Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 190, 2019
Numéro d'article 4
Nombre de pages 12
DOI https://doi.org/10.1051/bsgf/2019004
Publié en ligne 5 mars 2019
  • Alexandrov P, Ruffet G, Cheilletz A. 2002. Muscovite recrystallization and saddle-shaped 40Ar/39Ar age spectra: Example from the Blond granite (Massif Central, France). Geochim Cosmochim Ac 66: 1793–1807. [CrossRef] [Google Scholar]
  • Augier R, Choulet F, Faure M, Turrillot P. 2015. A turning-point in the evolution of the Variscan orogen: The ca. 325 Ma regional partial-melting event of the coastal South Armorican domain (South Brittany and Vendée, France). Bull Soc géol Fr 186: 63–91. [CrossRef] [Google Scholar]
  • Ballèvre M, Catalán JRM, López-Carmona A, Pitra P, Abati J, Fernández RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French-Spanish project. Geol Soc Spec Publ 405: 77–113. [CrossRef] [Google Scholar]
  • Ballouard C, Poujol M, Boulvais P, Mercadier J, Tartèse R, Venneman T, et al. 2017. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France), Ore Geol Rev 80: 309–331. [CrossRef] [Google Scholar]
  • Ballouard C, Poujol M, Mercadier J, Deloule E, Boulvais P, Baele JM, et al. 2018a. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): The result of long-term oxidized hydrothermal alteration during strike-slip deformation. Miner Deposita 53: 601–628. [CrossRef] [Google Scholar]
  • Ballouard C, Poujol M, Zeh A. 2018b. Multiple crust reworking in the French Armorican Variscan belt: Implication for the genesis of uranium-fertile leucogranites. Int J Earth Sci 107: 2317–2336. [CrossRef] [Google Scholar]
  • Bentabol M, Cruz MDR. 2016. Characterization of tobelite formed from kaolinite under hydrothermal conditions (200 °C). Appl Clay Sci 126: 160–172. [CrossRef] [Google Scholar]
  • Bosse V, Féraud G, Ruffet G, Ballèvre M, Peucat J-J, De Jong K. 2000. Late Devonian subduction and early-orogenic exhumation of eclogite-facies rocks from the Champtoceaux Complex (Variscan belt, France). Geol J 35: 297–325. [CrossRef] [Google Scholar]
  • Bosse V, Féraud G, Ballèvre M, Peucat J-J, Corsini M. 2005. Rb-Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): Implications for closure mechanisms in isotopic systems. Chem Geol 220: 21–45. [CrossRef] [Google Scholar]
  • Bouchot V, Milesi JP, Lescuyer JL, Ledru P. 1997. Les minéralisation aurifères de la France dans leur cadre géologique autour de 300 Ma. Chron Rech Min 528: 13–62. [Google Scholar]
  • Bouchot V, Ledru P, Lerouge C, Lescuyer JL, Milesi JP. 2005. 5: Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. Ore Geol Rev 27: 169–197. [CrossRef] [Google Scholar]
  • Capdevila R. 2010. Les granites varisques du Massif Armoricain. B Soc Géol Min Br Série D(7): 1–52. [Google Scholar]
  • Capitani GC, Schingaro E, Lacalamita M, Mesto E, Scordari F. 2016. Structural anomalies in tobelite-2M2 explained by high resolution and analytical electron microscopy. Mineral Mag 80: 143–156. [CrossRef] [Google Scholar]
  • Castonguay S, Ruffet G, Tremblay A. 2007. Dating polyphase deformation across low-grade metamorphic belts: An example based on 40Ar/39Ar muscovite age constraints from the southern Quebec Appalachians, Canada. Geol Soc Am Bull 119: 978–992. [CrossRef] [Google Scholar]
  • Charonnat X. 2000. Les minéralisations aurifères tardi-hercyniennes des Cévennes, Unpublished PhD thesis: University of Orléans, 259 p. [Google Scholar]
  • Chauris L, Houlgatte E, Laforêt C, Picot P. 1985. Un district antimono-aurifère à gangue quartzo-carbonatée: Le Semnon (Ille-et-Vilaine, Massif Armoricain, France). Hercynica 1: 111–119. [Google Scholar]
  • Chauris L, Marcoux E. 1994. Metallogeny of the Armorican Massif. In: Chantraine J, Rolet J, Santallier DS, et al., eds. Pre-Mesozoic geology in France and related areas. Springer Berlin Heidelberg, pp. 243–264. [CrossRef] [Google Scholar]
  • Chauvel JJ. 1974. Les minerais de fer de l’Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology 21: 127–147. [CrossRef] [Google Scholar]
  • Chauvet A, Volland-Tuduri N, Lerouge C, Bouchot V, Monié P, Charonnat X, et al. 2012. Geochronological and geochemical characterization of magmatic-hydrothermal events within the southern Variscan external domain (Cévennes Area, France). Int J Earth Sci 101: 69–86. [CrossRef] [Google Scholar]
  • Cheilletz A, Ruffet G, Marignac C, Kolli O, Gasquet D, Féraud G, et al. 1999. 40Ar/39Ar dating of shear zones in theVariscan basement of Greater Kabilia (Algeria). Evidence of an Eo-Alpine event at 128 Ma (Hauterivian-Barremian boundary): Geodynamic consequences. Tectonophysics 306: 97–116. [CrossRef] [Google Scholar]
  • Choukroune P, Lopez-Munoz M, Ouali J. 1983. Cisaillement ductile sud-armoricain et déformations discontinues associées: mise en évidence de la déformation régionale non coaxiale dextre. C R Acad Sci Paris 296: 657–660. [Google Scholar]
  • Couto H, Roger G, Moëlo Y, Bril H. 1990. Le district à antimoine-or Dúrico-Beirão (Portugal): évolution paragénétique et géochimique; implications métallogéniques. Miner Deposita 25(1): S69–S81. [CrossRef] [Google Scholar]
  • Costa S, Rey P. 1995. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan core complex. Geology 23: 905–908. [CrossRef] [Google Scholar]
  • Dallmeyer RD, Rivers T. 1983. Recognition of extraneous argon components through incremental-release 40Ar/39Ar analysis of biotite and hornblende across the Grenvillian metamorphic gradient in southwestern Labrador. Geochim Cosmochim Ac 47: 413–428. [CrossRef] [Google Scholar]
  • Foland KA. 1983. 40Ar/39Ar incremental heating plateaus for biotites with excess argon. Chem Geol 1: 3–21. [CrossRef] [Google Scholar]
  • Frost RL, López A, Belotti FM, Xi Y, Scholz R. 2014. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10. Spectrochim Acta A 127: 243–247. [CrossRef] [Google Scholar]
  • Gapais D, Le Corre C. 1980. Is the Hercynian belt of Brittany a major shear zone? Nature 288: 574–576. [CrossRef] [Google Scholar]
  • Gapais D, Brun J.P, Gumiaux C, Cagnard F, Ruffet G, Le Carlier de Veslud C. 2015. Extensional tectonics in the Hercynian Armorican belt (France). An overview. Bull Soc géol Fr 186(2–3): 117–129. [CrossRef] [Google Scholar]
  • Gloaguen E, Branquet Y, Boulvais P, Moelo Y, Chauvel J-J, Chiappero P-J, et al. 2007. Palaeozoic oolitic ironstone of the French Armorican Massif: A chemical and structural trap for orogenic base metal–As–Sb–Au mineralization during Hercynian strike-slip deformation. Miner Deposita 42: 399–422. [CrossRef] [Google Scholar]
  • Gloaguen E, Branquet Y, Urien P, Boulvais P, Poujol M, Tartèse R. 2016. How much hidden oolitic iron ore-hosted precious and base metals deposits should be encountered in the Variscan belt? Insights from France and Portugal. 25ème Réunion des Sciences de la Terre – Earth Sciences meeting, 24–28 octobre 2016, Caen, France. Abstract volume, p. 141. [Google Scholar]
  • Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G. 2004. Tectonic history of the Hercynian Armorican Shear belt (Brittany, France). Geodin Acta 17: 289–307. [CrossRef] [Google Scholar]
  • Hanes JA, York D, Hall CM. 1985. An 40Ar/39Ar geochronological and electron microprobe investigation of an Archean pyroxenite and its bearing on ancient atmospheric compositions. Can J Earth Sci 22: 947–958. [CrossRef] [Google Scholar]
  • Hall CM, Higueras PL, Kesler SE, Lunar R, Dong H, Halliday AN. 1997. Dating of alteration episodes related to mercury mineralization in the Almadén district, Spain. Earth Plant Sci Lett 148: 287–298. [CrossRef] [Google Scholar]
  • Le Corre C. 1978. Approche quantitative des processus synschisteux. L’exemple du segment Hercynien de Bretagne Centrale. Unpubl. Doctoral dissertation, Rennes: Université de Rennes 1, 382 p. [Google Scholar]
  • Léone P, Palvadeau P, Moëlo Y. 2000. Structure cristalline d’un nouveau phosphate de strontium naturel (lulzacite), Sr2Fe2+(Fe2+, Mg)2Al4(PO4)4(OH)10. C R Acad Sci Paris IIc(3): 301–308. [Google Scholar]
  • Lescuyer JL, Leistel JM, Marcoux E, Milési JP, Thiéblemont D. 1997. Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Miner Deposita 33: 208–220. [CrossRef] [Google Scholar]
  • Marcoux E, Fouquet Y. 1980. Âge des filons plombo-zincifères du Cap Sizun. Apport de la géochronologie. Abstract, Réun. ann. Se. Terre. Marseille 1980. [Google Scholar]
  • Marcoux E, Serment R, Allon A. 1984. Les gîtes d’antimoine de Vendée (Massif Armoricain, France). Historique des recherches et synthèse métallogénique. Chron Rech Min 476: 3–30. [Google Scholar]
  • Mesto E, Scordari F, Lacalamita M, Schingaro E. 2012. Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): Structure and crystal chemistry. Am Mineral 97: 1460–1468. [CrossRef] [Google Scholar]
  • Moëlo Y, Lasnier B, Palvadeau P, Léone P, Fontan F. 2000. La Lulzacite, Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10, un nouveau phosphate destrontium (Saint-Aubin-Des-Chateâux, Loire-Atlantique, France). C R Acad Sci Paris 330: 314–324. [Google Scholar]
  • Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen E, Léone P. 2002. Scandium mineralogy: Pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Can Miner 40: 1657–1673. [CrossRef] [Google Scholar]
  • Moëlo Y, Rouer O, Bouhnik-Le Coz M. 2008. From diagenesis to hydrothermal recrystallisation: Polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). Eur J Mineral 20: 205–216. [CrossRef] [Google Scholar]
  • Neiva AMR, Andráš P, Ramos JMF. 2008. Antimony quartz and antimony-Gold quartz veins from northern Portugal. Ore Geol Rev 34: 533–546. [CrossRef] [Google Scholar]
  • Pankhurst RJ, Moorbath S, Rex DC, Turner G. 1973. Mineral age patterns in ca. 3700 my old rocks from West Greenland. Earth Planet Sci Lett 20: 157–170. [CrossRef] [Google Scholar]
  • Pierrot R, Chauris L, Laforet C. 1975. Inventaire minéralogique de la France (Côtes-du-Nord), 5. Orléans: BRGM, 220 p. [Google Scholar]
  • Pochon A, Gapais D, Gloaguen E, Gumiaux C, Branquet Y, Cagnard F, et al. 2016a. Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova 28: 138–145. [CrossRef] [Google Scholar]
  • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, et al. 2016b. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Mineral 101: 2430–2442. [CrossRef] [Google Scholar]
  • Pochon A, Beaudoin G, Branquet Y, Boulvais P, Gloaguen E, Gapais D. 2017. Metal mobility during hydrothermal breakdown of Fe-Ti oxides: Insights from Sb-Au mineralizing event (Variscan Armorican Massif, France). Ore Geol Rev 91: 66–99. [CrossRef] [Google Scholar]
  • Pochon A, Gloaguen E, Branquet Y, Poujol M, Ruffet G, Boiron MC, et al. 2018. Variscan Sb-Au mineralization in central Brittany (France): A new metallogenic model derived from the Le Semnon district. Ore Geol Rev 97: 109–142. [CrossRef] [Google Scholar]
  • Pöter B, Gottschalk M, Heinrich W. 2004. Experimental determination of the ammonium partitioning among muscovite, K-feldspar, and aqueous chloride solutions. Lithos 74: 67–90. [CrossRef] [Google Scholar]
  • Roddick JC, Cliff RA, Rex DC. 1980. The evolution of excess argon in Alpine biotites – A 40Ar/39Ar analysis. Earth Planet Sci Lett 48: 185–208. [CrossRef] [Google Scholar]
  • Ruffet G, Féraud G, Amouric M. 1991. Comparison of 40Ar/39Ar conventional and laser dating of biotites from the North Tregor batholith. Geochim Cosmochim Ac 55: 1675–1688. [CrossRef] [Google Scholar]
  • Ruffet G, Féraud G, Ballèvre M, Kiénast JR. 1995. Plateau ages and excess argon in phengites: A 40Ar-39Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, northern Italy). Chem Geol (Isotopic Geoscience Section) 121: 327–343. [Google Scholar]
  • Ruffet G, Gruau G, Ballèvre M, Féraud G, Philippot P. 1997. Rb-Sr and 40Ar-39Ar laser probe dating of high-pressure phengites from the Sesia zone (Western Alps): Underscoring of excess argon and new age constraints on the high-pressure metamorphism. Chem Geol 141: 1–18. [CrossRef] [Google Scholar]
  • Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26: 207–221. [CrossRef] [Google Scholar]
  • Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR. 2011. Simultaneous resetting of the muscovite K-Ar and monazite U-Pbgeochronometers: A story of fluids. Terra Nova 23: 390–398. [CrossRef] [Google Scholar]
  • Tartèse R, Poujol M, Gloaguen E, Boulvais P, Drost K, Košler J, et al. 2015. Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the GrèsArmoricain formation, Massif Armoricain, France. Miner Petrol 109: 485–500. [CrossRef] [Google Scholar]
  • Tremblay A, Ruffet G, Bédard JH. 2011. Obduction of Tethyan-type ophiolites – A case-study from the Thetford-Mines ophiolitic Complex, Quebec Appalachians, Canada. Lithos 125: 10–26. [CrossRef] [Google Scholar]
  • Turner, G. 1971. Argon 40-argon 39 dating: The optimization of irradiation parameters. Earth Planet Sci Lett 10: 227–234. [CrossRef] [Google Scholar]
  • Vernhet Y, Plaine J, Trautmann F, Pivette B. 2009. Geological map of France (1/50 000), notice of the Cossé-le-Vivien sheet (355), Orléans, France: BRGM, 222 p. [Google Scholar]
  • Wilson PN, Parry WT, Nash WP. 1992. Characterization of hydrothermal tobelitic veins from black shale, Oquirrh Mountains, Utah. Clay Clay Miner 40: 405–420. [CrossRef] [Google Scholar]
  • Yesares L, Sáez R, Nieto JM, De Almodovar GR, Gómez C, et al. 2015. The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol Rev 66: 25–46. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.