Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 189, Numéro 4-6, 2018
Numéro d'article 18
Nombre de pages 17
DOI https://doi.org/10.1051/bsgf/2018020
Publié en ligne 19 décembre 2018
  • Abers GA, Nakajima J, van Keken PE, Kita S, Hacker BR. 2013. Thermal-petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters 369: 178–187. [CrossRef] [Google Scholar]
  • Advokaat EL, van Hinsbergen DJ, Maffione M, Langereis CG, Vissers RL, Cherchi A, et al. 2014. Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth and Planetary Science Letters 401: 183–195. Doi: 10.1016/j.epsl.2014.06.012. [Google Scholar]
  • Agard P, Vitale-Brovarone A. 2013. Thermal regime of continental subduction: the record from exhumed HP-LT terranes (New Caledonia, Oman, Corsica). Tectonophysics 601: 206–215. [CrossRef] [Google Scholar]
  • Andersen TB, Austrheim H. 2006. Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters 242: 58–72. [CrossRef] [Google Scholar]
  • Andersen TB, Mair K, Austrheim H, Podladchikov YY, Vrijmoed JC. 2008. Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte. Geology 36: 995–998. [CrossRef] [Google Scholar]
  • Andersen TB, Austrheim H, Deseta N, Silkoset P, Ashwal LD. 2014. Large subduction earthquakes along the fossil Moho in Alpine Corsica. Geology 42: 395–398. [CrossRef] [Google Scholar]
  • Angiboust S, Agard P, Yamato P, Raimbourg H. 2012. Eclogite breccias in a subducted eclogite: A record of intermediate-depth earthquake? Geology 40: 707–710. [CrossRef] [Google Scholar]
  • Austrheim H, Andersen TB. 2004. Pseudotachylytes from Corsica: Fossil earthquakes from subduction complex. Terra Nova 16: 193–197. Doi: 10.1111/j.1365-3121.2004.00551.x. [CrossRef] [Google Scholar]
  • Beccaluva L, Chiesa S, Delaloye M. 1981. K/Ar age determinations on some Tethyan ophiolites. Rendiconti della Societa Italiana di Mineralogia e Petrologia 37: 869–880. [Google Scholar]
  • Bouillin, JP, Durand-Delga M, Olivier P. 1986. Betic-Rifian and Tyrrhenian arcs: distinctive features, genesis and development stages. In Developments in Geotectonics 21: 281–304. [Google Scholar]
  • Braeck S, Podladchikov YY. 2007. Spontaneous thermal runaway as an ultimate failure mechanism of materials. Physical Review Letters 98: 095504. [CrossRef] [Google Scholar]
  • Brudzinski MR, Thurber CH, Hacker BR, Engdahl ER. 2007. Global prevalence of double Benioff zones. Science 316: 1472–1474. [CrossRef] [Google Scholar]
  • Daniel JM, Jolivet L, Goffé B, Poinssot C. 1996. Crustal-scale strain partitioning: footwall deformation below the Alpine Oligo-Miocene detachment of Corsica. Journal of Structural Geology 18: 41–59. [Google Scholar]
  • Debret B. 2013. Serpentinites, vecteurs des circulations fluides et des transferts chimiques de l’océanisation à la subduction : exemple dans les Alpes occidentales. Thèse Université Blaise Pascal – Clermont-Ferrand II. [Google Scholar]
  • Deseta N, Andersen TB, Ashwal LD. 2014a. A weakening mechanism for intermediate-depth seismicity? Detailed petrographic and microtextural observations from blueschist facies pseudotachylytes, Cape Corse, Corsica. Tectonophysics 610: 138–149. [CrossRef] [Google Scholar]
  • Deseta N, Ashwal LD, Andersen TB. 2014b. Initiating intermediate-depth earthquakes: Insights from a HP-LT ophiolite from Corsica. Lithos 206–207: 127–146. [CrossRef] [Google Scholar]
  • Durand-Delga M. 1984. Principaux traits de la Corse alpine et corrélations avec les Alpes ligures. Mémoires de la Société Géologique d’Italie 28: 285–329. [Google Scholar]
  • Durand-Delga M, Rossi P. 2002. About the Ligurian-Piedmontese Jurassic Ocean on the transect Corsica-Apennines. Comptes Rendus Géoscience 334: 227–228. [CrossRef] [Google Scholar]
  • Faure M, Malavieille J. 1981. Étude structurale d’un cisaillement ductile : le charriage ophiolitique corse dans la région de Bastia. Bulletin de la société géologique de France 23: 335–343. [Google Scholar]
  • Ferré EC, Chou YM, Kuo RL, Yeh EC, Leibovitz NR, Meado AL, et al. 2016. Deciphering viscous flow of frictional melts with the mini-AMS method. Journal of Structural Geology 90: 15–26 Doi: 10.1016/j.jsg.2016.07.002. [CrossRef] [Google Scholar]
  • Fournier M, Jolivet L, Goffé B, Dubois R. 1991. Alpine Corsica Metamorphic Core Complex. Tectonics 10: 1173–1186. [CrossRef] [Google Scholar]
  • Frohlich C. 2006. Deep Earthquakes. Cambridge: Cambridge University Press, 573 p. [Google Scholar]
  • Hacker BR, Peacock SM, Abers GA, Holloway SD. 2003. Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research 108: 2030. Doi: 10.1029/2001JB001129. [Google Scholar]
  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102: 121–158. [Google Scholar]
  • Harris L. 1985. Progressive and polyphase deformation of the Schistes Lustrés in Cap Corse, Alpine Corsica. Journal of Structural Geology 7: 637–650. [CrossRef] [Google Scholar]
  • Hasegawa A, Uchida N, Igarashi T, Matsuzawa T, Okada T, Miura S, Suwa Y. 2007. Asperities and quasi-static slips on the subducting plate boundary east off Tohoku, northeastern Japan. In: Dixon TH, Moore JC, eds. The seismogenic zone of subduction thrust Faults. New York: Columbia University Press, pp. 451–475. [Google Scholar]
  • Houston H. 2015. Deep Earthquakes. In: Schubert G, ed. Treatise on geophysics, 2nd ed. Vol. 4. Oxford: Elsevier, pp. 329–354. [Google Scholar]
  • Igarashi T, Matsuzawa T, Umino N, Hasegawa A. 2001. Spatial distribution of focal mechanisms for interplate and intraplate earthquakes associated with the subducting Pacific plate beneath the northeastern Japan arc: a triple-planed deep seismic zone. Journal of Geophysical Research 106: 2177–2191. [CrossRef] [Google Scholar]
  • Jackson MD, Ohnenstetter M. 1981. Peridotite and gabbroic structures in the Monte Maggiore massif, Alpine Corsica. The Journal of Geology 89: 703–719. [CrossRef] [Google Scholar]
  • Jiao W, Silver PG, Fei Y, Prewitt CT. 2000. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. Journal of Geophysical Research 105: 28125–28138. [CrossRef] [Google Scholar]
  • John T, Medvedev S, Rüpke LH, Andersen TB, Podladchikov YY, Austrheim H. 2009. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nature Geoscience 2: 137–140, Doi: 10.1038/NGEO419. [CrossRef] [Google Scholar]
  • Jolivet L, Dubois R, Fournier M, Goffé B, Michard A, Jourdan C. 1990. Ductile extension in Alpine Corsica. Geology 18: 1007–1010. [CrossRef] [Google Scholar]
  • Jolivet L, Daniel JM, Fournier M. 1991. Geometry and kinematics of extension in Alpine Corsica. Earth and Planetary Science Letters 104: 278–291. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, et al. 1998. Mid-crustal shear zones in post-orogenic extension: examples from the northern Tyrrhenian Sea case. Journal of Geophysical Research 103: 12123–12160. [Google Scholar]
  • Kelemen P, Hirth G. 2007. A periodic shear-heating mechanism for intermediate-depth earthquake in the mantle. Nature 446: 787–790, Doi: 10.1038/nature05717. [CrossRef] [Google Scholar]
  • Kita S, Okada T, Nakajima J, Matsuzawa T, Hasegawa A. 2006. Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70–100 km beneath NE Japan. Geophysical Research Letters 33: L24310. Doi: 10.1029/2006GL028239. [CrossRef] [Google Scholar]
  • Lacombe O, Jolivet L. 2005. Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 24, TC1003. Doi: 10.1029/2004TC001673. [Google Scholar]
  • Lagabrielle Y, Lemoine M. 1997. Alpine, Corsican and Apennine ophiolites: The slow-spreading ridge model. Comptes Rendus de l’Académie des Sciences 325: 909–920. [Google Scholar]
  • Lagabrielle Y, Vitale-Brovarone A, Ildefonse B. 2015. Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth-Science Reviews 141: 1–26. Doi: 10.1016/j.earscirev.2014.11.004. [CrossRef] [Google Scholar]
  • Lahondère D. 1988. Le métamorphisme éclogitique dans les orthogneiss et les métabasites ophiolitiques de la région de Farinole (Corse). Bulletin de la société géologique de France 8: 579–585. [Google Scholar]
  • Lahondère JC. 1992. Carte géologique de la France au 1/50000. Feuille de Luri. BRGM. [Google Scholar]
  • Lahondère JC, Lahondère D. 1988. Organisation structurale des « schistes lustrés » du Cap Corse (Haute-Corse). Comptes rendus de l’académie des sciences 307: 1081–1086. [Google Scholar]
  • Lahondère JC, Lahondère D. 1992. Notice de la carte géologique de Luri, 51 p. [Google Scholar]
  • Li XH, Faure M, Rossi P, Lahondère D. 2015. Age of Alpine Corsica ophiolites revisited: insights from in situ zircon U-Pb age and O-Hf isotopes. Lithos 220–223: 179–190. Doi: 10.1016/j.lithos.2015.02.006. [Google Scholar]
  • Magott R. 2016. Propagation de la rupture sismique dans la lithosphère océanique : une étude basée sur l’analyse structurale des cataclasites et pseudotachylytes jalonnant les failles dans les roches mafiques et ultramafiques accrétées ou obductées sur les continents : l’exemple corse. Thèse de l’Université de Franche-Comté : 278 p. [Google Scholar]
  • Magott R, Fabbri O, Fournier M. 2016. Subduction zone intermediate-depth seismicity: insights from the structural analysis of Alpine high-pressure ophiolite-hosted pseudotachylyte (Corsica, France). Journal of Structural Geology 87: 95–114. Doi: 10.1016/j.jsg.2016.04.002. [CrossRef] [Google Scholar]
  • Magott R, Fabbri O, Fournier M. 2017. Polyphase ductile/brittle deformation along a major tectonic boundary in an ophiolitic nappe, Alpine Corsica: Insights on subduction zone intermediate-depth seismicity. Journal of Structural Geology 94: 240–257. Doi: 10.1016/j.jsg.2016.12.002. [CrossRef] [Google Scholar]
  • Malavieille J. 1983. Étude tectonique et microtectonique de la nappe de socle de Centuri (zone des schistes lustrés de Corse). Conséquences pour la géométrie de la chaîne alpine. Bulletin de la société géologique de France 25: 195–204. [Google Scholar]
  • Marroni M, Meneghini F, Pandolfi L. 2017. A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional western Tethys: evidence from the Northern Apennines. Tectonics 36: 2227–2249, Doi: 10.1002/2017TC004627. [CrossRef] [Google Scholar]
  • Mattauer M, Proust F. 1976. La Corse alpine: un modèle de genèse du métamorphisme haute pression par subduction de croûte continentale sous du matériel océanique. Comptes Rendus de l’Académie des Sciences 282: 1249–1252. [Google Scholar]
  • Mattauer M, Proust F, Etchecopar A. 1977. Linéation “a” et mécanisme de cisaillement simple liés au chevauchement de la nappe des schistes lustrés en Corse. Bulletin de la société géologique de France 29: 841–847. [CrossRef] [Google Scholar]
  • Mattauer M, Faure M, Malavieille J. 1981. Transverse lineation and large-scale structures related to Alpine obduction in Corsica. Journal of Structural Geology 3: 401–409. [Google Scholar]
  • Menant A, Angiboust S, Monié P, Oncken O, Guigner JM. 2018. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface. Earth and Planetary Science Letters 487: 84–93. [CrossRef] [Google Scholar]
  • Meresse F, Lagabrielle Y, Malavielle J, Ildefonse B. 2012. A fossil ocean-continent transition of the Mesozoic Tethys preserved in the Schistes Lustrés nappe of northern Corsica. Tectonophysics 579: 4–16. [CrossRef] [Google Scholar]
  • Molli G. 2008. Northern Apennine-Corsica orogenic system: an updated overview. In: Siegesmund S, Fügenschuh B, Froitzheim N, eds. Tectonic Aspect of the Alpine-Dinaride-Carpathian System, Geological Society of London, Special Publication 298, pp 413–442. [Google Scholar]
  • Molli G, Malavieille J. 2010. Orogenic process and the Corsica/Apennine geodynamic evolution: Insight from Taiwan. International Journal of Earth Sciences 100: 1207–1224. Doi: 10.1007/s00531-010-0598-y. [CrossRef] [Google Scholar]
  • Nakajima J, Uchida N, Shiina T, Hasegawa A, Hacker, BR, Kirby SH. 2013. Intermediate-depth earthquakes facilitated by eclogitization-related stresses. Geology 41: 659–662. Doi: 10.1130/G33796.1. [CrossRef] [Google Scholar]
  • Ohnenstetter D, Ohnenstetter M, Rocci G. 1976. Etude des métamorphismes successifs des cumulats ophiolitiques de Corse. Bulletin de la société géologique de France 28: 115–134. [CrossRef] [Google Scholar]
  • Ohnenstetter M, Ohnenstetter D, Vidal P, Cornichet J, Hermitte D, Mace J. 1981. Crystallization and age of zircon from Corsican ophiolitic albitites: consequences for oceanic expansion in Jurassic times. Earth and Planetary Science Letters 54: 397–408. [CrossRef] [Google Scholar]
  • Peacock SM. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subduction oceanic mantle? Geology 29: 299–302. [CrossRef] [Google Scholar]
  • Piccardo GB. 2008. The Jurassic Ligurian Tethys, a fossil ultraslow‐spreading ocean: the mantle perspective. Geological Society, London, Special Publications 293: 11–34. [CrossRef] [Google Scholar]
  • Piccardo GB, Guarnieri L. 2010. The Monte Maggiore peridotite (Corsica, France): a case study of mantle evolution in the Ligurian Tethys. Geological Society of London Special Publications 337: 7–45. Doi: 10.1144/SP337.2. [CrossRef] [Google Scholar]
  • Preston LA, Creager KC, Crosson RS, Brocher TM, Trehu AM. 2003. Intraslab earthquakes: Dehydration of the Cascadia Slab. Science 302: 1197–1200. [CrossRef] [Google Scholar]
  • Prieto GA, Florez M, Barrett SA, Beroza GC, Pedraza P, Blanco JF, et al. 2013. Seismic evidence for thermal runaway during intermediate‐depth earthquake rupture. Geophysical Research Letters 40: 6064–6068. Doi: 10.1002/2013GL058109. [CrossRef] [Google Scholar]
  • Rampone E, Piccardo GB, Hofmann AW. 2008. Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contributions to Mineralogy and Petrology 156: 453–475. Doi: 10.1007/s00410-008-0296-y. [CrossRef] [Google Scholar]
  • Rampone E, Hofmann AW, Raczek I. 2009. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite. Earth and Planetary Science Letters 288: 601–610. Doi: 10.1016/j.epsl.2009.10.024. [CrossRef] [Google Scholar]
  • Ravna EJK, Andersen TB, Jolivet L, De Capitani C. 2010. Cold subduction and the formation of lawsonite eclogite-constraints from prograde evolution of eclogitized pillow lava from Corsica. Journal of Metamorphic Geology 28: 381–395. [CrossRef] [Google Scholar]
  • Rossi P, Cocherie A, Lahondère D, Fanning N. 2002. La marge européenne de la Téthys jurassique en Corse: Datation de trondhjémites de Balagne et indices de croûte continentale sous le domaine Balagno-Ligure. Comptes Rendus Géoscience 334: 313–322. [Google Scholar]
  • Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plümper O, Nestola F. 2017. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience 10: 960–966. Doi: 10.1038/s41561-017-0010-7. [CrossRef] [Google Scholar]
  • Strasser FO, Arango MC, Bommer JJ. 2010. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters 81:941–950. Doi: 10.1785/gssrl.81.6.941. [CrossRef] [Google Scholar]
  • Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP. 2012. Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579: 193–206. Doi: 10.1016/j.tecto.2012.05.010. [CrossRef] [Google Scholar]
  • Van Hinsbergen DJJ, Vissers RLM, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393–419. Doi: 10.1002/tect.20125. [CrossRef] [Google Scholar]
  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F. 2008. Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics 450: 34–50. [CrossRef] [Google Scholar]
  • Vitale-Brovarone A, Herwartz D. 2013. Timing of HP metamorphism in the Schistes Lustrés of Alpine Corsica: New Lu-Hf garnet and lawsonite ages. Lithos 172–173: 175–191. [CrossRef] [Google Scholar]
  • Vitale-Brovarone A, Beltrando M, Malavielle J, Giuntoli F, Tondella E, Groppo C, et al. 2011. Inherited Ocean-Continent Transition zones in deeply subducted terranes: Insight from Alpine Corsica. Lithos 124: 273–290. [CrossRef] [Google Scholar]
  • Vitale-Brovarone A, Beyssac O, Malavielle J, Molli G, Beltrando M, Compagnoni R. 2013. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France). Earth-Science Reviews 116: 35–56. Doi: 10.1016/j.earscirev.2012.10.003. [CrossRef] [Google Scholar]
  • Warburton J. 1986. The ophiolite-bearing Schistes Lustrés nappe in Alpine Corsica: A model for the emplacement of ophiolites that have suffered HP/LP metamorphism. In: Evans BW, Brown EH, eds, Blueschists and eclogites geological society of America Memoir 164, pp. 313–331. [Google Scholar]
  • Warren LM, Hughes AN, Silver PG. 2007. Earthquake mechanics and deformation in the Tonga‐Kermadec subduction zone from fault plane orientations of intermediate‐ and deep‐focus earthquakes. Journal of Geophysical Research 112: B05314. Doi: 10.1029/2006JB004677. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.