Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 195, 2024
Special Issue Some applications of LA-ICP-MS U-Pb geochronology: A tribute to Jean Louis Paquette
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/bsgf/2023015 | |
Published online | 10 January 2024 |
- Ábalos B, Carreras J, Druguet E, et al. 2002. Variscan and pre-Variscan tectonics. In Gibbons W, Moreno T, eds.Geol. Spain, pp. 155-183. [Google Scholar]
- Antunes IMHR, Neiva AMR, Ramos JMF, Silva PB, Silva MMVG, Corfu F. 2013. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Chemie der Erde 73: 323–341. [CrossRef] [Google Scholar]
- Araújo MNC, da Silva FCA, de Sá EFJ. 2001. Pegmatite emplacement in the Seridó Belt, northeastern Brazil: late stage kinematics of the Brasiliano orogen. Gondwana Res 4: 75–85. [CrossRef] [Google Scholar]
- Aseri AA, Linnen RL, Che XD, Thibault Y, Holtz F. 2015. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol Rev 64: 736–746. [CrossRef] [Google Scholar]
- Ballèvre M, Catalán JRM, López-Carmona A, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol Soc London, Spec Publ 405: 77–113. [CrossRef] [Google Scholar]
- Ballèvre M. 2016. Une histoire géologique du Massif armoricain. Géochronique 140. [Google Scholar]
- Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341: 174–201. [CrossRef] [Google Scholar]
- Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology 44: 231–234. [CrossRef] [Google Scholar]
- Ballouard C, Elburg MA, Tappe S, Reinke C, Ueckermann H, Doggart S. 2020a. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geol Rev 116: 103252. [CrossRef] [Google Scholar]
- Ballouard C, Massuyeau M, Elburg MA, Tappe S, Viljoen F, Brandenburg JT. 2020b. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth-Sci Rev 203: 103115. [Google Scholar]
- Ballouard C, Couzinié S, Bouilhol P, Harlaux M, Mercadier J, Montel JM. 2023. A felsic meta-igneous source for Li-F-rich peraluminous granites: insights from the Variscan Velay dome (French Massif Central) and implications for rare-metal magmatism. Contrib Mineral Petrol 178: 75. [Google Scholar]
- Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605–626. [CrossRef] [Google Scholar]
- Bartels A, Vetere F, Holtz F, Behrens H, Linnen RL. 2011. Viscosity of flux-rich pegmatitic melts. Contrib Mineral Petrol 162: 51–60. [CrossRef] [Google Scholar]
- Bhalla P, Holtz F, Linnen RL, Behrens H. 2005. Solubility of cassiterite in evolved granitic melts: effect of T, fO2, and additional volatiles. Lithos 80: 387–400. [CrossRef] [Google Scholar]
- Bonzi WME, Vanderhaeghe O, Van Lichtervelde M, et al. 2021. Petrogenetic links between rare metal-bearing pegmatites and TTG gneisses in the West African Craton: the Mangodara district of SW Burkina Faso. Precambrian Res 364. [Google Scholar]
- Carnicero MA. 1982. Estudio del metamorfismo existente en torno al granito de Lumbrales (Salamanca). Stud Geológica Salmant 17: 7–20. [Google Scholar]
- Carr PA, Moreira E, Neymark L, Norman MD, Mercadier J. 2023. A LA-ICP-MS comparison of reference materials used in cassiterite U-Pb geochronology. Geostand Geoanalytical Res 47: 67–87. [Google Scholar]
- Carr PA, Zink S, Bennett VC, Norman MD, Amelin Y, Blevin PL. 2020. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the mole granite polymetallic system, eastern Australia. Chem Geol 539: 119539. [CrossRef] [Google Scholar]
- Černý P. 1989. Contrasting geochemistry of two pegmatite fields in Manitoba: products of juvenile aphebian crust and polycyclic archean evolution. Precambrian Res 45: 215–234. [CrossRef] [Google Scholar]
- Černý P. 1991. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geosci Canada 18: 68–81. [Google Scholar]
- Černý P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochemistry 7: 393–416. [CrossRef] [Google Scholar]
- Černý P, Ercit TS. 1985. Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull Minéralogie 108: 499–532. [CrossRef] [Google Scholar]
- Černý P, Ercit TS. 2005. The classification of granitic pegmatites revisited. Can Mineral 43: 2005–2026. [CrossRef] [Google Scholar]
- Černý P, Meintzer RE, Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Can Mineral 23: 381–421. [Google Scholar]
- Chantraine J, Autran J, Cavelier C. 2003. Carte géologique de la France à 1/1 000 000, 6ème édition révisée. BRGM. [Google Scholar]
- Chauvet A, Volland-Tuduri N, Lerouge C, et al. 2012. Geochronological and geochemical characterization of magmatic-hydrothermal events within the Southern Variscan external domain (Cévennes area, France). Int J Earth Sci 101: 69–86. [CrossRef] [Google Scholar]
- Cheilletz A, Archibald DA, Cuney M, Charoy B. 1992. Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique. Comptes Rendus l’Académie des Sci Série 2, Mécanique, Phys Chim Sci. l’univers, Sci la Terre 315: 329–336. [Google Scholar]
- Cherniak DJ, Lanford WA, Ryerson FJ. 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochim Cosmochim Acta 55: 1663–1673. [CrossRef] [Google Scholar]
- Cuney M, Marignac C, Weisbrod A. 1992. The beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ Geol 87: 1766–1794. [Google Scholar]
- Cuney M, Alexandrov P, Le Carlier de Veslud C, et al. 2002. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol Soc London, Spec Publ 204: 213–228. [CrossRef] [Google Scholar]
- Dallmeyer RD., Garcia EM. 2012. Pre-mesozoic geology of Iberia. [Google Scholar]
- Dallmeyer RD, Martínez Catalán JR, Arenas R, et al. 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277: 307–337. [CrossRef] [Google Scholar]
- da Silva AF, dos Santos AJ, Ribeiro A, Ribeiro L. 1991a. Carta Geológica de Portugal na escala 1:50.000. Folha 15A. Vila Nova de Foz Côa. Serviços Geológicos de Portugal. [Google Scholar]
- da Silva AF, dos Santos AJ, Ribeiro A, Cabral J, Ribeiro L. 1991b. Carta Geológica de Portugal na escala 1:50.000. Folha 15B. Freixo de Espada à Cinta. Serviços geológicos de Portugal. [Google Scholar]
- Demartis M, Pinotti LP, Coniglio JE, et al. 2011. Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina). J Struct Geol 33: 1334–1346. [CrossRef] [Google Scholar]
- Deveaud S, Gumiaux C, Gloaguen E, Branquet Y. 2013. Spatial statistical analysis applied to rare-element LCT-type pegmatite felds: an original approach to constrain faults-pegmatites-granites relationships. J Geosci 58: 163–182. [CrossRef] [Google Scholar]
- Deveaud S, Millot R, Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol 411: 97–111. [CrossRef] [Google Scholar]
- Dewaele S, Henjes-Kunst F, Melcher F, et al. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). J African Earth Sci 61: 10–26. [CrossRef] [Google Scholar]
- Dias da Silva ÍF. 2013. Geología de las zonas Centro Ibérica y Galicia-Trás-os-Montes en la parte oriental del Complejo de Morais, Portugal/España. PhD thesis. Universidad de Salamanca. [Google Scholar]
- Dias da Silva Í, Gómez-Barreiro J, Martínez Catalán JR., Ayarza P, Pohl J, Martínez E. 2017. Structural and microstructural analysis of the Retortillo Syncline (Variscan belt, Central Iberia). Implications for the Central Iberian Orocline. Tectonophysics 717: 99–115. [CrossRef] [Google Scholar]
- Díez Fernández R, Pereira MF. 2016. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and U-Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics 691: 290–310. [CrossRef] [Google Scholar]
- Díez Fernández R, Pereira MF. 2017. Strike-slip shear zones of the Iberian Massif: are they coeval? Lithosphere 9: 726–744. [CrossRef] [Google Scholar]
- Diez Montes A, Escuder J, Carrasco RM, Rodríguez Fernández LR. 1991. Mapa Geológico de España. Escala 1:50.000. Vilvestre 448–449. [Google Scholar]
- Errandonea-Martin J, Garate-Olave I, Roda-Robles E, et al. 2022. Metasomatic effect of Li-bearing aplite-pegmatites on psammitic and pelitic metasediments: geochemical constraints on critical raw material exploration at the Fregeneda-Almendra Pegmatite Field (Spain and Portugal). Ore Geol Rev 150: 105155. [CrossRef] [Google Scholar]
- Ferreira da Silva A., dos Santos AJ, Ribeiro A, Cabral J, Ribeiro L. 1990a. Carta Geológica de Portugal na escala 1:50.000. Folha 15B. Freixo de Espada à Cinta. [Google Scholar]
- Ferreira da Silva A, dos Santos AJ, Ribeiro A,Ribeiro L. 1990b. Carta Geológica de Portugal na escala 1:50.000. Folha 15A. Vila Nova de Foz Côa. [Google Scholar]
- Ferreira da Silva A, Luisa Ribeiro M. 1994. Notícia explicativa da folha 15B. Freixo de Espada à Cinta—da carta Geológica de Portugal na escala 1:50.000. [Google Scholar]
- Ferreira JA, Bento dos Santos T, Pereira I, Mata J. 2019. Tectonically assisted exhumation and cooling of Variscan granites in an anatectic complex of the Central Iberian Zone, Portugal: constraints from LA-ICP-MS zircon and apatite U-Pb ages. Int J Earth Sci 108: 2153–2175. [CrossRef] [Google Scholar]
- Ferreira JA, Mata J, Bento dos Santos T, Pereira I. 2020. The role of melting on the geochemical evolution and isotopic variability of an anatectic complex in the Iberian Variscides. Lithos 378-379: 105769. [Google Scholar]
- Ferreira JA, Pereira I, dos Santos T, Mata J. 2022. U-Pb age constraints on the protolith, cooling and exhumation of a Variscan middle crust migmatite complex from the Central Iberian Zone: insights into the Variscan metamorphic evolution and Ediacaran palaeogeographic implications. J Geol Soc London 179: 2021–072. [CrossRef] [Google Scholar]
- Fiege A, Simon A, Linsler SA, Bartels A, Linnen RL. 2018. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation. Ore Geol Rev 94: 383–395. [CrossRef] [Google Scholar]
- Fosso Tchunte P, Tchameni R, André-Mayer AS et al. 2018. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (northern Cameroon): constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite. Minerals 8: 188. [Google Scholar]
- Gagny C, Jacquot T. 1987. Contribution de la pétrologie structurale à la connaissance des conditions de mise en place et de structuration complexe du granite des Colettes (Massif d’Echassières, Massif central français). Géologie la Fr. 2-3: 47–56. [Google Scholar]
- Garate-Olave I, Roda-Robles E, Gil-Crespo PP, Pesquera A, Errandonea-Martin J. 2020. The tres arroyos granitic aplite-pegmatite field (Central Iberian Zone, Spain): Petrogenetic constraints from evolution of Nb-Ta-Sn oxides, whole-rock geochemistry and U-Pb geochronology. Minerals 10: 1–26. [Google Scholar]
- García-Arias M, Díez-Montes A, Villaseca C, Blanco-Quintero IF. 2018. The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: a review. Earth-Sci Rev. 176: 345–372. [CrossRef] [Google Scholar]
- Gourcerol B, Gloaguen E, Melleton J, Tuduri J, Galiegue X. 2019. Re-assessing the European lithium resource potential − A review of hard-rock resources and metallogeny. Ore Geol Rev 109: 494–519. [CrossRef] [Google Scholar]
- Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, et al. 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30: T C5008. [Google Scholar]
- Gutiérrez-Alonso G, Fernández-Suárez J, López-Carmona A, Gärtner A. 2018. Exhuming a cold case: the early granodiorites of the northwest Iberian Variscan belt-A Visean magmatic flare-up? Litosphere 10: 194–216. [CrossRef] [Google Scholar]
- Hao-Yu W, Yong T, Hui Z, Zheng-Hang L, Yu-Sheng X. 2023. The geochronology of the rare metal pegmatite deposits: A case study in Nanping No. 31 pegmatite vein in northeastern Cathaysian block, China. Ore Geol Rev 153: 105280. [CrossRef] [Google Scholar]
- Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73: 1039–1051. [Google Scholar]
- Horstwood MSA., Košler J, Gehrels G, et al. 2016. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology − uncertainty propagation, age interpretation and data reporting. Geostand Geoanalytical Res 40: 311–332. [CrossRef] [Google Scholar]
- Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132: 349–374. [Google Scholar]
- Icenhower J, London D. 1995. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am Mineral 80: 1229–1251. [CrossRef] [Google Scholar]
- Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211: 47–69. [CrossRef] [Google Scholar]
- Kaeter D, Barros R, Menuge JF, Chew DM. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochim Cosmochim Acta 240: 98–130. [CrossRef] [Google Scholar]
- Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114: 479–488. [CrossRef] [Google Scholar]
- Knoll T, Schuster R, Huet B, et al. 2018. Spodumene pegmatites and related leucogranites from the Austroalpine unit (Eastern Alps, Central Europe): field relations, petrography, geochemistry, and geochronology. Can Mineral 56: 489–528. [CrossRef] [Google Scholar]
- Knoll T, Huet B, Schuster R, Mali H, Ntaflos T, Hauzenberger C. 2023. Lithium pegmatite of anatectic origin-a case study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): geological data and geochemical model. Ore Geol Rev 154: 105298. [CrossRef] [Google Scholar]
- Konzett J, Hauzenberger C, Ludwig T, Stalder R. 2018a. Anatectic granitic pegmatites from the Eastern Alps: A case of variable rare metal enrichment during high-grade regional metamorphism. II: Pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation − a field and experimental study. Can Mineral 56: 603–624. [CrossRef] [Google Scholar]
- Konzett J, Schneider T, Nedyalkova L, et al. 2018b. Anatectic granitic pegmatites from the Eastern Alps: A case of variable rare-metal enrichment during high-grade regional metamorphism − I: Mineral assemblages, geochemical characteristics, and emplacement ages. Can Mineral 56: 555–602. [CrossRef] [Google Scholar]
- Kroner U, Romer RL. 2013. Two plates − many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24: 298–329. [CrossRef] [Google Scholar]
- Legros H, Mercadier J, Villeneuve J et al. 2019. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe. Chem Geol 512: 69–84. [Google Scholar]
- Li P, Li J, Chou IM, Wang D, Xiong X. 2019. Mineralization epochs of granitic rare-metal pegmatite deposits in the songpan-ganzê orogenic belt and their implications for orogeny. Minerals 9: 1–25. [Google Scholar]
- Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization in Linnen RL Samson IM, eds., rare-element geochemistry and mineral deposits. Geol Assoc Canada, GAC, Short Course. [Google Scholar]
- Linnen RL, Keppler H. 1997. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib Mineral Petrol 128: 213–227. [CrossRef] [Google Scholar]
- Linnen RL, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochim Cosmochim Acta 60: 4965–4976. [CrossRef] [Google Scholar]
- Linnen RL, Van Lichtervelde M, Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements 8: 275–280. [CrossRef] [Google Scholar]
- London D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184-187: 74–104. [Google Scholar]
- London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geol Rev 101: 349–383. [CrossRef] [Google Scholar]
- London D, Burt DM. 1982. Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho District, Arizona. Am Mineral 67: 97–113. [Google Scholar]
- London D, Morgan VIGB, Wolf MB. 2001. Amblygonite-montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am Mineral 86: 225–233. [CrossRef] [Google Scholar]
- López Plaza M, Carnicero Gómez A, Gonzalo Corral JC, et al. 1982. Estudio geológico del campo filoniano de La Fregeneda (Salamanca). Stud Geol Salmant 17: 89–98. [Google Scholar]
- Marcoux E, Barré B, Pichavant M, Poujol M. 2021. Âge et genèse de la coupole granitique à métaux rares (Sn, Li, Nb-Ta, W) de Montebras (Creuse, Massif central français). BSGF-Earth Sci Bull 192: 16. [CrossRef] [EDP Sciences] [Google Scholar]
- Martínez Catalán JR., Rubio Pascual FJ, Díez Montes A, et al. 2014. The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. Geol Soc London, Spec Publ 405: 225–247. [CrossRef] [Google Scholar]
- Martínez Catalán JR., Schulmann K, Ghienne JF. 2021. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Sci Rev. 220: 103700 [Google Scholar]
- Martins T, Lima A, Simmons WB, Falster AU, Noronha F. 2011. Geochemical fractionation of Nb-Ta oxides in Li-bearing pegmatites from the Barroso-Alvão pegmatite field, northern Portugal. Can Mineral 49: 777–791. [CrossRef] [Google Scholar]
- Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196: 309–337. [CrossRef] [Google Scholar]
- Melcher F, Sitnikova MA, Graupner T et al. 2008. Fingerprinting of conflict minerals: columbite-tantalite (“coltan”) ores. SGA News 23: 7–14. [Google Scholar]
- Melleton J, Gloaguen E, Frei D, Lima A, Vieira R, Martins T. 2022. Polyphased rare-element magmatism during late orogenic evolution: geochronological constraints from NW Variscan Iberia. BSGF − Earth Sci Bull 193: 28. [Google Scholar]
- Melleton J, Gloaguen E, Frei D, Novák M, Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can Mineral 50: 1751–1773. [CrossRef] [Google Scholar]
- Michaud JAS, Gumiaux C, Pichavant M, Gloaguen E, Marcoux E. 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geol Rev 116: 103215. [CrossRef] [Google Scholar]
- Müller A, Romer RL, Pedersen RB. 2017. The Sveconorwegian pegmatite province − thousands of pegmatites without parental granites. Can Mineral 55: 283–315. [CrossRef] [Google Scholar]
- Müller A, Spratt J, Thomas R, Williamson BJ, Seltmann R. 2018. Alkali-F-rich albite zones in evolved NYF pegmatites: The product of melt-melt immiscibility. Can Mineral 56: 657–687. [CrossRef] [Google Scholar]
- Nasdala L, Corfu F, Valley JW, et al. 2016. Zircon M127-A homogeneous reference material for SIMS U-Pb geochronology combined with hafnium, oxygen and, potentially, lithium isotope analysis. Geostand Geoanalytical Res 40: 457–475. [CrossRef] [Google Scholar]
- Neiva AMR, Ramos JMF. 2010. Geochemistry of granitic aplite-pegmatite sills and petrogenetic links with granites, Guarda-Belmonte area, central Portugal. Eur J Mineral 22: 837–854. [CrossRef] [Google Scholar]
- Pereira I, Dias R, dos Santos TB, Mata J. 2017. Exhumation of a migmatite complex along a transpressive shear zone: inferences from the Variscan Juzbado-Penalva do Castelo Shear Zone (Central Iberian Zone). J Geol Soc London 174: 1004–1018. [CrossRef] [Google Scholar]
- Pichavant M. 2022. Experimental crystallization of the Beauvoir granite as a model for the evolution of Variscan rare metal magmas. J Petrol 63: egac 120. [Google Scholar]
- Pichavant M, Herrera JV, Boulmier S, et al. 1987. The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. Magmat Process Physicochem Princ Geochem Soc Spec Publ 1: 359–373. [Google Scholar]
- Pichavant M, Villaros A, Deveaud S, Scaillet B, Lahlafi M. 2016. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids. Can Mineral 54: 559–581. [CrossRef] [Google Scholar]
- Raimbault L, Burnol L. 1998. The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. Can Mineral 36: 265–282. [Google Scholar]
- Ribeiro ML, Castro A, Almeida A. 2019. Variscan magmatism. In: The geology of Iberia: a geodynamic approach. pp. 497-526. [Google Scholar]
- Roda-Robles E, Pesquera Perez A, Velasco Roldan F, Fontan F. 1999. The granitic pegmatites of the Fregeneda area (Salamanca, Spain); characteristics and petrogenesis. Mineral Mag 63: 535–558. [CrossRef] [Google Scholar]
- Roda-Robles E, Vieira R, Lima A, Pesquera-Pérez A. 2009. Petrogenetic links between granites and pegmatites in the Fregeneda-Almendra area (Salamanca, Spain and Guarda, Portugal): new insights from 40Ar/39Ar dating in micas. Estud Geológicos 19: 305–310. [Google Scholar]
- Roda-Robles E, Vieira R, Pesquera A, Lima A. 2010. Chemical variations and significance of phosphates from the Fregeneda-Almendra pegmatite field, Central Iberian Zone (Spain and Portugal). Mineral Petrol 100: 23–34. [CrossRef] [Google Scholar]
- Roda-Robles E, Pesquera A, Gil-Crespo PP, et al. 2016. Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineral Mag 80: 103–126. [CrossRef] [Google Scholar]
- Roda-Robles E, Villaseca C, Pesquera A, et al. 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol Rev 95: 408–430. [CrossRef] [Google Scholar]
- Roda-Robles E, Vieira R, Lima A, et al. 2023. Li-rich pegmatites and related peraluminous granites of the Fregeneda-Almendra field (Spain-Portugal): a case study of magmatic signature for Li enrichment. Lithos 452-453: 107195. [Google Scholar]
- Rodríguez Fernández LR, Oliveira JT. 2014. Mapa geológico de España y Portugal 1/1.000.000. Cartografía del Instituto Geológico y Minero de España, Geological and Mining Institute of Spain (IMGE) and the National Laboratory of Energy and Geology (LNGE, Portugal). [Google Scholar]
- Romer RL, Pichavant M. 2021. Rare metal granites and pegmatites. In: Encyclopedia of geology, 2nd ed. Vol. 5, pp. 840–846. [Google Scholar]
- Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR., Gunn AG. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the lewisian gneiss complex of north-west Scotland. Precambrian Res 281: 338–362. [CrossRef] [Google Scholar]
- Simons B, Shail RK, Andersen JCØ. 2016. The petrogenesis of the early permian Variscan granites of the Cornubian Batholith: lower plate post-collisional peraluminous magmatism in the rhenohercynian zone of SW England. Lithos 260: 76–94. [CrossRef] [Google Scholar]
- Sláma J, Košler J, Condon DJ, et al. 2008. Plešovice zircon − a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249: 1–35. [CrossRef] [Google Scholar]
- Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26: 207–221. [CrossRef] [Google Scholar]
- Stepanov A, Mavrogenes JA, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contrib Mineral Petrol 167: 1–8. [Google Scholar]
- Stewart DB. 1978. Petrogenesis of lithium-rich pegmatites. Am Mineral 63: 970–980. [Google Scholar]
- Tapster S, Bright JWG. 2020. High-precision ID-TIMS cassiterite U-Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology. Geochronology 2: 425–441. [CrossRef] [Google Scholar]
- Thomas R, Davidson P. 2012. Water in granite and pegmatite-forming melts. Ore Geol Rev 46: 32–46. [CrossRef] [Google Scholar]
- Tischendorf G, Gottesmann B, Foerster HJ, Trumbull RB. 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for raphical representation. Mineral Mag 61: 809–834. [CrossRef] [Google Scholar]
- Van Lichtervelde M, Grand’Homme A, de Saint-Blanquat M, Olivier P, Gerdes A, Paquette JL, et al. 2017. U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain. Mineral Petrol 111: 1–21. [CrossRef] [Google Scholar]
- Van Lichtervelde M, Holtz F, Melcher F. 2018. The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: constraints from crystallization experiments of tantalite-tapiolite. Am Mineral 103: 1401–1416. [CrossRef] [Google Scholar]
- Vermeesch P. 2018. IsoplotR: a free and open tool box for geochronology. Geosci Front 9: 1479–1493. [CrossRef] [Google Scholar]
- Vieira R. 2010. Aplitopegmatitos com elementos raros da região entre Almendra (VN de Foz Côa) e Barca d’Alva (Figueira de Castelo Rodrigo). Campo aplitopegmatítico da Fregeneda-Almendra. PhD Thesis. Faculdade de Ciências da Universidade do Porto. [Google Scholar]
- Vieira R, Roda-Robles E, Pesquera A, Lima A. 2011. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). Am Mineral 96: 637–645. [Google Scholar]
- Villar P, Fernández Ruíz J, Bellido Mulas F, Sanz Santos MA, Carrasco RM, Rodríguez Fernández LR. 1990. Mapa Geológico de España. Escala 1:50.000. Lumbrales. 474–475. Instituto Tecnológico GeoMinero de España. [Google Scholar]
- Villaros A, Pichavant M. 2019. Mica-liquid trace elements partitioning and the granite-pegmatite connection: the St-Sylvestre complex (Western French Massif Central). Chem Geol 528: 119265. [CrossRef] [Google Scholar]
- Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. Am Mineral 95: 185–187. [Google Scholar]
- Wise MA, Francis CA, Černý P. 2012. Compositional and structural variations in columbite-group minerals from granitic pegmatites of the Brunswick and Oxford fields, Maine: Differential trends in F-poor and F-rich environments. Can Mineral 50: 1515–1530. [Google Scholar]
- Zhang DL, Peng JT, Hu RZ, Yuan SD, Zheng DS. 2011. The closure of U-Pb isotope system in cassiterite and its reliability for dating. Geol Rev 57: 549–554. [Google Scholar]
- Zhang D, Peng J, Coulson IM, Hou L, Li S. 2014. Cassiterite U-Pb and muscovite 40Ar-39Ar age constraints on the timing of mineralization in the Xuebaoding Sn-W-Be deposit, western China. Ore Geol Rev 62: 315–322. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.