Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 189, Numéro 2, 2018
Numéro d'article 9
Nombre de pages 14
DOI https://doi.org/10.1051/bsgf/2018008
Publié en ligne 1 juin 2018
  • Akhter MS, Chughtai AR, Smith DM. 1985. The structure of hexane soot I: spectroscopic studies. Appl Spectrosc 39: 143–153. [CrossRef] [Google Scholar]
  • Alpern B. 1966. Un exemple intéressant de houillification dans le bassin Lorrain et ses prolongements. In: Advances in Organic Geochemistry, 1964. London: Pergamon Press, pp. 129–146. [Google Scholar]
  • Balsam WL, Damuth JE. Schneider RR. 1997. Comparison of shipboard vs. shorebased spectral data from Amazon Fan cores: implications for interpreting sediment composition. Ocean Drilling Program Science 155s: 193–215. [Google Scholar]
  • Bernal JD. 1924. The structure of graphite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106(740): 749–773. [CrossRef] [Google Scholar]
  • Bordenave ML, Espitalié J, Leplat P, Oudin JL, Vandenbroucke M. 1993. Screening techniques for source rock evaluation. In: Bordenave, eds. Applied petroleum geochemistry. Paris: Technip, pp. 217–278. [Google Scholar]
  • Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107: 467–485. [Google Scholar]
  • Busch A, Gensterblum Y, Krooss BM. 2003. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures. Int J Coal Geol 55: 205–224. [CrossRef] [Google Scholar]
  • Chapman MR, Shackleton NJ. 1998. What level of resolution is attainable in a deep-sea core: results of a spectrophotometer study. Paleoceanography 13: 311–315. [CrossRef] [Google Scholar]
  • Copard Y. 2002. Altération diagénétique et post-diagénétique (thermicité, oxydation) des charbons carbonifères du Massif Central français (Saint Étienne, Graissessac et autres lieux). Doctoral thesis, University of Orléans, 306 p. [Google Scholar]
  • Copard Y, Disnar JR, Becq-Giraudon JF, Boussafir M. 2000. Evidence and effects of fluid circulation on organic matter in intramontane coalfields (Massif Central, France). Int J Coal Geol 44: 49–68. [Google Scholar]
  • Copard Y, Disnar JR, Becq-Giraudon JF. 2002. Erroneous maturity assessment given by Rock-Eval parameters (Tmax and HI) on highly mature weathered coals. Int J Coal Geol 49: 57–65. [CrossRef] [Google Scholar]
  • Copard Y, Disnar JR, Becq-Giraudon JF, Laggoun-Défarge F. 2004. Erroneous coal maturity assessment caused by low temperature oxidation. Int J Coal Geol 58: 171–180. [CrossRef] [Google Scholar]
  • Copard Y, Di-Giovanni C, Martaud T, Albéric P, Olivier JE. 2006. Using rock-eval 6 pyrolysis for tracking fossil organic carbon in modern environments: Implications for the roles of erosion and weathering. Earth Surf Proc Land 31: 135–153. [CrossRef] [Google Scholar]
  • Copard Y, Amiotte-Suchet P, Di-Giovanni C. 2007. Storage and release of fossil organic carbon related to weathering of sedimentary rocks. Earth Planet Sci Let 258: 345–357. [CrossRef] [Google Scholar]
  • Deaton BC, Nestell M, Balsam WL. 1996. Spectral reflectance of conodonts: a step toward quantitative colour alteration and thermal maturity indexes. AAPG Bulletin 80(7): 999–1007. [Google Scholar]
  • Debret M, Desmet M, Balsam W, Copard Y, Francus P, Laj C. 2006. Spectrophotometer analysis of holocene sediments from an anoxic fjord: Saanich Inlet, British Columbia, Canada. Mar Geol 229(1–2): 15–28. DOI: 10.1016/j.margeo.2006.01.005. [CrossRef] [Google Scholar]
  • Debret M, Sebag D, Desmet M, Balsam W, Copard Y, Mourier B, et al. 2011. Spectrocolorimetric interpretation of sedimentary dynamics: The new “Q7/4 diagram”. Earth Sci Rev 109(1–2): 1–19. [CrossRef] [Google Scholar]
  • Di-Giovanni C, Disnar JR, Bichet V, Campy M. 1998. Sur la présence de matières organiques méso-cénozoïques dans des humus actuels (bassin de Chaillexon, Doubs, France). C R Acad Sci Paris 326: 553–559. [Google Scholar]
  • Dickens AF, Gélinas Y, Masiello CA, Wakeham SG, Hedges JI. 2004. Reburial of fossil organic carbon in marine sediments. Nature 427: 336–339. [CrossRef] [Google Scholar]
  • Ding G, Rice JA. 2012. Black carbon evaluation in natural organic matter samples using recoupled long-range dipolar dephasing solid-state 13C NMR. Geoderma 189–190: 381–387. [CrossRef] [Google Scholar]
  • Duber S, Pusz S, Kwiecińska BK, Rouzaud JN. 2000. On the optically biaxial character and heterogeneity of anthracites. Int J Coal Geol 44: 227–250. [CrossRef] [Google Scholar]
  • Durand B. 1980. Kerogen. Paris: Technip. [Google Scholar]
  • Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud JN. 2002. Carbon particles from laser pyrolysis. Carbon 40: 2775–2789. [CrossRef] [Google Scholar]
  • Graz Y, Di-Giovanni C, Copard Y, Laggoun-Défarge F, Boussafir M, Lallier Vergès E, et al. 2010. Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments. Int J Coal Geol 84: 49–62. [CrossRef] [Google Scholar]
  • Graz Y, Di Giovanni C, Copard Y, Mathys N, Cras A, Marc V. 2012. Annual mechanical and chemical fluxes of fossil organic carbon exported by marly badlands areas: Example of the Draix experimental watersheds (Alpes-de-Haute-Provence, France). Earth Surf Proc Land 37: 1263–127. [CrossRef] [Google Scholar]
  • Goldberg ED. 1985. Black carbon in the environment. New York: John Wiley. [Google Scholar]
  • Guilliano M, Mille G, Kister J, Muller JF. 1988. Étude des spectres IRTF de charbons français déminéralisés et de leurs macéraux. J Chim Phys 85(10): 963–970. [CrossRef] [Google Scholar]
  • Hammes K, Schmidt MWI, Smernik R, Currie LA, Ball WP, Nguyen TH, et al. 2007. Comparison of quantification methods to measure fire-derived (black / elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles 21: GB3016. DOI: 10.1029/2006GB002914. [CrossRef] [Google Scholar]
  • Hammes K, Smernik RJ, Skjemstad JO, Schmidt MWI. 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. App Geochem 23: 2113–2122. [CrossRef] [Google Scholar]
  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31: 945–958. [CrossRef] [Google Scholar]
  • Ji J, Shen, J, Balsam W, Chen J, Liu L, Liu X. 2005. Asian Monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett 233, 61–70. [CrossRef] [Google Scholar]
  • Knicker H. 2011. Pyrogenic organic matter in soils: its origin and occurrence, its chemistry and survival in soil environments. Quat Inter 243: 251–263. [CrossRef] [Google Scholar]
  • Kuehn DW, Snyder DW, Davis A, Painter PC. 1982. Characterization of vitrinites concentrates, 1. Fourier transform infrared spectra of coal. Fuel 61: 682–694. [CrossRef] [Google Scholar]
  • Kuhlbusch TAJ. 1998. Black carbon in soils, sediments and ice cores. In: Meyers, ed. Encyclopedia of Environmental Analysis and Remediation. New York: John Wiley, pp. 813–823. [Google Scholar]
  • Kuo DTF, Van der Sande JB, Gschwend PM. 2013. Characterization of black carbon in geosorbents at the nanometer scale by STEM-EDX elemental mapping. Org Geochem 56: 81–93. DOI: 10.1016/j.orggeochem.2012.12.012. [CrossRef] [Google Scholar]
  • Lafargue E, Marquis F, Pillot D. 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Rev I Fr Pétrol 53(4): 421–437. [Google Scholar]
  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, et al. 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Naturegeoscience 1: 832–835. [Google Scholar]
  • Masiello CA, 2004. New directions in black carbon organic geochemistry. Mar Chem 92: 201–213. [CrossRef] [Google Scholar]
  • Meredith W, Ascough PL, Bird MI, Large DJ, Snape CE, Sun Y, et al. 2012. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim Cosmochim Acta 97: 131–147. [CrossRef] [Google Scholar]
  • Nichols JD. 1999. Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region. U.S. Geological Survey, Professional Paper, 1625-A, chapter WB, 14 p. [Google Scholar]
  • Noël H. 2001. Caractérisation et calibration des flux organiques sédimentaires dérivant du basin versant et de la production aquatique (Annecy, le Petit Lac) – Rôles respectifs de l’Homme et du Climat sur l’évolution des flux organiques au cours des 6000 dernières années. Doctoral thesis. University of Orléans, 279 p. [Google Scholar]
  • Noël H, Garbolino E, Brauer A, Lallier-Vergès E, De Beaulieu JL, Disnar JR. 2001. Human impact and soil erosion during the last 5000 yrs as recorded in lacustrine sedimentary organic matter at Lac d’Annecy, the French Alps. J Paleolim 25: 229–244. [CrossRef] [Google Scholar]
  • Oberlin A, Villey M, Combaz A. 1980. Influence of elemental composition on carbonization − pyrolyis of kerosene shale and kuckersite. Carbon 18: 347–353. [CrossRef] [Google Scholar]
  • Poot A, Quika JTK, Veld H, Koelmans AA. 2009. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods. J Chromato A 1216: 613–622. [CrossRef] [Google Scholar]
  • Quénéa K, Derenne S, Gonzalez-Vila FJ, Mariotti A, Rouzaud JN, Largeau C. 2005. Study of the composition of the macromolecular refractory fraction from an acidic sandy forest soil (Landes de Gascogne, France) using chemical degradation and electron microscopy. Org Geochem 36: 1151–1162. [CrossRef] [Google Scholar]
  • Raymond PA, Bauer JE. 2001. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409: 497–500. [CrossRef] [Google Scholar]
  • Riesser B, Starsinic M, Squires E, Davis A, Painter PC. 1984. Determination of aromatic and aliphatic CH groups in coal by FT-i.r. 2. Studies of coals and vitrinite concentrates. Fuel 63: 1253–1261. [CrossRef] [Google Scholar]
  • Roth PJ, Lehndorff E, Brodowski S, Bornemann L, Sanchez-García L, Gustafsson O, et al. 2012. Differentiation of charcoal, soot and diagenetic carbon in soil: Method comparison and perspectives. Org Geochem 46: 66–75. [CrossRef] [Google Scholar]
  • Rouzaud JN, Oberlin A. 1989. Structure, microtexture and optical properties of anthracene and saccharose-based carbons. Carbon 27: 517–529. [CrossRef] [Google Scholar]
  • Rouzaud JN, Oberlin A. 1990. The characterization of coals and cokes by transmission electron microscopy. In: H Charcosset, B Nickel-Pepin-Donat, eds. Advanced methodologies in coal characterization. Coal Science and Technology 15: 311–355, Elsevier. [Google Scholar]
  • Rouzaud JN, Guechati N, Kister J, Conard J. 1991. Structural Characterization of coalification: example of Gironville borehole. Bull Soc géol Fr 162(2): 201–209. [Google Scholar]
  • Schmidt MWI, Noack AG. 2000. Black carbon in soils and sediments: analysis, distribution, and current challenges. Global Biogeochem. Cycles 14: 777–794. [Google Scholar]
  • Sobkowiak M, Reisser E, Given P, Painter PC. 1984. Determination of aromatic and aliphatic CH groups in coal by FT-i.r. 1. Studies of coal extracts. Fuel 63: 1245–1252. [CrossRef] [Google Scholar]
  • Trompowsky PM, Benites VM, Madari BE, Pimenta AS, Hockaday WC, Hatcher PG. 2005. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org Geochem 36: 480–1489. [CrossRef] [Google Scholar]
  • Van Exem A, Debret M, Copard Y, Vannière B, Sabatier P, Marcotte S, et al. 2018. Hyperspectral core logging for fire reconstruction studies. Available from https://doi.org/10.1007/s10933-017-0009-5. [Google Scholar]
  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M. 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27(11): 1181–1196. [CrossRef] [Google Scholar]
  • Vorres KS. 1990. The Argonne premium coal sample program. Energy & Fuel 4: 420–426. [CrossRef] [Google Scholar]
  • Wolf M, Lehndorff E, Wiesenberg GLB, Stockhausen M, Schwark L, Amelung W. 2013. Towards reconstruction of past fire regimes from geochemical analysis of charcoal. Org Geochem 55: 11–21. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.