Numéro |
Bull. Soc. géol. Fr.
Volume 188, Numéro 4, 2017
Fluid flow in sedimentary basins
|
|
---|---|---|
Numéro d'article | E3 | |
Nombre de pages | 6 | |
DOI | https://doi.org/10.1051/bsgf/2017200 | |
Publié en ligne | 22 novembre 2017 |
- Andresen KJ, Huuse M. 2011. “ Bulls-eye” pockmarks and polygonal faulting in the Lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial. Marine Geology 279 (1–4): 111–127. [CrossRef] [Google Scholar]
- Arntsen B, Wensaas L, Løseth H, Hermanrud C. 2007. Seismic modelling of gas chimneys. Geophysics 72: 251–259. [CrossRef] [Google Scholar]
- Baltzer A, Ehrhold A, Rigolet C, Souron A, Cordier C, Clouet H, et al. 2014. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders. Geo-Marine Letters 34: 215–230. [CrossRef] [Google Scholar]
- Baltzer A, Reynaud M, Ehrhold A, Fournier J, Cordier C, Clouet C. 2017. Space-time evolution of a large field of pockmarks in the Bay of Concarneau (NW Brittany). Bull. Soc. géol. Fr. 188: 23. [Google Scholar]
- Bayon G, Loncke L, Dupré S, Caprais J-C., Ducassou E, Duperron S, et al. 2008. Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan. Marine Geology 261 (1–4): 92–104. [Google Scholar]
- Cartwright J. 2011. Diagenetically induced shear failure of fine-grained sediments and the development of polygonal fault systems. Marine and Petroleum Geology 28: 1593–1610. [CrossRef] [Google Scholar]
- Cartwright J, Huuse M, Aplin AC. 2007. Seal bypass system. AAPG bulletin 91 (8): 1141–1166. [CrossRef] [Google Scholar]
- Casenave V, Gay A, Imbert P. 2017. Spider structures: records of fluid venting from methane hydrates on the Congo continental slope. Bull. Soc. géol. Fr. 188: 27. [Google Scholar]
- De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok A, et al. 2002. Active Hydrate Destabilization in Lake Baikal, Siberia? Terra Nova 14 (6): 436–442. [CrossRef] [Google Scholar]
- Dunkley Jones T, Ridgwell A, Lunt DJ, Maslin MA, Schmidt DN, Valdes PJ. 2010. A Palaeogene perspective on climate sensitivity and methane hydrate 684 instability. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 368 (1919): 2395–2415. [CrossRef] [Google Scholar]
- Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P. 2010. Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Marine Geology 275 (1–4): 1–19. [CrossRef] [Google Scholar]
- Dupré S, Scalabrin C, Grall C, Augustin JM, Henry P, Şengör AM, et al. 2015. Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research: Solid Earth 120: 2891–2912. [CrossRef] [Google Scholar]
- Egorov AV, Crane K, Vogt PR, Rozhkov AN. 1999. Gas hydrates that outcrop on the sea floor: stability models. Geo-Marine Letters 19: 89–96. [CrossRef] [Google Scholar]
- Gay A, Lopez M, Cochonat P, Sermondadaz G. 2004. Polygonal fault-furrows system related to early stages of compaction − upper Miocene to recent sediments of the Lower Congo Basin. Basin Research 16: 101–116. [CrossRef] [Google Scholar]
- Gay A, Lopez M, Cochonat P, Séranne M, Levaché D, Sermondadaz G. 2006. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology 226: 25–40. [CrossRef] [Google Scholar]
- Gay A, Lopez M, Berndt C, Séranne M. 2007. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology 244: 68–92. [CrossRef] [Google Scholar]
- Gay A, Cavailhes T, Grauls D, Marsset B, Marsset T. 2017. Repeated fluid expulsions during events of rapid sea-level rise in the Gulf of Lion, western Mediterranean Sea. Bull. Soc. géol. Fr. 188: 24. [Google Scholar]
- Hasiotis T, Papatheodorou G, Kastanos N, Ferentinos G. 1996. A pockmark field in the Patras Gulf (Greece) and its activation during the 14/7/93 seismic event. Marine Geology 130: 333–344. [CrossRef] [Google Scholar]
- Ho S, Caruthers D, Imbert P. 2016. Insights into the permeability of polygonal faults from their intersection geometries with Linear Chimneys: a case study from the Lower Congo Basin. Carnets Géologie 16(02): 17. [Google Scholar]
- Hovland M, Judd J. 1988. Seabed pockmarks and seepages. Impact on Geology, Biology and Marine Environment. London: Graham and Trotman, 293 p. [Google Scholar]
- Hyndman RD, Spence GD. 1992. A seismic study of methane hydrate marine bottom simulating reflectors. JGR 97: 6683–6698. [CrossRef] [Google Scholar]
- Kvenvolden KA. 1988. Methane hydrate − a major reservoir of carbon in the shallow geosphere? Chemical Geology 71: 41–51. [CrossRef] [Google Scholar]
- Laurent D, Gay A, Baudon C, Berndt C, Soliva R, Planke S, et al. 2012. High-resolution architecture of a polygonal fault interval inferred from Geomodel applied to 3D seismic data from the Gjallar Ridge, Vøring Basin, Offshore Norway. Marine Geology 332–334: 134–151. [CrossRef] [Google Scholar]
- León R, Somoza L, Medialdea T, Hernández-Molina FJ, Vázquez JT, Díaz-del-Rio V, et al. 2010. Pockmarks, collapses and blind valleys in the Gulf of Cádiz. Geo-Marine Letters 30 (3–4): 231–247. [CrossRef] [Google Scholar]
- León R, Somoza L, Medialdea T, Gonzalez FJ, Gimenez-Moreno CJ, Perez-Lopez R. 2014. Pockmarks on either side of the Strait of Gibraltar: formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand? Geo-Marine Letters 34 (2–3): 131–151. [CrossRef] [Google Scholar]
- Lonergan L, Cartwright J, Jolly R. 1998. The geometry of polygonal fault in Tertiary mudrocks of the North Sea. Journal of Structural Geology 20: 529–548. [CrossRef] [Google Scholar]
- Løseth H, Wensaas L, Arntsen B, Hanken NM, Bsire C, Graue K. 2011. 1000 m long gas blow-out pipes. Marine and Petroleum Geology 28 (5): 1047–1060. [CrossRef] [Google Scholar]
- MacKay ME, Jarrard RD, Westbrook GK, Shipboard Scientific Party of Ocean Drilling Program Leg 146. 1994. Origin of bottom-simulating reflectors: Geophysical evidence from the Cascadia accretionary prism. Geology 22: 459–462. [CrossRef] [Google Scholar]
- Malié P, Bailleul J, Chanier F, Toullec R, Mahieux G, Caron V, et al. 2017. Spatial distribution and tectonic framework of fossil tubular concretions as onshore analogues of cold seep plumbing systems, North Island of New Zealand. Bull. Soc. géol. Fr. 188: 25. [Google Scholar]
- Migeon S, Ceramicola S, Praeg D, Ducassou E, Dano A, Ketzer JM, et al. 2014. Post-failure Processes on the Continental Slope of the Central Nile Deep-Sea Fan: Interactions Between Fluid Seepage, Sediment Deformation and Sediment-Wave Construction. In: Krastel S, et al., eds. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research. Springer 37, pp. 117–127. [Google Scholar]
- Murat A, Beaufort D, Hebert B, Baudin F, Bernasconi S, Ducassou E, et al. 2017. Post-depositional evolution over a time scale of 1 million years of eastern Mediterranean organic-rich and organic-poor sediments: new insights on the debromination and layer-silicate markers. Bull. Soc. géol. Fr. 188: 21. [Google Scholar]
- Odonne F, Beaufort D, Munck R, Bourrières L, Darrozes J. 2017. Smectite as a marker of telogenetic process along structural heterogeneities of sedimentary basin: Case study of the Eocene submarine slide surfaces of the Ainsa Basin. Bull. Soc. géol. Fr. 188: 22. [Google Scholar]
- Praeg D, Ketzer JM, Augustin AH, Migeon S, Ceramicola S, Dano A, et al. 2014. Chapter 13. Fluid Seepage in Relation to Seabed Deformation on the Central Nile Deep-Sea Fan, Part 2: Evidence from Multibeam and Sidescan Imagery. In Submarine Mass Movements and Their Consequences – 6th International Symposium – Advances in Natural and Technological Hazards Research, vol. 37, pp. 141–150. [Google Scholar]
- Rempel AW, Buffett BA. 1997. Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research 102 (B5): 10151–10164. [CrossRef] [Google Scholar]
- Riboulot V, Cattaneo A, Scalabrin C, Gaillot A, Jouet G, Ballas G, et al. 2017. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania. Bull. Soc. géol. Fr. 188: 26. [Google Scholar]
- Rodrigues N, Cobbold PR, Løseth H. 2009. Physical modelling of sand injectites. Tectonophysics 474: 610–632. [CrossRef] [Google Scholar]
- Rollet N, Logan GA, Kennard JM, O'Brien PE, Jones AT, Sexton M. 2006. Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: an example from the tropical, carbonate Yampi Shelf, Northwest Australia. Marine and Petroleum Geology 23: 145–164. [CrossRef] [Google Scholar]
- Shipley TH, Houston MH, Buffler RT, Shaub FJ, McMillen KJ, Ladd JW, et al. 1979. Seismic evidence for widespread possible occurrence of gas-hydrate horizons or continental slopes and rises. AAPG Bulletin 63: 2204–2213. [Google Scholar]
- Sultan N, Bohrmann G, Ruffine L, Pape T, Riboulot V, Colliat JL, et al. 2014. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research, Solid Earth 119: 2679–2694. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.