Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 195, 2024
|
|
---|---|---|
Numéro d'article | 13 | |
Nombre de pages | 24 | |
DOI | https://doi.org/10.1051/bsgf/2024010 | |
Publié en ligne | 3 juillet 2024 |
- Armstrong RL. 1972. Low-Angle (Denudation) Faults, Hinterland of the Sevier Orogenic Belt, Eastern Nevada and Western Utah. Geolog Soc Am Bull 83: 1729. [CrossRef] [Google Scholar]
- Axen GJ. 1992. Pore pressure, stress increase, and fault weakening in low-angle normal faulting. J Geophys Res 97: 8979. [CrossRef] [Google Scholar]
- Ballouard C, Boulvais P, Poujol M, et al. 2015. Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220-223: 1–22. [Google Scholar]
- Ballouard C, Poujol M, Boulvais P, et al. 2017. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol Rev 80: 309–331. [CrossRef] [Google Scholar]
- Ballouard C. 2016. Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine: implication sur la métallogénie de l’uranium (Doctoral dissertation, Université Rennes 1). [Google Scholar]
- Beaudoin G, Taylor BE, Sangster, DF. 1991. Silver-lead-zinc veins, metamorphic core complexes, and hydrologic regimes during crustal extension. Geology 19: 1217. [CrossRef] [Google Scholar]
- Bons PD, Gomez-Rivas E. 2020. Origin of meteoric fluids in extensional detachments. Geofluids 2020: 1–8. [Google Scholar]
- Bouchez JL, Delas C, Gleizes G, Nédélec A, Cuney M. 1992. Submagmatic microfractures in granites. Geology 20: 35. [CrossRef] [Google Scholar]
- Buck WR. 1988. Flexural rotation of normal faults. Tectonics 7: 959–973. [CrossRef] [Google Scholar]
- Burg JP, Guiraud M, Chen GM, Li GC. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett 69: 391–400. [CrossRef] [Google Scholar]
- Celestino MAL, Miranda TS de, Mariano G, et al. 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe Basin, Brazil, NE Brazil. J Struct Geol 138: 104116. [CrossRef] [Google Scholar]
- Chamberlain CP, Mix HT, Mulch A, et al. 2012. The Cenozoic climatic and topographic evolution of the western North American Cordillera. Am J Sci 312: 213–262. [CrossRef] [Google Scholar]
- Clauser C. 2006. 8.1 The Earth’s thermal regime. In K. Heinloth (Ed.), Renewable Energy (Vol. 3C, pp. 493–548). Springer Berlin Heidelberg. [CrossRef] [Google Scholar]
- Collettini C. 2011. The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics 510: 253–268. [CrossRef] [Google Scholar]
- Cooper JR, Dooley RB. 2007. Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. Int Assoc Prop Water Steam 1: 48. [Google Scholar]
- Crittenden Jr MD, Coney PJ, Davis GH. 1980. Cordilleran Metamorphic Core Complexes. Geological Society of America Memoirs, vol. 153, 486 p. [Google Scholar]
- Daniel JM, Jolivet L. 1995. Detachment faults and pluton emplacement; Elba Island (Tyrrhenian Sea). Bulletin de La Société Géologique de France 341–354. [CrossRef] [Google Scholar]
- Davis GA, Lister GS. 1988. Detachment faulting in continental extension; Perspectives from the Southwestern U.S. Cordillera. In Geological Society of America Special Papers (Vol. 218, pp. 133–160). Geological Society of America. [CrossRef] [Google Scholar]
- Davis JW, Coleman DS, Gracely JT, Gaschnig R, Stearns M. 2012. Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib Mineral Petrol 163: 449–465. [CrossRef] [Google Scholar]
- Ducoux M, Branquet Y, Jolivet L, et al. 2017. Synkinematic skarns and fluid drainage along detachments: The West Cycladic Detachment System on Serifos Island (Cyclades, Greece) and its related mineralization. Tectonophysics 695: 1–26. [Google Scholar]
- Dusséaux C, Gébelin A, Boulvais P, et al. 2022. Timing and duration of meteoric water infiltration in the Quiberon detachment zone (Armorican Massif, Variscan belt, France). J Struct Geol 156: 104546. [CrossRef] [Google Scholar]
- Dusséaux C, Gébelin A, Boulvais P, Gardien V, Grimes S, Mulch A. (2019). Meteoric fluid‐rock interaction in Variscan shear zones. Terra Nova, ter. 12392. [Google Scholar]
- Duwiquet H, Arbaret L, Guillou-Frottier L, Heap MJ, Bellanger M. 2019. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geotherm Energy 7: 33. [CrossRef] [Google Scholar]
- Dyja V, Hibsch C, Tarantola A, et al. 2016. From deep to shallow fluid reservoirs: evolution of fluid sources during exhumation of the Sierra Almagrera, Betic Cordillera, Spain. Geofluids 16: 103–128. [Google Scholar]
- Dyja-Person V, Tarantola A, Richard A, et al. 2018. Metamorphic brines and no surficial fluids trapped in the detachment footwall of a Metamorphic Core Complex (Nevado-Filábride units, Betics, Spain). Tectonophysics 727: 56–72. [CrossRef] [Google Scholar]
- Eldursi K, Branquet Y, Guillou-Frottier L, Marcoux E. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth Planet Sci Lett 288: 70–83. [CrossRef] [Google Scholar]
- Famin V, Nakashima S. 2005. Hydrothermal fluid venting along a seismogenic detachment fault in the Moresby rift (Woodlark basin, Papua New Guinea): HYDROTHERMAL FLUID VENTING. Geochem Geophys Geosyst 6: (12). [Google Scholar]
- Famin V, Philippot P, Jolivet L, Agard P. 2004. Evolution of hydrothermal regime along a crustal shear zone, Tinos Island, Greece: HYDROTHERMAL REGIME ALONG A SHEAR ZONE. Tectonics 23: (5). [Google Scholar]
- Fazio E, Fiannacca P, Russo D, Cirrincione R. 2020. Submagmatic to solid-state deformation microstructures recorded in cooling granitoids during exhumation of late-Variscan Crust in North-Eastern Sicily. Geosciences 10: 311. [CrossRef] [Google Scholar]
- Fricke HC, Wickham SM, O’Neil JR. 1992. Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex, Nevada. Contrib Mineral Petrol 111: 203–221. [CrossRef] [Google Scholar]
- Garibaldi C, Guillou-Frottier L, Lardeaux JM, et al. 2010. Thermal anomalies and geological structures in the Provence basin: Implications for hydrothermal circulations at depth. Bulletin de La Société Géologique de France, 181: 363–376. [CrossRef] [Google Scholar]
- Gébelin A, Mulch A, Teyssier C, Heizler M, Vennemann T, Seaton NCA. 2011. Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system. Nevada: DETACHMENTS AND METEORIC FLUID FLOW. Tectonics 30: n/a-n/a. [Google Scholar]
- Gébelin A, Mulch A, Teyssier C, Jessup MJ, Law RD, Brunel M. 2013. The Miocene elevation of Mount Everest. Geology 41: 799–802. [CrossRef] [Google Scholar]
- Gottardi R, Kao PH, Saar MO, Teyssier C. 2013. Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems: effects of permeability fields. Geochem Geophys Geosyst 14: 1493–1522. [CrossRef] [Google Scholar]
- Gottardi R, Schaper MC, Barnes JD, Heizler MT. 2018. Fluid-rock interaction and strain localization in the Picacho Mountains Detachment Shear Zone, Arizona, USA. Tectonics 37: 3244–3260. [CrossRef] [Google Scholar]
- Gottardi R, Teyssier C, Mulch A, Vennemann TW, Wells ML. 2011. Preservation of an extreme transient geotherm in the Raft River detachment shear zone. Geology 39: 759–762. [CrossRef] [Google Scholar]
- Gow PA, Upton P, Zhao C, Hill KC. 2002. Copper‐gold mineralisation in New Guinea: Numerical modelling of collision, fluid flow and intrusion‐related hydrothermal systems. Austr J Earth Sci 49: 753–771. [CrossRef] [Google Scholar]
- Gratier JP. 2011. Fault permeability and strength evolution related to fracturing and healing episodic processes (years to millennia): the role of pressure solution. Oil Gas Sci Technol 66: 491–506. [CrossRef] [Google Scholar]
- Guillet P, Bouchez JL, Wagner JJ. 1983. Anisotropy of magnetic susceptibility and magmatic structures in the Guérande Granite Massif (France). Tectonics 2: 419–429. [CrossRef] [Google Scholar]
- Guillou-Frottier L, Duwiquet H, Launay G, Taillefer A, Roche V, Link G. 2020. On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones. Solid Earth 11: 1571–1595. [CrossRef] [Google Scholar]
- Handy MR, Hirth G, Hovius N. 2007. Continental Fault Structure and Rheology from the Frictional-to-Viscous Transition Downward. [Google Scholar]
- Harcouët‐Menou V, Guillou‐Frottier L, Bonneville A, Adler PM, Mourzenko V. 2009. Hydrothermal convection in and around mineralized fault zones: Insights from two‐ and three‐dimensional numerical modeling applied to the Ashanti belt, Ghana. Geofluids 9: 116–137. https://doi.org/10.1111/j.1468-8123.2009.00247.x [CrossRef] [Google Scholar]
- Heinrich CA, Candela PA. 2014. Fluids and ore formation in the earth’s crust. In Treatise on Geochemistry (pp. 1–28). Elsevier. [Google Scholar]
- Holk GJ, Taylor HP. 2000. Water as a petrologic catalyst driving 18O/16O homogenization and anatexis of the middle crust in the metamorphic core complexes of British Columbia. Int Geol Rev 42: 97–130. [CrossRef] [Google Scholar]
- Ingebritsen SE, Sanford WE, Neuzil CE. 2006. Groundwater in geologic processes, 2nd ed. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
- Jaupart C, Labrosse S, Lucazeau F, Mareschal JC. 2015. Temperatures, heat, and energy in the mantle of the earth. In Treatise on Geophysics (pp. 223–270). Elsevier. [CrossRef] [Google Scholar]
- Kellett DA, Cottle JM, Larson KP. 2019. The South Tibetan detachment system: history, advances, definition and future directions. Geol Soc Lond Spec Publ 483: 377–400. [CrossRef] [Google Scholar]
- Kerrich R. 1986. Fluid infiltration into fault zones: Chemical, isotopic, and mechanical effects. Pure Appl Geophys Pageoph 124: 225–268. [CrossRef] [Google Scholar]
- Kestin J, Khalifa HE, Abe Y, Grimes CE, Sookiazian H, Wakeham WA. 1978. Effect of pressure on the viscosity of aqueous sodium chloride solutions in the temperature range 20-150.degree. C. Journal of Chemical & Engineering Data, 23: 328–336. [CrossRef] [Google Scholar]
- Labrousse L, Huet B, Le Pourhiet L, Jolivet L, Burov E. 2016. Rheological implications of extensional detachments: Mediterranean and numerical insights. Earth Sci Rev 161: 233–258. [CrossRef] [Google Scholar]
- Launay G, Branquet Y, Sizaret S, Guillou-Frottier L, Gloaguen E. 2023. How greisenization could trigger the formation of large vein-and-greisen Sn-W deposits: a numerical investigation applied to the Panasqueira deposit. Ore Geol Rev 153: 105299. [CrossRef] [Google Scholar]
- Launay G. 2018. Hydrodynamique des systèmes minéralisés péri-granitiques: Étude du gisement à W-Sn-(Cu) de Panasqueira (Portugal). Université d’Orléans. [Google Scholar]
- Lister GS, Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. J Struct Geol 11: 65–94. [CrossRef] [Google Scholar]
- Maineri C, Benvenuti M, Costagliola P, et al. 2003. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity. Mineralium Deposita 38: 67–86. [CrossRef] [Google Scholar]
- Manning CE, Ingebritsen SE. 1999. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37: 127–150. [CrossRef] [Google Scholar]
- McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ. 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35: 935. [CrossRef] [Google Scholar]
- Menant A, Jolivet L, Augier R, Skarpelis N. 2013. The North Cycladic Detachment System and associated mineralization, Mykonos, Greece: insights on the evolution of the Aegean domain: Changing stress regime in the Aegean. Tectonics 32: 433–452. [Google Scholar]
- Methner K, Mulch A, Teyssier C, et al. 2015. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah). Tectonics 34: 680–693. [CrossRef] [Google Scholar]
- Morrison J, Anderson JL. 1998. Footwall refrigeration along a detachment fault: implications for the thermal evolution of core complexes. Science 279: 63–66. [CrossRef] [Google Scholar]
- Morrison J. 1994. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol 12: 827–840. [CrossRef] [Google Scholar]
- Mulch A, Teyssier C, Cosca MA, Vanderhaeghe O, Vennemann TW. 2004. Reconstructing paleoelevation in eroded orogens. Geology 32: 525. [CrossRef] [Google Scholar]
- Person M, Mulch A, Teyssier C, Gao Y. 2007. Isotope transport and exchange within metamorphic core complexes. Am J Sci 307: 555–589. [CrossRef] [Google Scholar]
- Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408: 669–673. [CrossRef] [Google Scholar]
- Phillips OM. 1991. Flow and reactions in permeable rocks. Cambridge: Cambridge University Press. [Google Scholar]
- Philpotts AR, Ague JJ. 2009. Principles of igneous and metamorphic petrology, 2nd ed. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
- Platt JP, Behr WM, Cooper FJ. 2015. Metamorphic core complexes: windows into the mechanics and rheology of the crust. J Geolog Soc 172: 9–27. [CrossRef] [Google Scholar]
- Qiu L, Yan DP, Ren M, et al. 2018. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China. Ore Geol Rev 96: 201–217. [CrossRef] [Google Scholar]
- Quilichini A, Siebenaller L, Nachlas WO. 2015. Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): how quartz dynamic recrystallization relates to fluid-rock interaction. J Struct Geol 71: 71–85. [CrossRef] [Google Scholar]
- Rabinowicz M, Boulègue J, Genthon P. 1998. Two- and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 103: 24045–24065. [CrossRef] [Google Scholar]
- Reynolds SJ, Lister GS. 1987. Structural aspects of fluid-rock interactions in detachment zones. Geology 15: 362. [CrossRef] [Google Scholar]
- Roche V, Bouchot V, Beccaletto L, et al. 2019. Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). Int J Earth Sci 108: 301–328. [CrossRef] [Google Scholar]
- Roche V, Sternai P, Guillou-Frottier L, et al. 2018. Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth Planet Sci Lett 498: 322–333. [CrossRef] [Google Scholar]
- Saar MO, Manga M. 2004. Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints: Depth dependence of permeability. Journal of Geophysical Research: Solid Earth, 109(B4). [Google Scholar]
- Sibson RH. 1985. A note on fault reactivation. J Struct Geol 7: 751–754. [CrossRef] [Google Scholar]
- Sibson RH. 2000. Fluid involvement in normal faulting. J Geodyn 29: 469–499. [CrossRef] [Google Scholar]
- Siebenaller L, Boiron MC, Vanderhaeghe O, et al. 2013. Fluid record of rock exhumation across the brittle-ductile transition during formation of a Metamorphic Core Complex (Naxos Island, Cyclades, Greece): Fluid record in Naxos metamorphic core complex. J Metamorphic Geol 31: 313–338. [CrossRef] [Google Scholar]
- Simmons WmBS, Webber KL. 2008. Pegmatite genesis: state of the art. Eur J Mineral 20: 421–438. [CrossRef] [Google Scholar]
- Smith BM, Reynolds SJ, Day HW, Bodnar RJ. 1991. Deep-seated fluid involvement in ductile-brittle deformation and mineralization, South Mountains metamorphic core complex, Arizona. Geolog Soc Am Bull 103: 559–569. [CrossRef] [Google Scholar]
- Smith SAF, Holdsworth RE, Collettini C. 2010. Interactions between low-angle normal faults and plutonism in the upper crust: Insights from the Island of Elba, Italy. Geological Society of America Bulletin. [Google Scholar]
- Souche A, Dabrowski M, Andersen TB. 2014. Modeling thermal convection in supradetachment basins: Example from western Norway. Geofluids 14: 58–74. [CrossRef] [Google Scholar]
- Spencer JE, Welty JW. 1986. Possible controls of base- and precious-metal mineralization associated with Tertiary detachment faults in the lower Colorado River trough, Arizona and California. Geology 14: 195. [Google Scholar]
- Wernicke B. 1981. Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen. Nature 291: 645–648. [CrossRef] [Google Scholar]
- Whitmarsh RB, Manatschal G, Minshull TA. 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413: 150+. [CrossRef] [Google Scholar]
- Whitney DL, Teyssier C, Rey P, Buck WR. 2013. Continental and oceanic core complexes. Geolog Soc Am Bull 125: 273–298. [CrossRef] [Google Scholar]
- Zhao C, Hobbs BE, Mühlhaus HB. 1998. Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput Methods Appl Mech Eng 165: 175–187. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.