Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 195, 2024
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/bsgf/2024012 | |
Published online | 23 August 2024 |
- Acarel D, Cambaz MD, Turhan F, Mutlu AK, Polat R. 2019. Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosci 11: 1098–1111 [CrossRef] [Google Scholar]
- Aksu A, Calon T, Hall J, Kurtboğan B, Gürçay S, Çifçi G. 2014a. Complex interactions fault fans developed in a strike-slip system: Kozan Fault Zone, Eastern Mediterranean Sea. Marine Geol 351: 91–107. [CrossRef] [Google Scholar]
- Aksu A, Calon T, Hall J, Mansfield S, Yasar D. 2005. The Cilicia–Adana basin complex, Eastern Mediterranean: neogene evolution of an active fore-arc basin in an obliquely convergent margin. Mar Geol 221: 121–159. [CrossRef] [Google Scholar]
- Aksu A, Hall J, Yaltrak C. 2021. Miocene–Quaternary tectonic, kinematic and sedimentary evolution of the eastern Mediterranean Sea: a regional synthesis. Earth-Science Rev 220: 103719. [CrossRef] [Google Scholar]
- Aksu A, Walsh-Kennedy S, Hall J, Hiscott R, Yaltrak C, Akhun S, Çifçi G. 2014b. The Pliocene–Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: special reference to the development of the Kozan Fault zone. Tectonophysics 622: 22–43. [CrossRef] [Google Scholar]
- Al Tarazi E, Abu Rajab J, Gomez F, Cochran W, Jaafar R, Ferry M. 2011. GPS measurements of near-field deformation along the southern Dead Sea Fault System. Geochem Geophys Geosyst 12: https://doi.org/10.1029/2011GC003736 [Google Scholar]
- Alchalbi A, Daoud M, Gomez F, McClusky S, Reilinger R, Romeyeh MA, Alsouod A, Yassminh R, Ballani B, Darawcheh R, Sbeinati R, Radwan Y, Masri RA, Bayerly M, Ghazzi RA, Barazangi M. 2010. Crustal deformation in northwestern Arabia from GPS measurements in Syria: slow slip rate along the northern Dead Sea Fault. Geophys J Int 180: 125–135. [CrossRef] [Google Scholar]
- Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X. 2017. ITRF2014 plate motion model. Geophys J Int 209: 1906–1912. [CrossRef] [Google Scholar]
- Altamimi Z, Rebischung P, Métivier L, Collilieux X. 2016. Itrf2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res: Solid Earth 121: 6109–6131. [CrossRef] [Google Scholar]
- Barbot S, Luo H, Wang T, Hamiel Y, Piatibratova O, Javed MT, Braitenberg C, Gurbuz G. 2023. Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmara, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica 2: https://seismica.library.mcgill.ca/article/view/502. [CrossRef] [Google Scholar]
- Bletery Q, Cavalié O, Nocquet JM, Ragon T. 2020. Distribution of interseismic coupling along the North and East Anatolian faults inferred from InSAR and GPS data. Geophys Res Lett 47: e2020GL087775. [CrossRef] [Google Scholar]
- Boehm J, Werl B, Schuh H. 2006. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res: Solid Earth 111: https://doi.org/10.1029/2005JB003629. [CrossRef] [Google Scholar]
- Brun JP, Faccenna C, Gueydan F, Sokoutis D, Philippon M, Kydonakis K, Gorini C. 2016. The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Can J Earth Sci 53: 1142–1157. [CrossRef] [Google Scholar]
- Burton-Ferguson R, Aksu A, Calon T, Hall J. 2005. Seismic stratigraphy and structural evolution of the Adana Basin, eastern Mediterranean. Mar Geol 221: 189–222. [CrossRef] [Google Scholar]
- Cakir Z, Doğan U, Akoğlu AM, Ergintav S, Özarpacı S, Özdemir A, Nozadkhalil T, Çakir N, Zabcı C, Erkoç MH, Basmenji M, Köküm M, Bilham R. 2023. Arrest of the mw 6.8 january 24, 2020 Elaziğ (Turkey) earthquake by shallow fault creep. Earth Planet Sci Lett 608: 118085. [CrossRef] [Google Scholar]
- Calon T, Aksu A, Hall J. 2005. The Neogene evolution of the outer Latakia Basin and its extension into the eastern Mesaoria Basin (Cyprus), eastern Mediterranean. Mar Geol 221: 61–94. [CrossRef] [Google Scholar]
- Cavalié O, Jónsson S. 2014. Block-like plate movements in eastern Anatolia observed by InSAR. Geophys Res Lett 41: 26–31. [CrossRef] [Google Scholar]
- Chen J, Zhou Y. 2024. Coseismic slip distribution of the 2023 earthquake doublet in Turkey and Syria from joint inversion of Sentinel-1 and Sentinel-2 data: an iterative modelling method for mapping large earthquake deformation. Geophys J Int 237: 636–648. [CrossRef] [Google Scholar]
- Ekström G, Nettles M. 1997. Calibration of the HGLP seismograph network and centroid-moment tensor analysis of significant earthquakes of 1976. Phys Earth Planetary Interiors 101: 219–243. [CrossRef] [Google Scholar]
- Emre Ö, Duman T, Özalp S, Elmac H, Olun S, Saroglu F. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration Special Publication Series 30. [Google Scholar]
- Emre Ö, Duman TY, Özalp S, Sarolu F, Olun S, Elmac H, Can T. 2018. Active fault database of Turkey. Bull Earthquake Eng 16: 3229–3275. [CrossRef] [Google Scholar]
- England P, Houseman G, Nocquet JM. 2016. Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean. J Geophys Res: Solid Earth 121: 8888–8916. [CrossRef] [Google Scholar]
- Feld C, Mechie J, Hübscher C, Hall J, Nicolaides S, Gurbuz C, Bauer K, Louden K, Weber M. 2017. Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide-angle seismic profile. Tectonophysics 700-701: 32–59. [CrossRef] [Google Scholar]
- Gomez F, Cochran WJ, Yassminh R, Jaafar R, Reilinger R, Floyd M, King RW, Barazangi M. 2020. Fragmentation of the Sinai Plate indicated by spatial variation in present-day slip rate along the Dead Sea Fault System. Geophys J Int 221: 1913–1940. [CrossRef] [Google Scholar]
- Gomez F, Karam G, Khawlie M, McClusky S, Vernant P, Reilinger R, Jaafar R, Tabet C, Khair K, Barazangi M. 2007. Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon. Geophys J Int 168: 1021–1028. [CrossRef] [Google Scholar]
- Güvercin SE, Karabulut H, Konca AO, Doğan U, Ergintav S. 2022. Active seismotectonics of the East Anatolian Fault. Geophys J Int 230: 50–69. [CrossRef] [Google Scholar]
- Haines AJ, Holt WE. 1993. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J Geophys Res 98. [Google Scholar]
- Hall J, Calon T, Aksu A, Meade S. 2005. Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, eastern Mediterranean Sea. Mar Geol 221: 261–297. [CrossRef] [Google Scholar]
- Hamiel Y, Piatibratova O. 2021. Spatial variations of slip and creep rates along the southern and central dead sea fault and the Carmel–Gilboa Fault System. J Geophys Res: Solid Earth 126: e2020JB021585. [CrossRef] [Google Scholar]
- Herring TA, King RW, Floyd MA, McClusky SC, 2018a. Introduction to GAMIT/GLOBK, Release 10.7, GAMIT/GLOBK Documentation. [Google Scholar]
- Herring TA, King RW, Floyd MA, McClusky SC. 2018b. GLOBK Reference Manual Global Kalman filter VLBI and GPS analysis program Release 10.7. Massachusetts Institute of Technological, Cambridge, Massachusetts. [Google Scholar]
- Herring TA, Davis JL, Shapiro II. 1990. Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res: Solid Earth 95: 12561–12581. [CrossRef] [Google Scholar]
- Hussain E, Kalaycıoğlu S, Milliner CW, Çakir Z. 2023. Preconditioning the 2023 Kahramanmaraş (Türkiye) earthquake disaster. Nat Rev Earth Environ 5–7. [Google Scholar]
- Jaffey N, Robertson A. 2005. Non-marine sedimentation associated with Oligocene-Recent exhumation and uplift of the Central Taurus Mountains, S Turkey. Sediment Geol 173: 53–89. [CrossRef] [Google Scholar]
- Jia Z, Jin Z, Marchandon M, Ulrich T, Gabriel AA, Fan W, Shearer P, Zou X, Rekoske J, Bulut F, Garagon A, Fialko Y. 2023. The complex dynamics of the 2023 kahramanmaraş, turkey, mw 7.8-7.7 earthquake doublet. Science 381: 985–990. [CrossRef] [Google Scholar]
- Karabulut H, Güvercin SE, Hollingsworth J, Konca AO. 2023. Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. J Geol Soc 180: https://doi.org/10.1144/jgs2023-021. [CrossRef] [Google Scholar]
- Karig DE, Kozlu H. 1990. Late Palaeogene-Neogene evolution of the triple junction region near Mara , south-central Turkey. J Geol Soc 147: 1023–1034. [CrossRef] [Google Scholar]
- Kandilli O, Earthquake RI, Boğaziçi U. 2001. Kandilli Observatory And Earthquake Research Institute (KOERI), International Federation of Digital Seismograph Networks, https://www.fdsn.org/networks/detail/KO/ [Google Scholar]
- Klein EC, Özbey V, Ozeren MS, Sengör AM, Haines AJ, Henry P, Tar E, Zabci C, 2022. New gnss observations in cyprus and block and continuum models for eastern mediterranean, in: AGU Fall Meeting Abstracts, pp. G35B–0326. [Google Scholar]
- Konca AO, Karabulut H, Güvercin SE, Eskiköy F, Özarpacı S, Özdemir A, Floyd M, Ergintav S, Doğan U. 2021. From interseismic deformation with near-repeating earthquakes to co-seismic rupture: a unified view of the 2020 mw6.8 sivrice (elazığ) eastern Turkey earthquake. J Geophys Res: Solid Earth 126: e2021JB021830. [CrossRef] [Google Scholar]
- Kandilli O, Earthquake RI, Boğaziçi U. 2001. Kandilli Observatory And Earthquake Research Institute (KOERI), International Federation of Digital Seismograph Networks, https://www.fdsn.org/networks/detail/KO/ [Google Scholar]
- Kurt IA, Özbakir DA, Cingoz A, Ergintav S, Dogan U, Özarpaci S. 2022. Contemporary velocity field for Turkey inferred from combination of a dense network of long term GNSS observations. Turk J Earth Sci https://doi.org/10.55730/yer-2203-13. [Google Scholar]
- Le Beon M, Klinger Y, Amrat AQ, Agnon A, Dorbath L, Baer G, Ruegg JC, Charade O, Mayyas O. 2008. Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. J Geophys Res: Solid Earth 113. [CrossRef] [Google Scholar]
- Le Pichon X, Francheteau J. 1978. A plate-tectonic analysis of the Red Sea—Gulf of Aden Area. Tectonophysics 46: 369–406. [CrossRef] [Google Scholar]
- Le Pichon X, Gaulier JM. 1988. The rotation of Arabia and the Levant fault system. Tectonophysics 153: 271–294. [CrossRef] [Google Scholar]
- Le Pichon X, Kreemer C. 2010. The Miocene-to-present kinematic evolution of the eastern mediterranean and middle east and its implications for dynamics. Annu Rev Earth Planetary Sci 38: 323–351. [CrossRef] [Google Scholar]
- Le Pichon X, Sengör AC, Imren C. 2019. A new approach to the opening of the eastern Mediterranean Sea and the origin of the Hellenic subduction zone. Part 2: The Hellenic subduction zone. Can J Earth Sci 56: 1144–1162. [CrossRef] [Google Scholar]
- Li S, Wang X, Tao T, Zhu Y, Qu X, Li Z, Huang J, Song S. 2023. Source model of the 2023 Turkey earthquake sequence imaged by sentinel-1 and GPS measurements: implications for heterogeneous fault behavior along the East Anatolian Fault Zone. Remote Sens 15. [Google Scholar]
- Li X, Jónsson S, Liu S, Ma Z, Castro-Perdomo N, Cesca S, Masson F, Klinger Y. 2024. Resolving the slip-rate inconsistency of the northern dead sea fault. Sci Adv 10: eadj8408. [CrossRef] [Google Scholar]
- Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A. 2005. GPS evidence for northward motion of the Sinai Block: implications for E. Mediterranean tectonics. Earth Planetary Sci Lett 238: 217–224. [CrossRef] [Google Scholar]
- Mahmoud Y, Masson F, Meghraoui M, Cakir Z, Alchalbi A, Yavasoglu H, Yönlü O, Daoud M, Ergintav S, Inan S. 2013. Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. J Geodyn 67: 30–39. [CrossRef] [Google Scholar]
- McCaffrey R. 1992. Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res: Solid Earth 97: 8905–8915. [CrossRef] [Google Scholar]
- McCaffrey R, Qamar AI, King RW, Wells R, Khazaradze G, Williams CA, Stevens CW, Vollick JJ, Zwick PC. 2007. Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys J Int 169: 1315–1340. [CrossRef] [Google Scholar]
- McKenzie D. 1972. Active tectonics of the Mediterranean region. Geophys J Int 30: 109–185. [CrossRef] [Google Scholar]
- McKenzie D. 1976. The East Anatolian Fault: A major structure in Eastern Turkey. Earth Planet Sci Lett 29: 189–193. [CrossRef] [Google Scholar]
- McKenzie D, Davies D, Molnar P. 1970. Plate tectonics of the Red Sea and east Africa. Nature 226: 243–248. [CrossRef] [Google Scholar]
- Melgar D, Taymaz T, Ganas A, Crowell BW, Öcalan T, Kahraman M, Tsironi V, Yolsal-Çevikbil S, Valkaniotis S, Irmak TS, et al. 2023. Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica 2: 10.26443/seismica.v2i3.387. [CrossRef] [Google Scholar]
- Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull Seismolog Soc Am 82: 1018–1040. [CrossRef] [Google Scholar]
- Özbey V, Özeren MS, Henry P, Klein E, Galgana G, Karabulut H, Lange D, McCaffrey R. 2021. Kinematics of the Marmara Region: a fusion of continuum and block models. Mediterranean Geosci Rev 3: 57–78. [CrossRef] [Google Scholar]
- Özeren MS, Holt WE. 2010. The dynamics of the eastern Mediterranean and eastern Turkey. Geophys J Int 183: 1165–1184. [CrossRef] [Google Scholar]
- Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res: Solid Earth 111: 1–26. [CrossRef] [Google Scholar]
- Sadeh M, Hamiel Y, Ziv A, Bock Y, Fang P, Wdowinski S. 2012. Crustal deformation along the Dead Sea Transform and the Carmel Fault inferred from 12 years of GPS measurements. J Geophys Res: Solid Earth 117. [CrossRef] [Google Scholar]
- Sarikaya A, Yildirim C, Ciner A. 2015, Late Quaternary alluvial fans of Emli Valley in the Ecemis Fault Zone, south central Turkey: insights from cosmogenic nuclides. Geomorphology, 228:512–525 [CrossRef] [Google Scholar]
- Sengör AMC, Yalcin N, Canitez N. 1980. The origin of the Adana/Cilicia Basin. An incompatibility structure arising at the common termination of the Eastern Anatolian and Dead Sea transform faults, in: Sedimentary Basins of Mediterranean Margins. C.N.R. Italian Project of Oceanography, pp. 45–46. [Google Scholar]
- Sengör AM, Zabc C, Natal’in BA. 2019. Continental transform faults: congruence and incongruence with normal plate kinematics, in: Transform plate boundaries and fracture zones. Elsevier, pp. 169–247. [CrossRef] [Google Scholar]
- Sançar T, Zabcı C, Karabacak V, Yazıcı M, Akyüz HS. 2019. Geometry and Paleoseismology of the Malatya Fault (Malatya-Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. J Seismol 23: 319–340. [CrossRef] [Google Scholar]
- Sengör A. 1979. The North Anatolian transform fault: its age, offset and tectonic significance. J Geolog Soc 136: 269–282. [CrossRef] [Google Scholar]
- Sengör AMC, Görür N, Şaroğlu F. 1985. Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study1, in: Biddle KT, Christie-Blick, N. (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM Society for Sedimentary Geology 37: https://doi.org/10.2110/pec.85.37.0211. [Google Scholar]
- Toda S, Stein RS. 2024. The Role of Stress Transfer in Rupture Nucleation and Inhibition in the 2023 Kahramanmaraş, Türkiye, Sequence, and a One‐Year Earthquake Forecast. Seismolog Res Lett 95: 596–606. [CrossRef] [Google Scholar]
- Umhoefer PJ, Thomson SN, Lefebvre C, Cosca MA, Teyssier C, Whitney DL. 2020. Cenozoic tectonic evolution of the Ecemiş fault zone and adjacent basins, central Anatolia, Turkey, during the transition from Arabia-Eurasia collision to escape tectonics. Geosphere 16: 1358–1384. [CrossRef] [Google Scholar]
- Viltres R, Jónsson S, Alothman AO, Liu S, Leroy S,Masson F, Doubre C, Reilinger R. 2022. Present-day motion of the arabian plate. Tectonics 41: e2021TC007013. [CrossRef] [Google Scholar]
- Walters RJ, Parsons B, Wright TJ. 2014. Constraining crustal velocity fields with InSAR for Eastern Turkey: limits to the block-like behavior of Eastern Anatolia. J Geophys Res: Solid Earth 119: 5215–5234. [CrossRef] [Google Scholar]
- Wang K, Wells R, Mazzotti S, Hyndman RD, Sagiya T. 2003. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J Geophys Res: Solid Earth 108: https://doi.org/10.1029/2001JB001227. [Google Scholar]
- Weiss JR, Walters RJ, Morishita Y, Wright TJ, Lazecky M, Wang H, Hussain E, Hooper AJ, Elliott JR, Rollins C, Yu C, González PJ, Spaans K, Li Z, Parsons B. 2020. High-resolution surface velocities and strain for anatolia from Sentinel-1 InSAR and GNSS Data. Geophys Res Lett 47: e2020GL087376. [CrossRef] [Google Scholar]
- Welford JK, Hall J, Rahimi A, Reiche S, Hübscher C, Louden K. 2015. Crustal structure from the Hecataeus Rise to the Levantine Basin, eastern Mediterranean, from seismic refraction and gravity modeling. Geophys J Int 203: 2055–2069. [CrossRef] [Google Scholar]
- Westaway R. 2003. Kinematics of the Middle East and eastern Mediterranean updated. Turk J Earth Sci 12: 5–46. [Google Scholar]
- Yildirim C, Sarikaya MA, Çiner A. 2016. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemi Fault Zone. Tectonics 35: 1446–1464. [CrossRef] [Google Scholar]
- Özkan A, Yavaşoğlu HH, Masson F. 2023. Present-day strain accumulations and fault kinematics at the Hatay Triple Junction using new geodetic constraints. Tectonophysics 854: 229819. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.