. Pliocene-early Pleistocene astronomically forced planktonic foraminifera abundance fluctuations and chronology of Mediterranean calcareous plankton bio-events. Riv Ital Paleontol Stratigr, 99, 3: 371–414. https://doi.org/10.13130/2039-4942/8903. [Google Scholar]
  • Stoica M, Krijgsman W, Fortuin A, Gliozzi E. 2016. Paratethyan ostracods in the Spanish Lago-Mare: More evidence for interbasinal exchange at high Mediterranean Sea level. Palaeogeogr Palaeoclimatol Palaeoecol 441: 854–870. https://doi.org/10.1016/j.palaeo.2015.10.034. [Google Scholar]
  • Suc JP, Do Couto D, Melinte-Dobrinescu MD, Macaleţ R, Quillévéré F, Clauzon G et al. 2011. The Messinian Salinity Crisis in the Dacic Basin (SW Romania) and early Zanclean Mediterranean-Eastern Paratethys high sea-level connection. Palaeogeogr Palaeoclimatol Palaeoecol 310, 3, 4: 256–272. https://doi.org/10.1016/j.palaeo.2011.07.018. [Google Scholar]
  • Suc JP, Popescu SM, Do Couto D, Clauzon G, Rubino JL, Melinte-Dobrinescu MC et al. 2015. Marine gateway vs. fluvial stream within the Balkans from 6 to 5 Ma. Mar Pet Geol 66: 231–245. https://doi.org/10.1016/j.marpetgeo.2015.01.003. [CrossRef] [Google Scholar]
  • Tchouar L. 2013. Etude des dinoflagellés de la série mio-pliocène du Télégraphe de Sidi Brahim (Bassin du Chélif, Algérie nord occidentale) : systématique et Paléoécologie. Magister thesis, Oran 2 University, pp. 1–111. [Google Scholar]
  • Thomas G. 1985. Géodynamique d’un bassin intramontagneux. Le bassin du Bas Chélif occidental durant le mio-plio-quaternaire. Thèse Doctorat d’Etat, Université de Pau & Pays de l’Adour, 594 p. [Google Scholar]
  • Thunell RC. 1979. Climatic evolution of the Mediterranean Sea during the last 5.0 million years. Sediment Geol 23: 67–79. [Google Scholar]
  • Uliczny F. 1969. Hemicytheridae und Trachyleberididae (Ostxacoda) aus dem Pliozän der Insel Kephallinia (Westgriechenland). Typo-Druck-Dienst édit., Mtlnchen, 163 p. [Google Scholar]
  • Van Dijk G, Maars J, Andreetto F, Hernández-Molina FJ, Rodríguez-Tovar FJ, Krijgsman W. 2023. A terminal Messinian flooding of the Mediterranean evidenced by contouritic deposits on Sicily. Sedimentology, in press https://doi.org/10.1111/sed.13074. [Google Scholar]
  • Vertino A, Stolarski J, Bosellini FR, Taviani M. 2014. Mediterranean corals through time: from Miocene to present. In Goffredo S, Dubinsky Z. eds. The Mediterranean Sea: Its history and present challenges. Springer. 14: 257–274. https://doi. org/10. 1007/978-94-007-6704-1_14. [Google Scholar]
  • Vidal L, Bickert T, Wefer G, Röhl U. 2002. Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: Relation to Messinian events. Mar Geol 180: 71–85. [Google Scholar]
  • Welter, Baures, Bougourd, Vidal, de Monvel, Seignier, Jouannuc. 1959. Carte géologique de Renault (n° 104) au 1/50 000è. Service géographique de l’Armée. [Google Scholar]
  • Zachariasse WJ. 1975. Planktonic foraminiferal biostratigraphy of the late Neogene of Crete (Greece). Utrecht Micropaleont Bull 11: 1–171. [Google Scholar]
  • Zibrowius H. 1980. Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mém Inst Océanogr 11: 1–227. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.