Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 13
Number of page(s) 24
DOI https://doi.org/10.1051/bsgf/2024010
Published online 03 July 2024
  • Armstrong RL. 1972. Low-Angle (Denudation) Faults, Hinterland of the Sevier Orogenic Belt, Eastern Nevada and Western Utah. Geolog Soc Am Bull 83: 1729. [CrossRef] [Google Scholar]
  • Axen GJ. 1992. Pore pressure, stress increase, and fault weakening in low-angle normal faulting. J Geophys Res 97: 8979. [CrossRef] [Google Scholar]
  • Ballouard C, Boulvais P, Poujol M, et al. 2015. Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220-223: 1–22. [Google Scholar]
  • Ballouard C, Poujol M, Boulvais P, et al. 2017. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol Rev 80: 309–331. [CrossRef] [Google Scholar]
  • Ballouard C. 2016. Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine: implication sur la métallogénie de l’uranium (Doctoral dissertation, Université Rennes 1). [Google Scholar]
  • Beaudoin G, Taylor BE, Sangster, DF. 1991. Silver-lead-zinc veins, metamorphic core complexes, and hydrologic regimes during crustal extension. Geology 19: 1217. [CrossRef] [Google Scholar]
  • Bons PD, Gomez-Rivas E. 2020. Origin of meteoric fluids in extensional detachments. Geofluids 2020: 1–8. [Google Scholar]
  • Bouchez JL, Delas C, Gleizes G, Nédélec A, Cuney M. 1992. Submagmatic microfractures in granites. Geology 20: 35. [CrossRef] [Google Scholar]
  • Buck WR. 1988. Flexural rotation of normal faults. Tectonics 7: 959–973. [Google Scholar]
  • Burg JP, Guiraud M, Chen GM, Li GC. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett 69: 391–400. [CrossRef] [Google Scholar]
  • Celestino MAL, Miranda TS de, Mariano G, et al. 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe Basin, Brazil, NE Brazil. J Struct Geol 138: 104116. [CrossRef] [Google Scholar]
  • Chamberlain CP, Mix HT, Mulch A, et al. 2012. The Cenozoic climatic and topographic evolution of the western North American Cordillera. Am J Sci 312: 213–262. [CrossRef] [Google Scholar]
  • Clauser C. 2006. 8.1 The Earth’s thermal regime. In K. Heinloth (Ed.), Renewable Energy (Vol. 3C, pp. 493–548). Springer Berlin Heidelberg. [CrossRef] [Google Scholar]
  • Collettini C. 2011. The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics 510: 253–268. [Google Scholar]
  • Cooper JR, Dooley RB. 2007. Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. Int Assoc Prop Water Steam 1: 48. [Google Scholar]
  • Crittenden Jr MD, Coney PJ, Davis GH. 1980. Cordilleran Metamorphic Core Complexes. Geological Society of America Memoirs, vol. 153, 486 p. [Google Scholar]
  • Daniel JM, Jolivet L. 1995. Detachment faults and pluton emplacement; Elba Island (Tyrrhenian Sea). Bulletin de La Société Géologique de France 341–354. [CrossRef] [Google Scholar]
  • Davis GA, Lister GS. 1988. Detachment faulting in continental extension; Perspectives from the Southwestern U.S. Cordillera. In Geological Society of America Special Papers (Vol. 218, pp. 133–160). Geological Society of America. [CrossRef] [Google Scholar]
  • Davis JW, Coleman DS, Gracely JT, Gaschnig R, Stearns M. 2012. Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib Mineral Petrol 163: 449–465. [CrossRef] [Google Scholar]
  • Ducoux M, Branquet Y, Jolivet L, et al. 2017. Synkinematic skarns and fluid drainage along detachments: The West Cycladic Detachment System on Serifos Island (Cyclades, Greece) and its related mineralization. Tectonophysics 695: 1–26. [Google Scholar]
  • Dusséaux C, Gébelin A, Boulvais P, et al. 2022. Timing and duration of meteoric water infiltration in the Quiberon detachment zone (Armorican Massif, Variscan belt, France). J Struct Geol 156: 104546. [Google Scholar]
  • Dusséaux C, Gébelin A, Boulvais P, Gardien V, Grimes S, Mulch A. (2019). Meteoric fluid‐rock interaction in Variscan shear zones. Terra Nova, ter. 12392. [Google Scholar]
  • Duwiquet H, Arbaret L, Guillou-Frottier L, Heap MJ, Bellanger M. 2019. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geotherm Energy 7: 33. [CrossRef] [Google Scholar]
  • Dyja V, Hibsch C, Tarantola A, et al. 2016. From deep to shallow fluid reservoirs: evolution of fluid sources during exhumation of the Sierra Almagrera, Betic Cordillera, Spain. Geofluids 16: 103–128. [Google Scholar]
  • Dyja-Person V, Tarantola A, Richard A, et al. 2018. Metamorphic brines and no surficial fluids trapped in the detachment footwall of a Metamorphic Core Complex (Nevado-Filábride units, Betics, Spain). Tectonophysics 727: 56–72. [CrossRef] [Google Scholar]
  • Eldursi K, Branquet Y, Guillou-Frottier L, Marcoux E. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth Planet Sci Lett 288: 70–83. [CrossRef] [Google Scholar]
  • Famin V, Nakashima S. 2005. Hydrothermal fluid venting along a seismogenic detachment fault in the Moresby rift (Woodlark basin, Papua New Guinea): HYDROTHERMAL FLUID VENTING. Geochem Geophys Geosyst 6: (12). [Google Scholar]
  • Famin V, Philippot P, Jolivet L, Agard P. 2004. Evolution of hydrothermal regime along a crustal shear zone, Tinos Island, Greece: HYDROTHERMAL REGIME ALONG A SHEAR ZONE. Tectonics 23: (5). [Google Scholar]
  • Fazio E, Fiannacca P, Russo D, Cirrincione R. 2020. Submagmatic to solid-state deformation microstructures recorded in cooling granitoids during exhumation of late-Variscan Crust in North-Eastern Sicily. Geosciences 10: 311. [CrossRef] [Google Scholar]
  • Fricke HC, Wickham SM, O’Neil JR. 1992. Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex, Nevada. Contrib Mineral Petrol 111: 203–221. [CrossRef] [Google Scholar]
  • Garibaldi C, Guillou-Frottier L, Lardeaux JM, et al. 2010. Thermal anomalies and geological structures in the Provence basin: Implications for hydrothermal circulations at depth. Bulletin de La Société Géologique de France, 181: 363–376. [CrossRef] [Google Scholar]
  • Gébelin A, Mulch A, Teyssier C, Heizler M, Vennemann T, Seaton NCA. 2011. Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system. Nevada: DETACHMENTS AND METEORIC FLUID FLOW. Tectonics 30: n/a-n/a. [Google Scholar]
  • Gébelin A, Mulch A, Teyssier C, Jessup MJ, Law RD, Brunel M. 2013. The Miocene elevation of Mount Everest. Geology 41: 799–802. [CrossRef] [Google Scholar]
  • Gottardi R, Kao PH, Saar MO, Teyssier C. 2013. Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems: effects of permeability fields. Geochem Geophys Geosyst 14: 1493–1522. [CrossRef] [Google Scholar]
  • Gottardi R, Schaper MC, Barnes JD, Heizler MT. 2018. Fluid-rock interaction and strain localization in the Picacho Mountains Detachment Shear Zone, Arizona, USA. Tectonics 37: 3244–3260. [CrossRef] [Google Scholar]
  • Gottardi R, Teyssier C, Mulch A, Vennemann TW, Wells ML. 2011. Preservation of an extreme transient geotherm in the Raft River detachment shear zone. Geology 39: 759–762. [CrossRef] [Google Scholar]
  • Gow PA, Upton P, Zhao C, Hill KC. 2002. Copper‐gold mineralisation in New Guinea: Numerical modelling of collision, fluid flow and intrusion‐related hydrothermal systems. Austr J Earth Sci 49: 753–771. [CrossRef] [Google Scholar]
  • Gratier JP. 2011. Fault permeability and strength evolution related to fracturing and healing episodic processes (years to millennia): the role of pressure solution. Oil Gas Sci Technol 66: 491–506. [CrossRef] [Google Scholar]
  • Guillet P, Bouchez JL, Wagner JJ. 1983. Anisotropy of magnetic susceptibility and magmatic structures in the Guérande Granite Massif (France). Tectonics 2: 419–429. [Google Scholar]
  • Guillou-Frottier L, Duwiquet H, Launay G, Taillefer A, Roche V, Link G. 2020. On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones. Solid Earth 11: 1571–1595. [Google Scholar]
  • Handy MR, Hirth G, Hovius N. 2007. Continental Fault Structure and Rheology from the Frictional-to-Viscous Transition Downward. [Google Scholar]
  • Harcouët‐Menou V, Guillou‐Frottier L, Bonneville A, Adler PM, Mourzenko V. 2009. Hydrothermal convection in and around mineralized fault zones: Insights from two‐ and three‐dimensional numerical modeling applied to the Ashanti belt, Ghana. Geofluids 9: 116–137. https://doi.org/10.1111/j.1468-8123.2009.00247.x [CrossRef] [Google Scholar]
  • Heinrich CA, Candela PA. 2014. Fluids and ore formation in the earth’s crust. In Treatise on Geochemistry (pp. 1–28). Elsevier. [Google Scholar]
  • Holk GJ, Taylor HP. 2000. Water as a petrologic catalyst driving 18O/16O homogenization and anatexis of the middle crust in the metamorphic core complexes of British Columbia. Int Geol Rev 42: 97–130. [CrossRef] [Google Scholar]
  • Ingebritsen SE, Sanford WE, Neuzil CE. 2006. Groundwater in geologic processes, 2nd ed. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Jaupart C, Labrosse S, Lucazeau F, Mareschal JC. 2015. Temperatures, heat, and energy in the mantle of the earth. In Treatise on Geophysics (pp. 223–270). Elsevier. [Google Scholar]
  • Kellett DA, Cottle JM, Larson KP. 2019. The South Tibetan detachment system: history, advances, definition and future directions. Geol Soc Lond Spec Publ 483: 377–400. [CrossRef] [Google Scholar]
  • Kerrich R. 1986. Fluid infiltration into fault zones: Chemical, isotopic, and mechanical effects. Pure Appl Geophys Pageoph 124: 225–268. [CrossRef] [Google Scholar]
  • Kestin J, Khalifa HE, Abe Y, Grimes CE, Sookiazian H, Wakeham WA. 1978. Effect of pressure on the viscosity of aqueous sodium chloride solutions in the temperature range 20-150.degree. C. Journal of Chemical & Engineering Data, 23: 328–336. [CrossRef] [Google Scholar]
  • Labrousse L, Huet B, Le Pourhiet L, Jolivet L, Burov E. 2016. Rheological implications of extensional detachments: Mediterranean and numerical insights. Earth Sci Rev 161: 233–258. [CrossRef] [Google Scholar]
  • Launay G, Branquet Y, Sizaret S, Guillou-Frottier L, Gloaguen E. 2023. How greisenization could trigger the formation of large vein-and-greisen Sn-W deposits: a numerical investigation applied to the Panasqueira deposit. Ore Geol Rev 153: 105299. [CrossRef] [Google Scholar]
  • Launay G. 2018. Hydrodynamique des systèmes minéralisés péri-granitiques: Étude du gisement à W-Sn-(Cu) de Panasqueira (Portugal). Université d’Orléans. [Google Scholar]
  • Lister GS, Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. J Struct Geol 11: 65–94. [Google Scholar]
  • Maineri C, Benvenuti M, Costagliola P, et al. 2003. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity. Mineralium Deposita 38: 67–86. [CrossRef] [Google Scholar]
  • Manning CE, Ingebritsen SE. 1999. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37: 127–150. [CrossRef] [Google Scholar]
  • McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ. 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35: 935. [CrossRef] [Google Scholar]
  • Menant A, Jolivet L, Augier R, Skarpelis N. 2013. The North Cycladic Detachment System and associated mineralization, Mykonos, Greece: insights on the evolution of the Aegean domain: Changing stress regime in the Aegean. Tectonics 32: 433–452. [Google Scholar]
  • Methner K, Mulch A, Teyssier C, et al. 2015. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah). Tectonics 34: 680–693. [Google Scholar]
  • Morrison J, Anderson JL. 1998. Footwall refrigeration along a detachment fault: implications for the thermal evolution of core complexes. Science 279: 63–66. [CrossRef] [Google Scholar]
  • Morrison J. 1994. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol 12: 827–840. [CrossRef] [Google Scholar]
  • Mulch A, Teyssier C, Cosca MA, Vanderhaeghe O, Vennemann TW. 2004. Reconstructing paleoelevation in eroded orogens. Geology 32: 525. [CrossRef] [Google Scholar]
  • Person M, Mulch A, Teyssier C, Gao Y. 2007. Isotope transport and exchange within metamorphic core complexes. Am J Sci 307: 555–589. [CrossRef] [Google Scholar]
  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408: 669–673. [CrossRef] [Google Scholar]
  • Phillips OM. 1991. Flow and reactions in permeable rocks. Cambridge: Cambridge University Press. [Google Scholar]
  • Philpotts AR, Ague JJ. 2009. Principles of igneous and metamorphic petrology, 2nd ed. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Platt JP, Behr WM, Cooper FJ. 2015. Metamorphic core complexes: windows into the mechanics and rheology of the crust. J Geolog Soc 172: 9–27. [CrossRef] [Google Scholar]
  • Qiu L, Yan DP, Ren M, et al. 2018. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China. Ore Geol Rev 96: 201–217. [CrossRef] [Google Scholar]
  • Quilichini A, Siebenaller L, Nachlas WO. 2015. Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): how quartz dynamic recrystallization relates to fluid-rock interaction. J Struct Geol 71: 71–85. [CrossRef] [Google Scholar]
  • Rabinowicz M, Boulègue J, Genthon P. 1998. Two- and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 103: 24045–24065. [CrossRef] [Google Scholar]
  • Reynolds SJ, Lister GS. 1987. Structural aspects of fluid-rock interactions in detachment zones. Geology 15: 362. [CrossRef] [Google Scholar]
  • Roche V, Bouchot V, Beccaletto L, et al. 2019. Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). Int J Earth Sci 108: 301–328. [Google Scholar]
  • Roche V, Sternai P, Guillou-Frottier L, et al. 2018. Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth Planet Sci Lett 498: 322–333. [CrossRef] [Google Scholar]
  • Saar MO, Manga M. 2004. Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints: Depth dependence of permeability. Journal of Geophysical Research: Solid Earth, 109(B4). [Google Scholar]
  • Sibson RH. 1985. A note on fault reactivation. J Struct Geol 7: 751–754. [CrossRef] [Google Scholar]
  • Sibson RH. 2000. Fluid involvement in normal faulting. J Geodyn 29: 469–499. [CrossRef] [Google Scholar]
  • Siebenaller L, Boiron MC, Vanderhaeghe O, et al. 2013. Fluid record of rock exhumation across the brittle-ductile transition during formation of a Metamorphic Core Complex (Naxos Island, Cyclades, Greece): Fluid record in Naxos metamorphic core complex. J Metamorphic Geol 31: 313–338. [CrossRef] [Google Scholar]
  • Simmons WmBS, Webber KL. 2008. Pegmatite genesis: state of the art. Eur J Mineral 20: 421–438. [CrossRef] [Google Scholar]
  • Smith BM, Reynolds SJ, Day HW, Bodnar RJ. 1991. Deep-seated fluid involvement in ductile-brittle deformation and mineralization, South Mountains metamorphic core complex, Arizona. Geolog Soc Am Bull 103: 559–569. [CrossRef] [Google Scholar]
  • Smith SAF, Holdsworth RE, Collettini C. 2010. Interactions between low-angle normal faults and plutonism in the upper crust: Insights from the Island of Elba, Italy. Geological Society of America Bulletin. [Google Scholar]
  • Souche A, Dabrowski M, Andersen TB. 2014. Modeling thermal convection in supradetachment basins: Example from western Norway. Geofluids 14: 58–74. [CrossRef] [Google Scholar]
  • Spencer JE, Welty JW. 1986. Possible controls of base- and precious-metal mineralization associated with Tertiary detachment faults in the lower Colorado River trough, Arizona and California. Geology 14: 195. [Google Scholar]
  • Wernicke B. 1981. Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen. Nature 291: 645–648. [CrossRef] [Google Scholar]
  • Whitmarsh RB, Manatschal G, Minshull TA. 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413: 150+. [CrossRef] [Google Scholar]
  • Whitney DL, Teyssier C, Rey P, Buck WR. 2013. Continental and oceanic core complexes. Geolog Soc Am Bull 125: 273–298. [CrossRef] [Google Scholar]
  • Zhao C, Hobbs BE, Mühlhaus HB. 1998. Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput Methods Appl Mech Eng 165: 175–187. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.