Numéro
Bull. Soc. géol. Fr.
Volume 188, Numéro 5, 2017
Petroleum source rocks
Numéro d'article 30
Nombre de pages 18
DOI https://doi.org/10.1051/bsgf/2017188
Publié en ligne 10 novembre 2017
  • Algeo TJ, Heckel PH, Maynard JB, Blakey R, Rowe H. 2008. Modern and ancient epeiric seas and the super-estuarine circulation model of marine anoxia. In: Pratt BR, Holmden C, eds. Dynamics of Epeiric seas: sedimentological, paleontological and geochemical perspectives. St. John's, Canada: Geological Association of Canada, Special Publication, vol. 48, pp. 7–38. [Google Scholar]
  • Alldredge AL, Silver MW. 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20: 41–82. DOI: 10.1016/0079-6611(88)90053-5. [CrossRef] [Google Scholar]
  • Alzaga-Ruiz H, Granjeon D, Lopez M, Seranne M, Roure F. 2009. Gravitational collapse and Neogene sediment transfer across the western margin of the Gulf of Mexico: Insights from numerical models. Tectonophysics 470: 21–41. DOI: 10.1016/j.tecto.2008.06.017. [CrossRef] [Google Scholar]
  • Armitage JH. 1962. Triassic Oil and Gas Occurrences in Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology 10: 35–56. [Google Scholar]
  • Arthur MA, Sageman BB. 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences 22: 499–551. DOI: 10.1146/annurev.ea.22.050194.002435. [CrossRef] [Google Scholar]
  • Beranek LP, Mortensen JK. 2011. The timing and provenance record of the Late Permian Klondike orogeny in northwestern Canada and arc-continent collision along western North America. Tectonics 30: 1–23. DOI: 10.1029/2010TC002849. [CrossRef] [Google Scholar]
  • Bohacs KM, Carroll AR, Mankiewicz PJ, Miskell-Gerhardt KJ, Schwalbach JONR, Wegner MB, et al. 2005. Production, destruction, and dilution-the many paths to source-rock development. In: Harris NB, ed. The Deposition Of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. Tulsa, USA: Special Publications of SEPM, vol. 82, pp. 61–101. [CrossRef] [Google Scholar]
  • Brumsack H-J. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344–361. DOI: 10.1016/j.palaeo.2005.05.011. [CrossRef] [Google Scholar]
  • Bruns B, Littke R, Gasparik M, Van Wees J-D, Nelskamp S. 2015. Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands: a 3D basin modelling study. Basin Research 28: 2–33. DOI: 10.1111/bre.12096. [CrossRef] [Google Scholar]
  • Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets ? Chemical reviews 107: 467–85. DOI: 10.1021/cr050347q. [CrossRef] [Google Scholar]
  • Burgess PM, Lammers H, Van Oosterhout C, Granjeon D. 2006. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG bulletin 90: 1883–1901. [CrossRef] [Google Scholar]
  • Carlson CE. 1968. Triassic-Jurassic of Alberta, Saskatchewan, Manitoba, Montana, and North Dakota. AAPG Bulletin 52: 1969–1983. [Google Scholar]
  • Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, et al. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews 92: 1–33. DOI: 10.1016/j.earscirev.2008.10.003. [CrossRef] [Google Scholar]
  • Chalmers GRL, Bustin RM. 2012. Geological evaluation of Halfway–Doig–Montney hybrid gas shale–tight gas reservoir, northeastern British Columbia. Marine and Petroleum Geology 38: 53–72. DOI: 10.1016/j.marpetgeo.2012.08.004. [CrossRef] [Google Scholar]
  • Chauveau B, Granjeon D, Huc AY. 2013. Depositional Model of Marine Organic Matter Coupled With a Stratigraphic Forward Numerical Model (DIONISOS): Application to the Devonian Marcellus Formation (Abstr.). In: AAPG Hedberg Conference Petroleum Systems: Modeling the Past, Planning the Future abstracts. American Association of Petroleum Geologists. [Google Scholar]
  • Chauveau B, Granjeon D, Ducros M. 2016. 3D numerical stratigraphic model for basin scale modeling of the organic matter deposition in a marine environment: Application to the Natih formation (Late Cretaceous, Oman) (Abstr.). In: AAPG Geosciences Technology Workshop abstracts. American Association of Petroleum Geologists. [Google Scholar]
  • Cohen KM, Finney SC, Gibbard PL, Fan J-X. 2013. The ICS International Chronostratigraphic Chart. Episodes 36: 199–204. [Google Scholar]
  • Crombez V. 2016. Petrofacies, sedimentologie et architecture stratigraphique des roches riches en matiere organique : Étude multi-approches des Formations Montney et Doig (Trias inferieur et moyen, Alberta − Colombie Britannique, Canada). France : Thèse de doctorat de l'Université de Paris VI, 225 p. [Google Scholar]
  • Crombez V, Rohais S, Baudin F, Euzen T. 2016a. Facies well-log patterns, geometries and sequence stratigraphy of a wave dominated margin: insight from the Montney Formation (Alberta, British Columbia, Canada). Bulletin of Canadian Petroleum Geology 64 (4): 516–537. [CrossRef] [Google Scholar]
  • Crombez V, Baudin F, Rohais S, Riquier L, Euzen T, Pauthier S, et al. 2016b. Basin scale distribution of organic matter in marine fine-grained sedimentary rocks: Insight from sequence stratigraphy and multi-proxies analysis in the Montney and Doig formations. Marine and Petroleum Geology 83: 382–401. DOI: 10.1016/j.marpetgeo.2016.10.013. [CrossRef] [Google Scholar]
  • Csato I, Catuneanu O, Granjeon D. 2014. Millennial-scale sequence stratigraphy: numerical simulation with Dionisos. Journal of Sedimentary Research 84: 394–406. [CrossRef] [Google Scholar]
  • Cumming AD. 1956. The Watrous strata in Saskatchewan (Abstr.). First International Williston Basin Symposium abstracts. North Dakota Geological Society & Saskatchewan Geological Society 165–169. [EDP Sciences] [Google Scholar]
  • Dai A, Trenberth KE. 2002. Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations. Journal of Hydrometeorology 3: 660–687. DOI: 10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2. [CrossRef] [Google Scholar]
  • Davies GR. 1997a. The Triassic of the Western Canada Sedimentary Basin: Tectonic and Stratigraphic Framework, Paleogeography, Paleoclimate and Biota. Bulletin of Canadian Petroleum Geology 45: 434–460. [Google Scholar]
  • Davies GR. 1997b. Aeolian Sedimentation and Bypass, Triassic of Western Canada. Bulletin of Canadian Petroleum Geology 45: 624–642. [Google Scholar]
  • Davies GR, Moslow TF, Sherwin MD. 1997. The Lower Triassic Montney Formation, West-Central Alberta. Bulletin of Canadian Petroleum Geology 45: 474–505. [Google Scholar]
  • Edwards DE, Barclay JE, Gibson DW, Kvill GE, Halton E. 1994. Triassic Strata of the Western Canada Sedimentary Basin. In: Mossop GD, Shetsen I, eds. Geological Atlas of the Western Canada Sedimentary Basin. CSPG and Alberta Research Council 259–273. [Google Scholar]
  • Fowler CMR, Nisbet EG. 1985. The subsidence of the Williston Basin. Canadian Journal of Earth Sciences 22: 408–415. [CrossRef] [Google Scholar]
  • Ghadeer SG, Macquaker JHS. 2011. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. Journal of the Geological Society 168: 1121–1132. DOI: 10.1144/0016-76492010-016. [CrossRef] [Google Scholar]
  • Golding ML, Orchard MJ, Zonneveld J-P, Henderson CM, Dunn L. 2014. An exceptional record of the sedimentology and biostratigraphy of the Montney and Doig formations in British Columbia. Bulletin of Canadian Petroleum Geology 62: 157–176. [Google Scholar]
  • Golding ML, Mortensen JK, Ferri F, Zonneveld J-P, Orchard M. 2015a. Determining the provenance of Triassic sedimentary rocks in northeastern British Columbia and western Alberta using detrital zircon geochronology, with implications for regional tectonics. Canadian Journal of Earth Sciences 53: 140–155. DOI: 10.1139/cjes-2015-0082. [CrossRef] [Google Scholar]
  • Golding ML, Orchard MJ, Zonneveld J-P., Wilson NSF. 2015b. Determining the age and depositional model of the Doig Phosphate Zone in northeastern British Columbia using conodont biostratigraphy. Bulletin of Canadian Petroleum Geology 63: 143–170. [CrossRef] [Google Scholar]
  • Golonka J, Ross MI, Scotese CR. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Embry AF, Glass DJ. eds. Pangea: Global Environments and Resources . CSPG Special Publications 17: 1–47. [Google Scholar]
  • Granjeon D. 2014. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. In: Martinius AW, Ravnas R, Howell JA, STEEL RJ, Wonham JP. eds. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. International Association of Sedimentologists special publication 46: 453–472. [Google Scholar]
  • Gvirtzman Z, Csato I, Granjeon D. 2014. Constraining sediment transport to deep marine basins through submarine channels: The Levant margin in the Late Cenozoic. Marine Geology 347: 12–26. [CrossRef] [Google Scholar]
  • Hallam A. 1985. A review of Mesozoic climates. Journal of the Geological Society 142: 433–445. DOI: 10.1144/gsjgs.142.3.0433. [CrossRef] [Google Scholar]
  • Hardenbol J, Thierry J, Farley M, Jacquin T, De Graciansky PC, Vail PR. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In: Graciansky PC, Hardenbol J, Thierry J, Vail PR, eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. Special Publications of SEPM 60: 3–13. [Google Scholar]
  • Hawie N, Deschamps R, Granjeon D, Nader FH, Gorini C, Müller C, et al. 2015. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modelling case study of the Levant region. Basin Research 29 (S1): 418–445. DOI: 10.1111/bre.12156. [CrossRef] [Google Scholar]
  • Huc AY, Van Buchem FSP, Colletta B. 2005. Stratigraphic Control on Source-Rock Distribution: First and Second Order Scale. In: Harris NB, ed. The Deposition Of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. Special Publications of SEPM 82: 225–242. [Google Scholar]
  • Hunt D, Tucker ME. 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall − reply. Sedimentary Geology 95: 147–160. DOI: 10.1016/0037-0738(94)00123-C. [CrossRef] [Google Scholar]
  • Jarvie DM. 2012a. Shale Resource Systems for Oil and Gas: Part 1–Shale-gas Resource Systems. In: Breyer JA, ed. Shale reservoirs–Giant resources for the 21st century. AAPG Memoir 97: 69–87. DOI: 10.1306/13321446M973489. [Google Scholar]
  • Jarvie DM. 2012b. Shale Resource Systems for Oil and Gas: Part 2–Shale-oil Resource Systems. In: Breyer JA, ed. Shale reservoirs—Giant resources for the 21st century. AAPG Memoir 97: 89–119. DOI: 10.1306/13321447M973489. [Google Scholar]
  • Katz BJ. 2005. Controlling Factors on Source Rock Development–A Review of Productivity, Preservation, and Sedimentation Rate. In: Harris NB, ed. The Deposition Of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. Special Publications of SEPM 82: 7–16. [Google Scholar]
  • Kent DM. 1994. Paleogeographic evolution of the cratonic platform-Cambrian to Triassic. In: Mossop GD, Shetsen I, eds. Geological Atlas of the Western Canada Sedimentary Basin. Calgary: CSPG and Alberta Research Council, pp. 69–86. [Google Scholar]
  • Kent DM, Christopher JE. 1994. Geological history of the Williston Basin and Sweetgrass arch. In: Mossop GD, Shetsen I, eds. Geological Atlas of the Western Canada Sedimentary Basin. Canada: CSPG and Alberta Research Council, pp. 421–429. [Google Scholar]
  • Leroux E, Rabineau M, Aslanian D, Gorini C, Bache F, Moulin M, et al. 2015. Post-rift evolution of the Gulf of Lion margin tested by stratigraphic modelling. Bulletin de la Société Géologique de France 186: 291–308. DOI: 10.2113/gssgfbull.186.4-5.291. [CrossRef] [Google Scholar]
  • Løseth H, Wensaas L, Gading M, Duffaut K, Springer M. 2011. Can hydrocarbon source rocks be identified on seismic data? Geology 39: 1167–1170. DOI: 10.1130/G32328.1. [CrossRef] [Google Scholar]
  • Macquaker JHS, Bohacs KM. 2007. On the Accumulation of Mud. Science 318: 1734–1735. [CrossRef] [Google Scholar]
  • Macquaker JHS, Bentley SJ, Bohacs KM. 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology 38: 947–950. [CrossRef] [Google Scholar]
  • Martin JH, Knauer GA, Karl DM, Broenkow WW. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers 34: 267–285. DOI: 10.1016/0198-0149(87)90086-0. [CrossRef] [Google Scholar]
  • Milliman JD, Meade RH. 1983. World-Wide Delivery of River Sediment to the Oceans. The Journal of Geology 91: 1–21. [CrossRef] [Google Scholar]
  • Milliman JD, Syvitski JPM. 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology 100: 525–544. [CrossRef] [Google Scholar]
  • Moslow TF, Davies GR. 1997. Turbidite Reservoir Facies in the Lower Triassic Montney Formation, West-Central Alberta. Bulletin of Canadian Petroleum Geology 45: 507–536. [Google Scholar]
  • Orchard MJ, Zonneveld J-P. 2009. The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake area: lithostratigraphy, conodont biostratigraphy, and a new biozonation for the lower Olenekian (Smithian). Candian Journal of Earth Sciences 46: 757–790. [CrossRef] [Google Scholar]
  • Passey QR, Bohacs K, Esch WL, Klimentidis R, Sinha S. 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir − Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoir (Abstr.). In: CPS/SPE International Oil & Gas Conference and in China abstracts. Society of Petroleum Engineers. DOI: 10.2118/131350-MS. [Google Scholar]
  • Reed JC, Wheeler JO, Tucholke BE, Stettner WR, Soller DR. 2005. Decade of North American Geology Geologic Map of North America–Perspectives and explanation. Boulder, USA: The Geological Society of America, 32 p. DOI: 10.1130/DNAG-CSMS-v1. [Google Scholar]
  • Riediger CL. 1997. Geochemistry of Potential Hydrocarbon Source Rocks of Triassic Age in the Rocky Mountain Foothills of Northeastern British Columbia and West-Central Alberta. Bulletin of Canadian Petroleum Geology 45: 719–741. [Google Scholar]
  • Riediger CL, Brooks PW, Fowler MG, Snowdon LR. 1990. Lower and Middle Triassic source rocks, thermal maturation, and oil-source rock correlations in the Peace River Embayment area, Alberta and British Columbia. Bulletin of Canadian Petroleum Geology 38: 218–235. [Google Scholar]
  • Rohais S, Crombez V, Euzen T, Baudin F. 2016. The Montney-Doig-Halfway Formations from Western Canadian Sedimentary Basin (WCSB): Passive margin, Back-Arc or Fore-Arc geodynamic setting? (Abstr.). In: Geoconvention: Optimizing Resources abstracts. Canadian Society of Petroleum Geologists, Canadian society of exploration geophysicists & Canadian Well Logging Society. [Google Scholar]
  • Sageman BB, Lyons TW. 2003. Geochemistry of fine-grained sediments and sedimentary rocks. Treatise on geochemistry 7: 115–158. [Google Scholar]
  • Saliot A. 1994. Biochimie organique marine. Oceanis 20: 197. [Google Scholar]
  • Schieber J, Southard JB. 2009. Bedload transport of mud by floccule ripples-Direct observation of ripple migration processes and their implications. Geology 37: 483–486. [CrossRef] [Google Scholar]
  • Schieber J, Southard JB, Thaisen K. 2007. Accretion of mudstone beds from migrating floccule ripples. Science 318: 1760–1763. [CrossRef] [Google Scholar]
  • Sellwood BW, Valdes PJ. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190: 269–287. DOI: 10.1016/j.sedgeo.2006.05.013. [CrossRef] [Google Scholar]
  • Sigman DM, Hain MP. 2012. The biological productivity of the ocean. Nature Education Knowledge 3(6): 1–16. [Google Scholar]
  • Slatt RM, Rodriguez ND. 2012. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence ? Journal of Natural Gas Science and Engineering 8: 68–84. DOI: 10.1016/j.jngse.2012.01.008. [CrossRef] [Google Scholar]
  • Syvitski JP, Peckham SD, Hilberman R, Mulder T. 2003. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology 162: 5–24. DOI: 10.1016/S0037-0738(03)00232-X. [CrossRef] [Google Scholar]
  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P. 2005. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 308: 376–380. [CrossRef] [Google Scholar]
  • Trabucho-Alexandre J, Hay WW, De Boer PL. 2012. Phanerozoic environments of black shale deposition and the Wilson Cycle. Solid Earth 3: 29–42. DOI: 10.5194/se-3-29-2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tyson RV. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32: 333–339. DOI: 10.1016/S0146-6380(00)00161-3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tyson RV, Wilson RC, Downie C. 1979. A stratified water column environmental model for the type Kimmeridge Clay. Nature 277: 377–380. [CrossRef] [Google Scholar]
  • Wakeham S, Lee C. 1993. Production, Transport, and Alteration of Particulate Organic Matter in the Marine Water Column. In: Engel M, Macko S, eds. Organic Geochemistry. Springer US 145–169. DOI: 10.1007/978-1-4615-2890-6_6. [Google Scholar]
  • Wignall PB. 1991. Model for transgressive black shales ? Geology 19: 167–170. DOI: 10.1130/0091-7613(1991)019. [CrossRef] [Google Scholar]
  • Wignall PB, Newton R. 2001. Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sedimentary Geology 144: 335–356. DOI: 10.1016/S0037-0738(01)00125-7. [CrossRef] [Google Scholar]
  • Wright GN, Mcmechan ME, Potter DEG. 1994. Structure and Architecture of the Western Canada Sedimentary Basin. In: Mossop GD, Shetsen I, eds. Geological Atlas of the Western Canada Sedimentary Basin. CSPG and Alberta Research Council 25–40. [Google Scholar]
  • Zonneveld J-P., Macnaughton RB, Utting J, Beatty TW, Pemberton SG, Henderson CM. 2010. Sedimentology and Ichnology of the Lower Triassic Montney Formation in the Pedigree-Ring/Border-Kahntah River Area, Northwestern Alberta and Northeastern British Columbia. Bulletin of Canadian Petroleum Geology 58: 115–140. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.