Open Access
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 12
Number of page(s) 15
Published online 26 June 2024
  • Afifi AS, Moustafa AR, Helmy HM. 2023. Rift domains and structural framework of the northwestern Red Sea basin, Egypt. Int J Earth Sci 112: 2049–2064. [CrossRef] [Google Scholar]
  • Augustin N, Van Der Zwan FM, Devey CW, Brandsdóttir B. 2021. 13 million years of seafloor spreading throughout the Red Sea Basin. Nat Commun 12: 2427. [CrossRef] [Google Scholar]
  • Ahmed A, Tiberi C, Leroy S, Stuart GW, Keir D, Sholan J, Khanbari K, Al-Ganad I, Basuyau C. 2013. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis. Geophys J Int 193: 1673–1690. [CrossRef] [Google Scholar]
  • Al-Damegh K, Sandvol E, Barazangi M. 2005. Crustal structure of the Arabian plate: new constraints from the analysis of teleseismic receiver functions. Earth Planet Sci Lett 231: 177–196. [CrossRef] [Google Scholar]
  • Ali M, Decarlis A, Ligi M, Ball P, Bosworth B, Ceriani A. 2023. Red Sea rifting in central Egypt: constraints from the offshore Quseir province. J Geol Soc 180: jgs2022–2105. [Google Scholar]
  • Ali M, Koyi H, Bosworth W, Ligi M, Ball PJ, Decarlis A. 2023. Geometry and kinematics of the Middle to Late Miocene salt tectonics, central Egyptian Red Sea margin. J Struct Geol 176: 104955. [CrossRef] [Google Scholar]
  • Aslanian D, Moulin M, Olivet J-L., Unternehr P, Matias L, Bache F, Rabineau M, Nouzé H, Klingelheofer F, Contrucci I. 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: kinematic constraints. Tectonophysics 468: 98–112. [CrossRef] [Google Scholar]
  • Bally AW, Snelson S, 1980. Realms of subsidence, in Miall AD, ed., Facts and Principles of World Petroleum Occurrence, Mem. −Can. Soc. Pet. Geol. 6, 9–94. [Google Scholar]
  • Bellahsen N, Faccenna C, Funiciello F, Daniel JM, Jolivet L. 2003. Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth Planet Sci Lett 216: 365–381. [CrossRef] [Google Scholar]
  • Beydoun ZR. 1989. The hydrocarbon prospects of the Red Sea‐Gulf of Aden: a review. J Petrol Geol 12: 125–144. [CrossRef] [Google Scholar]
  • Bécel, A., Davis, J. K., Shuck, B. D., Van Avendonk, H. J. A., & Gibson, J. C. (2020). Evidence for a prolonged continental breakup resulting from slow extension rates at the eastern north American volcanic rifted margin. Journal of Geophysical Research: Solid Earth, 125, e2020JB020093. [CrossRef] [Google Scholar]
  • Bohannon RG. 1987. Tectonic configuration of the Western Arabian Continental Margin, Southern Red Sea, Kingdom of Saudi Arabia, Open-File Report, p. 28. [Google Scholar]
  • Bohannon RG, Naeser CW, Schmidt DL, Zimmermann RA. 1989. The timing of uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting? J Geophys Res 94: 1683–1701. [CrossRef] [Google Scholar]
  • Bosworth W. 1995. A high-strain rift model for the southern Gulf of Suez ( Egypt). Geological Society, London, Special Publications 80, 75–102. [CrossRef] [Google Scholar]
  • Bosworth W. 2015. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. In: Rasul, N.M.A., Stewart, I.C.F., Eds. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 45-78. [Google Scholar]
  • Bosworth W, Huchon P, McClay K. 2005. The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43: 334–378. [CrossRef] [Google Scholar]
  • Bosworth W, Stockli DF. 2016. Early magmatism in the greater Red Sea rift: timing and significance. Can J Earth Sci 53: 1158–1176. [CrossRef] [Google Scholar]
  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, and Munschy M. 2011. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nat Geosci 4: 549–553. [CrossRef] [Google Scholar]
  • Bunter MAG, Abdel Magid AEM. 1989. The Sudanese red sea: 1. New developments in stratigraphy and petroleum-geological evolution. J Petrol Geol 12: 145–166. [CrossRef] [Google Scholar]
  • Camp VE, Roobol MJ. 1992. Upwelling Asthenosphere beneath Western Arabia and its regional implications. J Geophys Res Solid Earth 97: 15255–15271. [CrossRef] [Google Scholar]
  • Chauvet F, Geoffroy L, Le Gall B, Jaud M. 2023. Volcanic passive margins and break-up processes in the southern Red Sea. Gondwana Res 117: 169–193. [CrossRef] [Google Scholar]
  • Chenin P, Manatschal G, Ghienne JF, Chao P. 2022. The syn‐rift tectono‐stratigraphic record of rifted margins (Part II): a new model to break through the proximal/distal interpretation frontier. Basin Res 34: 489–532. [CrossRef] [Google Scholar]
  • Chu, D., & Gordon, R. G. (1998). Current plate motions across the Red Sea. Geophysical Journal International, 135, 2, 313–328. [CrossRef] [Google Scholar]
  • Cochran JR. 2005. Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6. [Google Scholar]
  • Courtillot V, Armijo R, Tapponnier P. 1987. The Sinai Triple Junction Revisited. Tectonophysics 141, 181–190. [Google Scholar]
  • Davison I, Alkadasi M, Alkhirbash S, Alsubbary AK, Baker J, Blakey S, Bosence D, Dart C, Heaton R, McClay K, Menzies M, Nichols G, Owen L, Yelland A. 1994. Geological evolution of the southeastern Red-Sea Rift Margin, Republic of Yemen. Geol Soc Am Bull 106: 1474–1493. [CrossRef] [Google Scholar]
  • Davison I, Bosence D, Alsop GI, Al-Aawah MH. 1996. Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen. Geolog Soc Lond Spec Publ 100: 23–39. [CrossRef] [Google Scholar]
  • Davison I, Tatnell MR, Owen LA, Jenkins G, Baker J. 1998. Tectonic geomorphology and rates of crustal processes along the Red Sea margin, north-west Yemen. In: Purser BH, Bosence, D.W.J., Eds. Sedimentation and Tectonics in Rift Basins: Red Sea − Gulf of Aden. Dordrecht: Springer, pp. 595–612. [Google Scholar]
  • Delaunay A, Baby G, Fedorik J, Afifi AM, Tapponnier P, Dyment J. 2023. Structure and morphology of the Red Sea, from the mid-ocean ridge to the ocean-continent boundary. Tectonophysics 849: 229728. [Google Scholar]
  • Doornenbal JC, DeGroot, P.F.L., Saif SM, Schroot BM, 1991. Geology and Hydrocarbon Potential of the Tihama Basin, Republic of Yemen, Middle East Oil Show. OnePetro, Bahrain. [Google Scholar]
  • Dullo W-C., Hötzl H, Jado AR. 1983. New stratigraphical results from the Tertiary sequence of the Midyan area, NW Saudi Arabia. Newslett Stratigr 12: 75–83. [CrossRef] [Google Scholar]
  • Egloff F, Rihm R, Makris J, Izzeldin Y, Bobsien M, Meier K, Junge P, Noman T, Warsi W. 1991. Contrasting structural styles of the eastern and western margins of the southern Red Sea: the 1988 SONNE experiment. Tectonophysics 198: 329–353. [Google Scholar]
  • Evans AL. 1988. Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt. Tectonophysics 153: 235–247. [Google Scholar]
  • Gaulier JM, Lepichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S. 1988. Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics 153: 55–88. [Google Scholar]
  • Gawthorpe RL, Leeder MR. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Res 12: 195–218. [CrossRef] [Google Scholar]
  • Geoffroy L, Chauvet F, Ringenbach J-C. 2022. Middle-lower continental crust exhumed at the distal edges of volcanic passive margins. Commun Earth Environ 3: 95. [CrossRef] [Google Scholar]
  • Gillman M. 1968. Primary results of a geological and geophysical reconnaissance of the Jizan coastal plain in Saudi Arabia, Regional Technical Symposium. OnePetro, Dahran, Saudi Arabia. [Google Scholar]
  • Guan HX, Geoffroy L, Xu M. 2021. Magma-assisted fragmentation of Pangea: continental breakup initiation and propagation. Gondwana Res 96: 56–75. [CrossRef] [Google Scholar]
  • Guennoc P, Pouit G, Nawab Z. 1988. Chapter 39 − The Red Sea: history and associated mineralization. In: Manspeizer W, Ed.Developments in Geotectonics. Elsevier, pp. 957–982. [CrossRef] [Google Scholar]
  • Hall SA. 1979. A total intensity magnetic anomaly map of the Red Sea and its interpretation, Open-File Report. [Google Scholar]
  • Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS. 2007. Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259: 256–265. [CrossRef] [Google Scholar]
  • Haupert I, Manatschal G, Decarlis A, Unternehr P. 2016. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Mar Petrol Geol 69: 241–261. [CrossRef] [Google Scholar]
  • Heaton RC, Jackson MPA, Bamahmoud M, Nani ASO. 1995. Superposed Neogene extension, contraction, and salt canopy emplacement in the Yemeni Red Sea. In: Jackson MPA, Roberts DG,Snelson S, Eds. Salt tectonics: a global perspective: AAPG Memoir 65. The American Association of Petroleum Geologists, pp. 333–351. [Google Scholar]
  • Hughes GW, Johnson RS. 2005. Lithostratigraphy of the Red Sea region. Geoarabia 10: 49–126. [CrossRef] [Google Scholar]
  • Issachar R, Gómez-García ÁM, Ebbing J. 2023. Lithospheric structure of the Red Sea based on 3D density modeling: a contrasting rift architecture. J Geophys Res: Solid Earth 128: e2022J B025458. [CrossRef] [Google Scholar]
  • Izzeldin AY. 1987. Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 143: 269–306. [Google Scholar]
  • Klingelhoefer F, Evain M, Afilhado A, Rigoti C, Loureiro A, Alves D, Leprêtre A, Moulin M, Schnurle P, Benabdellouahed M, Baltzer A, Rabineau M, Feld A, Viana A, Aslanian D. 2014. Imaging proto-oceanic crust off the Brazilian Continental Margin. Geophys J Int 200: 471–488. [CrossRef] [Google Scholar]
  • Korostelev F, Weemstra C, Leroy S, Boschi L, Keir D, Ren Y, Molinari I, Ahmed A, Stuart GW, Rolandone F, Khanbari K, Hammond JOS, Kendall JM, Doubre C, Ganad IA, Goitom B, Ayele A. 2015. Magmatism on rift flanks: insights from ambient noise phase velocity in Afar region. Geophys Res Lett 42: 2179–2188. [CrossRef] [Google Scholar]
  • Kruck W, Schäffer U, Thiele J. 1996. Explanatory notes on the geological map of the Republic of Yemen: western part (former Yemen Arab Republic). Schweizerbart Science Publishers, Stuttgard, Germany. [Google Scholar]
  • Le Magoarou C, Hirsch K, Fleury C, Martin R, Ramirez-Bernal J, Ball P. 2021. Integration of gravity, magnetic, and seismic data for subsalt modeling in the Northern Red Sea. Interpretation 9: T507– T521. [CrossRef] [Google Scholar]
  • Le Pichon X, Gaulier JM. 1988. The rotation of Arabia and the Levant fault system. Tectonophysics 153: 271–294. [Google Scholar]
  • Levi S, Riddihough R. 1986. Why are marine magnetic anomalies suppressed over sedimented spreading centers? Geology 14: 651–654. [CrossRef] [Google Scholar]
  • Madden GT, Schmidt DL, Whitmore, Jr., FC. 1983. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia: an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin, Open-File Report, p. 24. [Google Scholar]
  • Masini E, Manatschal G, Mohn G. 2013. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60: 174–196. [CrossRef] [Google Scholar]
  • McClusky S, Reilinger R, Ogubazghi G, Amleson A, Healeb B, Vernant P, Sholan J, Fisseha S, Asfaw L, Bendick R, Kogan L. 2010. Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics. Geophys Res Lett 37. [CrossRef] [Google Scholar]
  • McKenzie DP, Davies D, Molnar P. 1970. Plate tectonics of the Red Sea and East Africa. Nature 226: 243–248. [CrossRef] [Google Scholar]
  • Mitchell DJW, Allen RB, Salama W, Abouzakm A. 1992. Tectonostratigraphic framework and hydrocarbon potential of the red sea. J Petrol Geol 15: 187–210. [CrossRef] [Google Scholar]
  • Mitchell NC, Shi W, Izzeldin AY, Stewart ICF. 2021. Reconstructing the level of the central Red Sea evaporites at the end of the Miocene. Basin Res 33: 1266–1292. [CrossRef] [Google Scholar]
  • Mohriak W. 2019. Rifting and salt deposition on continental margins: differences and similarities between the red sea and the south atlantic sedimentary basins. In: Rasul NMA, Stewart ICF, Eds. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Cham: Springer International Publishing, pp. 159–201. [CrossRef] [Google Scholar]
  • Molnar N, Cruden A, Betts P. 2020. The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: insights from three dimensional analogue experiments. Earth Planet Sci Lett 544: 116377. [CrossRef] [Google Scholar]
  • Montenat C, Ott D’Estevou P, Purser B, Burollet, P.-F., Jarrige, J.-J., s., Orszag-Sperber F, Philobbos E, Plaziat J-C., Prat P, Richert J-P., Roussel N, Thiriet J-P. 1988. Tectonic and sedimentary evolution of the Gulf of Suez and the northwestern Red Sea. Tectonophysics 153: 161–177. [Google Scholar]
  • Moretti I, Colletta B. 1987. Spatial and temporal evolution of the Suez Rift subsidence. J Geodyn 151–168. [CrossRef] [Google Scholar]
  • Moulin M, Klingelhoefer F, Afilhado A, Aslanian D, Schnurle P, Nouzé, H., Rabineau M, Beslier M-O., Feld A. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) − I. Gulf of Lion’s margin. Bulletin de la Société Géologique de France 186 : 309–330. [CrossRef] [Google Scholar]
  • Neuharth D, Brune S, Wrona T, Glerum A, Braun J, Yuan X. 2022. Evolution of rift systems and their fault networks in response to surface processes. Tectonics 41: e2021TC007166. [Google Scholar]
  • Nonn C, Leroy S, Lescanne M, Castilla R. 2019. Central Gulf of Aden conjugate margins (Yemen-Somalia): tectono-sedimentary and magmatism evolution in hybrid-type margins. Mar Petrol Geol. 105: 100–123. [Google Scholar]
  • Nutz A, Ragon T, Schuster M. 2022. Cenozoic tectono-sedimentary evolution of the northern Turkana Depression (East African Rift System) and its significance for continental rifts. Earth Planet Sci Lett 578: 117285. [CrossRef] [Google Scholar]
  • Okwokwo OI, Mitchell NC, Shi W, Stewart, I.C.F., Izzeldin AY. 2022. How have thick evaporites affected early seafloor spreading magnetic anomalies in the Central Red Sea? Geophys J Int 229: 1550–1566. [CrossRef] [Google Scholar]
  • Pensa T, Huertas AD, Aljahdali AH, Afifi AM. 2023. Geological evolution of the post-rift section in the Red Sea basin, The International Meeting for Applied Geoscience & Energy (IMAGE) Houston, USA. [Google Scholar]
  • Pérez-Gussinyé M., Andrés-Martínez M, Araújo M, Xin Y, Armitage J, Morgan JP. 2020. Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: examples from numerical models, the Atlantic and South China Sea Margins. Tectonics 39: e2020TC006255. [Google Scholar]
  • Phillips JD, Ross DA. 1970. A discussion on the structure and evolution of the Red Sea and the nature of the Red Sea, Gulf of Aden and Ethiopia rift junction − Continuous seismic reflexion profiles in the Red Sea. Philos Royal Soc London A 267: 143–152. [Google Scholar]
  • Prosser S. 1993. Rift-related linked depositional systems and their seismic expression. Geological Society, London, Special Publications 71, 35–66. [CrossRef] [Google Scholar]
  • Purser BH, Hötzl H. 1988. The sedimentary evolution of the Red Sea rift: a comparison of the northwest (Egyptian) and northeast (Saudi Arabian) margins. Tectonophysics 153: 193–208. [Google Scholar]
  • Reilinger R, McClusky S. 2011. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186: 971–979. [CrossRef] [Google Scholar]
  • Ribot M, Klinger Y, Jonsson S, Avsar U, Pons-Branchu E, Matrau R, Mallon FL. 2021. Active faults’ geometry in the Gulf of Aqaba, Southern Dead Sea Fault, Illuminated by Multibeam Bathymetric Data. Tectonics 40: e2020TC006443. [Google Scholar]
  • Rihm R, Makris J, Möller L. 1991. Seismic surveys in the Northern Red Sea: asymmetric crustal structure. Tectonophysics 198: 279–295. [Google Scholar]
  • Rime V, Foubert A, Ruch J, Kidane T. 2023. Tectonostratigraphic evolution and significance of the Afar Depression. Earth-Sci Rev 244: 104519. [CrossRef] [Google Scholar]
  • Rohais S, Barrois A, Colletta B, Moretti I. 2016. Pre-salt to salt stratigraphic architecture in a rift basin: insights from a basin-scale study of the Gulf of Suez (Egypt). Arab J Geosci 9: 317. [CrossRef] [Google Scholar]
  • Rowan MG. 2014. Passive‐margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res 26: 154–182. [CrossRef] [Google Scholar]
  • Sagri M, Abbate E, Azzaroli A, Balestrieri ML, Benvenuti M, Bruni P, Fazzuoli M, Ficcarelli G, Marcucci M, Napoleone G. 1998. New data on the Jurassic and Neogene sedimentation in the Danakil Horst and Northern Afar Depression, in: Crasquin-Soleau S, Barrier, E. (Eds.), Memoir 3: stratigraphy and evolution of Peri-Tethyan platforms. Mémoires du Muséum National d’Histoire Naturelle de Paris, pp. 193–214. [Google Scholar]
  • Sang Y-D., Adam BMT, Li C-F., Huang L, Wen Y-L., Zhang J-L., Liu Y-T. 2023. Punctiform Breakup and Initial Oceanization in the Central Red Sea Rift. J Mar Sci Eng 11: 808. [CrossRef] [Google Scholar]
  • Sapin F, Ringenbach JC, Clerc C. 2021. Rifted margins classification and forcing parameters. Sci Rep 11: 8199. [CrossRef] [Google Scholar]
  • Savoyat E, Shiferaw A, Balcha T. 1989. Petroleum exploration in the Ethiopian Red Sea. J Petrol Geol 12: 187–204. [CrossRef] [Google Scholar]
  • Schmidt DL, Hadley DG, Brown GF. 1983. Middle Tertiary continental rift and evolution of the Red Sea in southwestern Saudi Arabia, Open-File Report, Reston, VA, p. 56. [Google Scholar]
  • Sebai A, Zumbo V, Feraud G, Bertrand H, Hussain AG, Giannerini G, Campredon R 1991. 40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi-Arabia related to the early Red-Sea Rifting. Earth Planet Sci Lett 104, 473–487. [CrossRef] [Google Scholar]
  • Stab M, Bellahsen N, Pik R, Quidelleur X, Ayalew D, and Leroy S. 2016. Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar. Tectonics 35, 2–38. [Google Scholar]
  • Steckler MS, Watts AB, 1978. Subsidence of the Atlantic-type continental margin off New York. Earth Planet Sci Letters 41: 1–13. [CrossRef] [Google Scholar]
  • Stein CA, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359L: 123–129. [CrossRef] [Google Scholar]
  • Stern RJ, Johnson PR. 2019. Constraining the Opening of the Red Sea: Evidence from the Neoproterozoic Margins and Cenozoic Magmatism for a Volcanic Rifted Margin. In: Rasul, N.M.A., Stewart, I.C.F., Eds. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Cham: Springer International Publishing, pp. 53–79. [CrossRef] [Google Scholar]
  • Stockli DF, Bosworth W. 2019. Timing of Extensional Faulting Along the Magma-Poor Central and Northern Red Sea Rift Margin − Transition from Regional Extension to Necking Along a Hyperextended Rifted Margin. In: Rasul NMA, Stewart ICF, Eds. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Cham: Springer International Publishing, pp. 81–111. [CrossRef] [Google Scholar]
  • Szymanski E, Stockli DF, Johnson PR, Hager C. 2016. Thermochronometric evidence for diffuse extension and two-phase rifting within the Central Arabian Margin of the Red Sea Rift. Tectonics 35: 2863–2895. [CrossRef] [Google Scholar]
  • Tard M, Masse P, Walgenwitz F, Gruneisen P. 1991. The volcanic passive margin in the vicinity of Aden, Yemen. Bulletin des centres de recherches exploration − Production Elf-Aquitaine 15: 1–9. [Google Scholar]
  • Tubbs REJ, Fouda HGA, Afifi AM, Raterman NS, Hughes GW, Fadolalkarem YK. 2014. Midyan Peninsula, northern Red Sea, Saudi Arabia: seismic imaging and regional interpretation. Geoarabia 19: 165–184. [CrossRef] [Google Scholar]
  • Vicente de Gouveia S, Besse J, Frizon de LamotteD,Greff-Lefftz M, Lescanne M, Gueydan F, Leparmentier F. 2018. Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening. Earth Planet Sci Lett 487: 210–220. [CrossRef] [Google Scholar]
  • Voggenreiter W, Hötzl H, Mechie J, 1988. Low-angle detachment origin for the Red Sea Rift System? Tectonophysics 150: 51–75. [Google Scholar]
  • Zahran HM, Stewart ICF, Johnson PR, Basahel MH. 2003. Aeromagnetic-anomaly maps of central and western Saudi Arabia, Open-File Report, Saudi Arabia, p. 6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.