Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 195, 2024
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/bsgf/2024014 | |
Published online | 05 August 2024 |
- Arnold M, Merchel S, Bourles DL, et al. 2010. The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nucl Instrum Methods Phys Res B 268: 1954–1959. [CrossRef] [Google Scholar]
- Bache F, Popescu SM, Rabineau M, et al. 2012. A two‐step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res 24: 125–153. https://doi.org/10.1111/j. 1365-2117. 2011.00521.x [CrossRef] [Google Scholar]
- Balco G, Blard P-H., Shuster DL, Stone JOH, Zimmermann L. 2019. Cosmogenic and nucleogenic 21Ne in quartz in a 28-meter sandstone core from the McMurdo Dry Valleys, Antarctica. Quat Geochronol 52: 63–76. https://doi.org/10.1016/j.quageo.2019.02.006 [CrossRef] [Google Scholar]
- Balco G, Shuster DL. 2009. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet Sci Lett 281: 48–58. [CrossRef] [Google Scholar]
- Besson D. 2005. Architecture du bassin rhodano-provençal miocène (Alpes, SE France). Relations entre déformation, physiographie et sédimentation dans un bassin molassique d’avant-pays (These de doctorat). Paris: ENMP. [Google Scholar]
- Besson D, Parize O, Rubino JL, et al. 2005. Un réseau fluviatile d’âge burdigalien terminal dans le sud-est de la France : remplissage, extension, âge, implications. C. R. Geosci 337: 1045–1054. [CrossRef] [Google Scholar]
- Bestani L. 2015. Géométrie et cinématique de l’avant-pays provençal: modélisation par coupes équilibrées dans une zone à tectonique polyphasée (thesis). http://www.theses.fr Aix-Marseille. [Google Scholar]
- Blard P-H., Lupker M, Rousseau M. 2019. Paired-cosmogenic nuclide paleoaltimetry. Earth Planet Sci Lett 515: 271–282. https://doi.org/10.1016/j.epsl.2019.03.005 [CrossRef] [Google Scholar]
- Blard P-H., Lupker M, Rousseau M, Tesson J. 2019. Two MATLAB programs for computing paleo-elevations and burial ages from paired-cosmogenic nuclides. MethodsX 6: 1547–1556. https://doi.org/10.1016/j.mex.2019.05.017 [CrossRef] [Google Scholar]
- Blott SJ, Pye K. 2012. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59: 2071–2096. https://doi.org/10.1111/j. 1365-3091. 2012.01335.x [CrossRef] [Google Scholar]
- Borchers B, Marrero S, Balco G, et al. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31: 188–198. [CrossRef] [Google Scholar]
- Braucher R, Guillou V, Bourlès DL, et al. 2015. Preparation of ASTER in-house10Be/9Be standard solutions. Nucl Instrum Methods Phys Res B 361: 335–340. [CrossRef] [Google Scholar]
- Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook EJ. 1991. Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al: Geochim. Cosmochim Acta 55: 2269–2283. [CrossRef] [Google Scholar]
- Cartalade A. 2002. Modélisation des ecoulements dans les aquiferes fractures, developpement d’un modele multi-continua (problemes direct et inverse) et application au site du CEA /Cadarache. Hydrologie: Université Montpellier II. [Google Scholar]
- Chmeleff J, von Blanckenburg F, Kossert K, Jakob J. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res B 268: 192–199. [CrossRef] [Google Scholar]
- Demarcq G. 1984. Paléogéographie du Miocène. In: G. Demarcq, J. Perriaux et al. (coord.), Synthèse géologique du Sud-Est de la France : Stratigraphie et paléogéographie, Néogène in S. Debrand-Passard et al., , Mém. BRGM, Orléans, 125, p. 503–506. [Google Scholar]
- Demarcq G. 1990. Pectinidés néogènes: proposition d’échelle biostratigraphique pour la Méditerranée. Geobios 23: 149–159. https://doi.org/10.1016/S0016-6995(06) 80047-1 [CrossRef] [Google Scholar]
- de Martonne E. 1941. L’altitude moyenne de la France et de ses grandes régions naturelles. Bull Assoc Géogr Fr 18: 2–4. https://doi.org/10.3406/bagf.1941.7093 [CrossRef] [Google Scholar]
- Demory F, Arfib B, Lamarche J. 2010. La basse provence calcaire. In: P. Audra, A.F. de K. (Eds.), Grottes et Karsts de France, Karstologia Mémoires 19, pp. 236–237. [Google Scholar]
- Demory F, Conesa G, Oudet J, et al. 2011. Magnetostratigraphy and paleoenvironments in shallow-water carbonates: the Oligocene-Miocene sediments of the northern margin of the Liguro-Provençal basin (West Marseille, southeastern France). Bull Soc Géol Fr 182: 37–55. https://doi.org/10.2113/gssgfbull.182.1.37 [CrossRef] [Google Scholar]
- Georges K. 2004. Méthode de traitement statistique appliquée à l’exoscopie des quartz: environnements fluviaux et littoraux de Provence (Thèse de doctorat). Aix-Marseille 1. [Google Scholar]
- Ghilardi M., Psomiadis D., Pavlopoulos K., Müller-Celka S., Fachard S., Theurillat T., Verdan S., Knodell A., Theodoropoulou T., Bicket A., Bonneau A., Delanghe-Sabatier D., 2014. Mid- to Late Holocene shoreline reconstruction and human occupation in Ancient Eretria (South Central Euboea, Greece). Geomorphology, 208, 225-237. http://dx.doi.org/10.1016/j.geomorph.2013.12.006 [CrossRef] [Google Scholar]
- Gouvernet C, Rouire J, Rousset C. 1970. Pertuis. Notice de la carte géologique du BRGM à 1/50000,n°99 [Google Scholar]
- Granger DE, Muzikar PF. 2001. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188: 269–281. https://doi.org/10.1016/S0012-821X(01) 00309-0 [CrossRef] [Google Scholar]
- Guyonnet-Benaize C. 2011. Modélisation 3D multi-échelle des structures géologiques de la région de la faille de la moyenne Durance (SE France) (These de doctorat). Aix-Marseille 1. [Google Scholar]
- Hails JR. 1984. Washover and washover fan. In: M. Schwartz(Ed.),Beaches and Coastal Geology, Encyclopedia of Earth Sciences Series. New York, NY: Springer US, pp. 851–851. https://doi. org/10. 1007/0-387-30843-1_481 [Google Scholar]
- Hilgen FJ, Lourens LJ, Van Dam JA, et al. 2012. Chapter 29 − the Neogene period. In: F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg (Eds.),The Geologic Time Scale. Boston: Elsevier, pp. 923–978. https://doi. org/10. 1016/B978-0-444- 59425–9. 00029-9 [CrossRef] [Google Scholar]
- Honda M, Zhang X, Phillips D, Hamilton D, Deerberg M, Schwieters JB. 2015. Redetermination of the 21Ne relative abundance of the atmosphere, using a high resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus). Int J Mass Spectrom 387: 1–7. [CrossRef] [Google Scholar]
- Kalinska E, Nartiss M. 2014. Pleistocene and Holocene aeolian sediments of different location and geological history: a new insight from rounding and frosting of quartz grains. Quat Int 328-329: 311–322. https://doi.org/10.1016/j.quaint.2013.08.038 [CrossRef] [Google Scholar]
- Korschinek G, Bergmaier A, Faestermann T. 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res B 268: 187–191. [CrossRef] [Google Scholar]
- Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655. https://doi.org/10.1038/23231 [CrossRef] [Google Scholar]
- Lepage H, Masson M, Delanghe D, Le Bescond, C. 2019. Grain size analyzers: results of an intercomparison study. SN Appl Sci 1: 1100. https://doi.org/10.1007/s42452-019- 1133-9 [CrossRef] [Google Scholar]
- Martinez M, Aguado R, Company M, Sandoval J, O’Dogherty L. 2020. Integrated astrochronology of the barremian stage (early cretaceous) and its biostratigraphic subdivisions. Global Planet Change 195: 103368. https://doi.org/10.1016/j.gloplacha.2020.103368 [CrossRef] [Google Scholar]
- Merchel S, Herpers U. 1999. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim Acta 84: 215–219. [CrossRef] [Google Scholar]
- Merchel S, Bremser W. 2004. First international 26Al interlaboratory comparison − Part I. Nucl Instrum Methods Phys Res B 223-224: 393–400. [CrossRef] [Google Scholar]
- Merchel S, Arnold M, Aumaître G, et al. 2008. Towards more precise 10Be and 36Cl data from measurements at the 10(14 level: influence of sample preparation. Nucl Instrum Methods Phys Res B 266: 4921–4926 [CrossRef] [Google Scholar]
- Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci Adv 6: eaaz1346. https://doi.org/10.1126/sciadv.aaz1346 [CrossRef] [Google Scholar]
- Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J. 2007. Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res B 258: 403–413. https://doi.org/10.1016/j.nimb.2007.01.297 [CrossRef] [Google Scholar]
- Niedermann S. 2002. Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Rev Mineral Geochem 47: 731–784. https://doi.org/10.2138/rmg.2002.47.16 [CrossRef] [Google Scholar]
- Norris TL, Gancarz AJ, Rokop DJ, Thomas KW. 1983. Half-life of Al-26. J Geophys Res 88: 331–333. [Google Scholar]
- Ogg JG. 2012. Geomagnetic polarity time scale. In: F.M. Gradstein, J.G. Ogg, M. Schmitz, G. Ogg (Eds.),The Geologic Time Scale 2012. Published by Elsevier B. V., pp. 85–113. https://doi. org/10. 1016/B978-0-444-59425–9.00005–6 [Google Scholar]
- Rabineau M, Leroux E, Daniel A, Bache F, Gorini C, Moulin M, et al. 2014. Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth Planet Sci Lett 388: 353–366. https://doi.org/10.1016/j.epsl.2013.11.059 [CrossRef] [Google Scholar]
- Rangin C., Le Pichon X., Hamon Y., Loget N., Crespy, A., 2010. Gravity tectonics in the SE Basin (Provence, France) imaged from seismic reflection data. Bulletin de la Société Géologique de France 181: 503–530. https://doi.org/10.2113/gssgfbull.181.6.503 [CrossRef] [Google Scholar]
- Rixhon G, Braucher R, Bourlès D, Siame L, Bovy B, Demoulin A. 2011. Quaternary river incision in NE Ardennes (Belgium)-Insights from 10Be/26Al dating of river terraces. Quat Geochronol 6: 273–284. https://doi.org/10.1016/j.quageo.2010.11.001 [CrossRef] [Google Scholar]
- Sartégou A, Bourlès DL, Blard P-H, et al. 2018. Deciphering landscape evolution with karstic networks: a Pyrenean case study. Quat Geochronol 43: 12–29. [CrossRef] [Google Scholar]
- Sartégou A, Blard P-H., Braucher R, et al. 2020. Late Cenozoic evolution of the Ariège River valley (Pyrenees) constrained by cosmogenic 26Al/10Be and 10Be/21Ne dating of cave sediments. Geomorphology 371: 107441. https://doi.org/10.1016/j.geomorph.2020.107441 [CrossRef] [Google Scholar]
- Schwartz S, Gautheron C, Audin L, et al. 2017. Foreland exhumation controlled by crustal thickening in the Western Alps. Geology 45: 139–142. https://doi.org/10.1130/ G38561. 1 [CrossRef] [Google Scholar]
- Sharifi A, Murphy LN, Pourmand A, et al. 2018. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia. Earth Planet Sci Lett 481: 30–40. https://doi.org/10.1016/j.epsl.2017.10.001 [CrossRef] [Google Scholar]
- Shuster DL, Farley KA. 2005. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz. Geochim Cosmochim Acta 69: 2349–2359. https://doi.org/10.1016/j.gca.2004.11.002 [CrossRef] [Google Scholar]
- Vermeesch P, Balco G, Blard P-H, et al. 2012. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat Geochronol 26: 20–28. doi:10.1016/j.quageo.2012.11.009 [Google Scholar]
- Zimmermann L, Avice G, Blard P-H., Marty B, Füri E, Burnard PG. 2018. Development of a new full-metal induction furnace for noble gas extraction. Chem Geol 480: 86–92. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.