Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 27
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2024023
Published online 20 December 2024
  • Albert R, Arenas R, Gerdes A, Sánchez Martínez S, Fernández-Suárez J, Fuenlabrada JM. 2015. Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Res 28: 1434–1448. [CrossRef] [Google Scholar]
  • Álvaro JJ, Bauluz B, Clausen S, Devaere L, Gil Imaz A, Monceret É, Vizcaïno D. 2014. Stratigraphic review of the Cambrian-Lower Ordovician volcanosedimentary complexes from the northern Montagne Noire, France. Stratigraphy 11: 83–96. [Google Scholar]
  • Andonaegui P, Arenas R, Albert R, Sánchez Martínez S, Díez Fernández R, Gerdes A. 2016. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics 681: 6–14. [CrossRef] [Google Scholar]
  • Avigad D, Rossi Ph, Gerdes A, Abbo A. 2018. Cadomian metasediments and Ordovician sandstone from Corsica: detrital zircon U-Pb-Hf constrains on their provenance and paleogeography. Int J Earth Sci (Geol Rundsch) 107: 2803–2818. [CrossRef] [Google Scholar]
  • Bandres A, Eguı́luz L, Gil Ibarguchi JI, Palacios T. 2002. Geodynamic evolution of a Cadomian arc region: the northern Ossa-Morena zone, Iberian massif. Tectonophysics 352: 105–120. [CrossRef] [Google Scholar]
  • Barnes CG, Coint N, Yoshinobu A. 2016. Crystal accumulation in a tilted arc batholith. Am Mineralog 101: 1719–1734. [CrossRef] [Google Scholar]
  • Beard JS. 1995. Experimental, geological, and geochemical constraints on the origins of low-K silicic magmas in oceanic arcs. J Geophys Res: Solid Earth 100: 15593–15600. [CrossRef] [Google Scholar]
  • Bédard JH. 2006. Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70: 3717–3742. [CrossRef] [Google Scholar]
  • Bellot J-P., Laverne C, Bronner G. 2010. An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci (Geol Rundsch) 99: 473–504. [CrossRef] [Google Scholar]
  • Benmammar A, Berger J, Triantafyllou A, Duchene S, Bendaoud A, Baele J-M., Bruguier O, Diot H. 2020. Pressure-temperature conditions and significance of Upper Devonian eclogite and amphibolite facies metamorphisms in southern French Massif central. Bull Soc Géolog France 191: 28. [CrossRef] [EDP Sciences] [Google Scholar]
  • Blanc D. 1981. Les roches basiques et ultrabasiques des Monts du Lyonnais. Etude pétrographique, minéralogique et géochimique (PhD thesis). [Google Scholar]
  • Bodinier JL, Giraud A, Dupuy C, Leyreloup A, Dostal J. 1986. Caractérisation géochimique des métabasites associées à la suture méridionale hercynienne: Massif Centra français et Chamrousse (Alpes). Bull Soc Géolog France 8: 115–123. [CrossRef] [Google Scholar]
  • Bouchez JL, Jover O. 1986. Le Massif Central: un chevauchement de type himalayen vers l’Ouest-Nord-Ouest. Compt Rendus Acad Sci 302: 675–680. [Google Scholar]
  • Boynton WV, 1984. Cosmochemistry of the rare earth elements: meteorite studies, in: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Amsterdam: Elsevier, pp. 63-114. [Google Scholar]
  • Briand B, Bouchardon, J.-L., Capiez P, Piboule M, 2002. Felsic (A-type)-basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France). Geolog Mag 139. https://doi.org/10.1017/s0016756802006477 [Google Scholar]
  • Briand B, Bouchardon J-L., Ouali H, Piboule M, Capiez P. 1995. Geochemistry of bimodal amphibolite-felsic gneiss complexes from eastern Massif Central, France. Geolog Mag 132: 321–337. [CrossRef] [Google Scholar]
  • Briand B, Bouchardon J-L., Santallier D, Piboule M, Ouali H, Capiez P. 1992. Alkaline affinity of the metabasites in the gneissic series surrounding the Velay migmatitic domain. Géol France 2: 9–15. [Google Scholar]
  • Briand B, Piboule M, Santallier D, Bouchardon J-L. 1991. Geochemistry and tectonic implications of two Ordovician bimodal igneous complexes, southern French Massif Central. J Geolog Soc London 148: 959–971. [CrossRef] [Google Scholar]
  • Burg J-P., Leyreloup AF, Marchand J, Matte P. 1984. Inverted metamorphic zonation and large scale thrusting in the Variscan belt: an example in the French Massif central. J Geolog Soc London 14: 47–61. [CrossRef] [Google Scholar]
  • Burg J-P., Matte P. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z. dt. geol. Ges. 129: 429–460. [Google Scholar]
  • Chantraine J, Autran A, Cavelier C, Bureau de recherches g??ologiques et mini??res (France). 2003. Carte géologique de la France à l’échelle du millionième, 6ème édition révisée, BRGM. ed. Orléans. [Google Scholar]
  • Chelle-Michou C, Laurent O, Moyen J-F., Block S, Paquette J-L., Couzinié S, Gardien V, Vanderhaeghe O, Villaros A, Zeh A. 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Res 46: 170–190. [CrossRef] [Google Scholar]
  • Collett S, Schulmann K, Štípská P, Míková J. 2020. Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Res 79: 27–48. [CrossRef] [Google Scholar]
  • Corfu F, Hanchar JM, Hoskin PWO, Kinny PD. 2003. Atlas of zircon textures. Rev Mineral Geochem 53: 469–500. [CrossRef] [Google Scholar]
  • Cornet J, Bachmann O, Ganne J, Fiedrich A, Huber C, Deering CD, Feng X. 2022. Assessing the effect of melt extraction from mushy reservoirs on compositions of granitoids: from a global database to a single batholith. Geosphere 18: 985–999. [CrossRef] [Google Scholar]
  • Costa S. 1989. Age radiométrique 39Ar-40Ar dating of the Barrovian metamorphism of the Lot Valley series associated with the Marvejols nappe emplacement. Compt Rendus Acad Sci 309: 561–567. [Google Scholar]
  • Costa S, Maluski H, Lardeaux JM. 1993. 40Ar-39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central, France). Chem Geol 105: 339–359. [CrossRef] [Google Scholar]
  • Couzinié S, Bouilhol P, Laurent O, Grocolas T, Montel J-M. 2022. Cambro-Ordovician ferrosilicic magmatism along the northern Gondwana margin: constraints from the Cézarenque-Joyeuse gneiss complex (French Massif Central). BSGF − Earth Sciences Bulletin 193. [Google Scholar]
  • Couzinié S, Laurent O. 2021. Zircon U-Pb dating of the Montredon-Labessonnié orthogneiss by LA-ICP-MS: new evidence for late Ediacaran crustal melting in the French Massif Central. Géol France 1: 24–31. [Google Scholar]
  • Couzinié, S., Laurent O, Chelle-Michou C, Bouilhol P, Paquette, J.-L., Gannoun, A.-M., Moyen, J.-F. 2019. Detrital zircon U-Pb-Hf systematics of Ediacaran metasediments from the French Massif Central: consequences for the crustal evolution of the north Gondwana margin. Precambrian Res 324: 269–284. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen J-F., Bouilhol P, Vezinet A, Marko L. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286-287: 16–34. [CrossRef] [Google Scholar]
  • de Hoÿm de Marien L, Pitra P, Poujol M, Cogné N, Cagnard F Le Bayon B. 2023. Complex geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif Central). J Metamorph Geol 41: 967–995. [CrossRef] [Google Scholar]
  • Debon F, Le Fort P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Trans Royal Soc Edinburgh 73: 135–149. [CrossRef] [Google Scholar]
  • Dewey JF. 1987. Suture, in: Structural Geology and Tectonics, Encyclopedia of Earth Science. Berlin, Heidelberg: Springer, pp. 775-784. [Google Scholar]
  • Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res 36: 275–295. [CrossRef] [Google Scholar]
  • Downes H, Bodinier JL, Dupuy C, Leyreloup AF, Dostal J. 1989. Isotope and trace-element heterogeneities in high-grade basic metamorphic rocks of Marvejols: tectonic implications for the Hercynian suture zone of the French Massif Central. Lithos 24: 37–54. [CrossRef] [Google Scholar]
  • Dufour E. 1985. Granulite facies metamorphism and retrogressive evolution of the Monts du Lyonnais metabasites (Massif Central, France). Lithos 18: 97–113. [CrossRef] [Google Scholar]
  • Dufour E. 1982. Pétrologie et géochimie des formations orthométamorphiques acides des Monts du Lyonnais (Massif central, France) (PhD thesis). [Google Scholar]
  • Dufour E, Lardeaux JM, Coffrant D. 1985. Eclogites et granulites dans les Monts du Lyonnais: une évolution métamorphique plurifaciale éohercynienne. Compt Rendus Acad Sci 300: 141–144. [Google Scholar]
  • Duthou J-L., Cantagrel J-M., Didier J, Vialette Y. 1984. Palaeozoic granitoids from te French Massif Central: age and origin studied by 87$Rb-87$Sr system. Phys Earth Planet Interiors 35: 131–144. [CrossRef] [Google Scholar]
  • Duthou J-L., Chenevoy M, Gay M. 1994. Rb-Sr middle Devonian age of cordierite bearing migmatites from Lyonnais area (French Massif Central). Compt Rendus Acad Sci 319: 791–796. [Google Scholar]
  • Duthou J-L., Piboule M, Gay M, Dufour E. 1981. Datations radiométriques Rb-Sr sur les orthogranulites des Monts du Lyonnais (Massif Central français). Compt Rendus Acad Sci 292: 749–752. [Google Scholar]
  • Edel JB, Schulmann K, Lexa O, Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Sci Rev 177: 589–612. [CrossRef] [Google Scholar]
  • Erdős Z, Huismans RS, Faccenna C. 2022. Wide versus narrow back-arc rifting: control of subduction velocity and convective back-arc thinning. Tectonics 41: e2021TC007086. [CrossRef] [Google Scholar]
  • Faure M, Lardeaux J-M., Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience 341: 202–213. [CrossRef] [Google Scholar]
  • Feybesse J-L., Lardeaux JM, Tegyey M, Peterlongo J-M., Kerrien Y, Lemière B, Maurin G, Mercier F, Thiéblemont D. 1995. Notice explicative, Carte géol. France (1/50 000), feuille Saint-Symphorien-sur-Coise (721). BRGM, Orléans. [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Res 48: 257–284. [CrossRef] [Google Scholar]
  • Gardien V, Lardeaux JM, Ledru P, Allemand P, Guillot S. 1997. Metamorphism during late orogenic extension: insights from the French Variscan belt. Bull Soc Géolog France 168: 271–286. [Google Scholar]
  • Gardien V, Martelat J-E., Lelou P-H Mahéo G, Bevillard B, Allemand P, Monié P, Paquette J-L., Grosjean A-S., Faure M, Chelle-Michou C, Fellah C. 2022. Fast exhumation rate during late orogenic extension: The new timing of the Pilat detachment fault (French Massif Central, Variscan belt). Gondwana Res 103: 260–275. [CrossRef] [Google Scholar]
  • Gardien V, Teygey M, Lardeaux JM, Misseri M, Dufour E. 1990. Crust-mantle relationships in the French Variscan chain: the example of the Southern Monts du Lyonnais unit (eastern French Massif Central). J Metamorph Geol 8: 477–492. [CrossRef] [Google Scholar]
  • Garfunkel Z. 2015. The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res 28: 1257–1281. [CrossRef] [Google Scholar]
  • Gerdes A, Zeh A. 2009. Zircon formation versus zircon alteration — new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261: 230–243. [CrossRef] [Google Scholar]
  • Giraud A, Marchand J, Dupuy C, Dostal J. 1984. Geochemistry of leptyno-amphibolite complex from Haut Allier (French Massif Central). Lithos 17: 203–214. [CrossRef] [Google Scholar]
  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X-S., Zhou X. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61: 237–269. [CrossRef] [Google Scholar]
  • Guérangé-Lozes J, Demange M, Mouline M. 2013. Notice explicative, Carte géol. France (1/50 000), feuille Castres (986). BRGM, Orléans. [Google Scholar]
  • Holland T, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology. [Google Scholar]
  • Innocent C, Michard A, Guerrot C, Hamelin B. 2003. Datation U-Pb sur zircons à 548 Ma de leptynites des Maures centrales. Signification géodynamique des complexes leptyno-amphibolitiques de l’Europe varisque. Bull Soc Géolog France 174: 585–594. [Google Scholar]
  • Janoušek V, Farrow CM, Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47: 1255–1259. [CrossRef] [Google Scholar]
  • Joanny V, van Roermund H, Lardeaux JM. 1991. The clinopyroxene/plagioclase symplectite in retrograde eclogites: a potential geothermobarometer. Geol Rundsch 80: 303–320. [CrossRef] [Google Scholar]
  • Jouffray F, Lardeaux J-M., Tabaud A-S., Corsini M, Schneider J. 2023. Deciphering the nature and age of the protoliths and peak P−T conditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides. BSGF − Earth Sci Bull 194: 10. [CrossRef] [EDP Sciences] [Google Scholar]
  • Keppie JD, Nance RD, Murphy JB, Dostal J, Braid JA. 2010. The high-pressure Iberian-Czech belt in the Variscan orogen: extrusion into the upper (Gondwanan) plate? Gondwana Res 17: 306–316. [CrossRef] [Google Scholar]
  • Kroner U, Romer RL. 2013. Two plates — many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24: 298–329. [CrossRef] [Google Scholar]
  • Lardeaux J-M. 2023. Metamorphism and linked deformation in understanding tectonic processes at varied scales. Comptes Rendus Géosci 356: 1–25. [Google Scholar]
  • Lardeaux JM, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central − a new addition ot the ultra-high pressure metamorphic “club”: exhumation porcesses and geodynamic consequences. Tectonophysics 332: 143–167. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janousek V, Lexa O, Skrzypek E, Edel JB, Stipska P. 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geolog Soc London Spec Publicat 405: 7–44. [CrossRef] [Google Scholar]
  • Laurent O, Björnsen J, Wotzlaw J-F., Bretscher S, Pimenta Silva M, Moyen J-F., Ulmer P, Bachmann O. 2020. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nat Geosci 13: 163–169. [CrossRef] [Google Scholar]
  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342: 207–237. [CrossRef] [Google Scholar]
  • Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel J-M., Floc’h J-P., Lerouge G, Maillet N, Marchand J, Ploquin A. 1989. Where are the nappes in the French Massif central? Bull Soc Géolog France 8: 605–618. [CrossRef] [Google Scholar]
  • Lee C-TA, Morton DM. 2015. High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth Planet Sci Lett 409: 23–31. [CrossRef] [Google Scholar]
  • Lescuyer J-L., Cocherie A. 1992. Single-zircon dating of the Sériès meta-dacites: evidence for a Late Proterozoic age of the “X Schists” from Montagne Noire (Southern French Massif Central). Compt Rendus Acad Sci 314: 1071–1077. [Google Scholar]
  • Li X, Zhang C, Behrens H, Holtz F. 2020a. Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 362-363: 105469. [CrossRef] [Google Scholar]
  • Li X, Zhang C, Behrens H, Holtz F. 2020b. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 356-357: 105371. [CrossRef] [Google Scholar]
  • Linnemann U, Gerdes A, Hofmann M, Marko L. 2014. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244: 236–278. [CrossRef] [Google Scholar]
  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461: 21–43. [CrossRef] [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: a multimethod geochronological study from the Najac Massif. Lithos 308-309: 381–394. [CrossRef] [Google Scholar]
  • Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From Burial to Exhumation: emplacement and metamorphism of Mafic Eclogitic Terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). J Petrol 61. https://doi.org/10.1093/petrology/egaa046 [CrossRef] [Google Scholar]
  • Maierová P, Štípská P, Gerya T, Lexa O. 2021. Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides. Commun Earth Environ 2. https://doi.org/10.1038/s43247-021-00122-w [CrossRef] [Google Scholar]
  • Matte P. 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126: 329–374. [CrossRef] [Google Scholar]
  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mulder JA, Blades ML, Young A, Armistead SE, Cannon J, Zahirovic S, Müller RD. 2021. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci Rev 214: 103477. [CrossRef] [Google Scholar]
  • Molina JF, Moreno JA, Castro A, Rodríguez C, Fershtater GB. 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232: 286–305. [CrossRef] [Google Scholar]
  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié, S., Vanderhaeghe O, Zeh A, Villaros A, Gardien V. 2017. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
  • Naeraa T, Schersten A, Rosing MT, Kemp AI, Hoffmann JE, Kokfelt TF, Whitehouse MJ. 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485: 627–630. [CrossRef] [Google Scholar]
  • Nandedkar RH, Hürlimann N, Ulmer P, Müntener O. 2016. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Mineral Petrol 171: 71. [CrossRef] [Google Scholar]
  • Ohta T, Arai H. 2007. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chem Geol 240: 280–297. [CrossRef] [Google Scholar]
  • Padel M, Álvaro JJ, Clausen S, Guillot F, Poujol M, Chichorro M, Monceret É, Pereira MF, Vizcaïno D. 2017. U-Pb laser ablation ICP-MS zircon dating across the Ediacaran-Cambrian transition of the Montagne Noire, southern France. Comptes Rendus Geosci https://doi.org/10.1016/j.crte.2016.11.002 [Google Scholar]
  • Paquette J-L., Ballèvre M, Peucat J-J., Cornen G. 2017. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294-295: 418–437. [CrossRef] [Google Scholar]
  • Paris F, Robardet M. 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. Tectonophysics 177: 193–213. [CrossRef] [Google Scholar]
  • Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14–48. [CrossRef] [Google Scholar]
  • Pearce JA, Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planetary Sci 23: 251–285. [CrossRef] [Google Scholar]
  • Peterlongo J-M. 1958. Les terrains cristallins des Monts du Lyonnais (Massif central français), Annales de la Faculté des Sciences de Clermont. [Google Scholar]
  • Piboule M, Briand B. 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chem Geol 50: 189–199. [CrossRef] [Google Scholar]
  • Pin C. 1990. Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227. [CrossRef] [Google Scholar]
  • Pin C, Lancelot J. 1982. U-Pb dating of an early paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contrib Mineral Petrol 79: 1–12. [CrossRef] [Google Scholar]
  • Pin C, Liñán E, Pascual E, Donaire T, Valenzuela A. 2002. Late Neoproterozoic crustal growth in the European Variscides: Nd isotope and geochemical evidence from the Sierra de Córdoba Andesites (Ossa-Morena Zone, Southern Spain). Tectonophysics 352: 133–151. [CrossRef] [Google Scholar]
  • Pin C, Marini F. 1993. Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29: 177–196. [CrossRef] [Google Scholar]
  • Pitra P, Poujol M, Van Den Driessche J, Bretagne E, Lotout C, Cogné N. 2022. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J Metamorph Geol 40: 39–65. [CrossRef] [Google Scholar]
  • Pouclet A, Álvaro JJ, Bardintzeff J-M., Imaz AG, Monceret E, Vizcaïno D. 2017. Cambrian-early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: continental break-up and rifting of the northern Gondwana margin. Geosci Front 8: 25–64. [CrossRef] [Google Scholar]
  • Rudnick RL, Gao S. 2003. Composition of the continental crust, in: Rudnick, R.L. (Ed.), The Crust, Treatise on Geochemistry. Oxford: Elsevier-Pergamon, pp. 1-64. [Google Scholar]
  • Samson SD, D’Lemos RS, Blichert-Toft J, Vervoort J. 2003. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane. Earth Planet Sci Lett 208: 165–180. [CrossRef] [Google Scholar]
  • Santallier D, Briand B, Ménot RP, Piboule M. 1988. Les complexes leptyno-amphioliques (C.L.A.): revue critique et suggestions pour un meilleur emploi de ce terme. Bull Soc Géolog France 8: 3–12. [CrossRef] [Google Scholar]
  • Schmidt MW, Thompson AB. 1996. Epidote in calcalkaline magmas; an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Am Mineralog 81: 462–474. [CrossRef] [Google Scholar]
  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux JM. 2014. Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France) Geological Society, London, Special Publications 405: 313–331. [Google Scholar]
  • Schulmann K, Edel J-B., Martínez Catalán JR, Mazur S, Guy A, Lardeaux J-M., Ayarza P, Palomeras I 2022. Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data. Earth-Sci Rev 234: 104195. [CrossRef] [Google Scholar]
  • Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59: 101–118. [CrossRef] [Google Scholar]
  • Soejono I, Janoušek V, Žáčková, E., Sláma J, Konopásek J, Machek M, Hanžl P. 2017. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J Earth Sci (Geol Rundsch) 106: 2109–2129. [CrossRef] [Google Scholar]
  • Stampfli GM, Hochard C, Vérard C, Wilhem C, vonRaumer J. 2013. The formation of Pangea. Tectonophysics 593: 1–19. [CrossRef] [Google Scholar]
  • Stern RJ, Bloomer SH, Martinez F, Yamazaki T, Harrison TM. 1996. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report. Island Arc 5: 354–372. [CrossRef] [Google Scholar]
  • Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geolog Soc Lond 42: 313–345. [CrossRef] [Google Scholar]
  • Tabaud AS, Lardeaux JM, Corsini M. 2023. A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin. Int J Earth Sci (Geol Rundsch) 112: 925–950. [CrossRef] [Google Scholar]
  • Tabaud AS, Štípská P, Mazur S, Schulmann K, Míková J, Wong J, Sun M. 2021. Evolution of a Cambro-Ordovician active margin in northern Gondwana: geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondwana Res 90: 1–26. [CrossRef] [Google Scholar]
  • Van der Voo R, Briden JC, Duff A. 1980. Late Precambrian and Palaeozoic palaeomagnetism of the Atlantic-bordering continents, in: Géologie de l’Europe, Mémoires Du BRGM. pp. 203–212. [Google Scholar]
  • Vanderhaeghe O, Laurent O, Gardien V, Moyen J-F., Gébelin A, Chelle-Michou C, Couzinié S, Villaros A, Bellanger M. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. BSGF https://doi.org/10.1051/bsgf/2020013 [Google Scholar]
  • Vermeesch P. 2018. IsoplotR: A free and open tool box for geochronology. Geosci Front 9: 1479–1493. [CrossRef] [Google Scholar]
  • Whitney DL, Hamelin C, Teyssier C, Raia NH, Korchinski MS, Seaton NCA, Bagley BC, von der Handt A, Roger F, Rey PF. 2020. Deep crustal source of gneiss dome revealed by eclogite in migmatite (Montagne Noire, French Massif Central). J Metamorph Geol 38: 297–327. [CrossRef] [Google Scholar]
  • Zeh A, Gerdes A. 2010. Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17: 254–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.