Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 190, 2019
Numéro d'article 8
Nombre de pages 26
DOI https://doi.org/10.1051/bsgf/2019007
Publié en ligne 15 juillet 2019
  • Agrinier P, Mével C, Girardeau J. 1988. Hydrothermal alteration of the peridotites cored at the ocean/continent boundary of the Iberian margin: petrologic and stable isotope evidence. In: Boillot G, Winterer EL, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program) 103: 225–234. https://doi.org/10.2973/odp.proc.sr.103.136.1988. [Google Scholar]
  • Alt JC, Shanks WC. 2003. Serpentinization of abyssal peridotites from the MARK area, Mid- Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 67: 641–653. [CrossRef] [Google Scholar]
  • Andersen TB, Corfu F, Labrousse L, Osmundsen PT. 2012. Evidence for hyperextension along the pre-Caledonian margin of Baltica. Journal of the Geological Society, London 169: 601–612. DOI: 10.1144/0016-76492012-011. [CrossRef] [Google Scholar]
  • Andreani M, Mével C, Boullier A, Escartin J. 2007. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem. Geophys. Geosystems 8. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. (2019). How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo-passive margin, western Pyrenees (France). Tectonics 38: 1666–1693. DOI: 10.1029/2018TC005428. [CrossRef] [Google Scholar]
  • Azambre B, Rossy M. 1976. Le magmatisme alcalin d’âge crétacé dans les Pyrénées occidentales; ses relations avec le métamorphisme et la tectonique. Bulletin de la société Géologique de France 7(18): 1725–1728. [CrossRef] [Google Scholar]
  • Azambre B, Rossy M, Albarède F. 1992. Petrology of the alkaline magmatism from the Cretaceous North-Pyrenean Rift Zone (France and Spain). Eur. J. Mineral. 4: 813–834. [CrossRef] [Google Scholar]
  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M. 2004. Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15° N. Geochemistry Geophysics Geosystems 5: Q09f26. DOI: 10.1029/2004GC000744. [CrossRef] [Google Scholar]
  • Beinlich A, Austrheim H, Glodny J, Erambert M, Andersen TB. 2010. CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund Basin, SW-Norway. Geochimica et Cosmochimica Acta 74: 6935–6964. [CrossRef] [Google Scholar]
  • Beinlich A, Plümper O, Hövelmann J, Austrheim H, Jamtveit B. 2012. Massive serpentinite carbonation at Linnajavri, N–Norway. Terra Nova 24: 446–455. DOI: 10.1111/j.1365-3121.2012.01083.x. [CrossRef] [Google Scholar]
  • Beslier MO, Royer JY, Girardeau J, Hill PJ, Boeuf E, Buchanan C, et al. 2004. Une large transition continent-océan en pied de marges sud-ouest australienne : première résultats de la campagne MARGAU/MD110. Bulletin de la Société Géologique de France 175: 629–641. [CrossRef] [Google Scholar]
  • Biteau JJ, Le Marrec A, Le Vot M, Masset JM. 2006. The Aquitaine Basin. Petroleum Geoscience 12(3): 247–273. DOI: 10.1144/1354-079305-674. [CrossRef] [Google Scholar]
  • Blackman DK, Karson JA, Kelley DS, Cann JR, Früh-Green GL, Gee JS, et al. 2002. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30 N): implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 23(866): 443–469. [CrossRef] [Google Scholar]
  • Boillot G, Recq M, Winterer EL, Meyer AW, Applegate J, Baltuck M, et al. 1987. Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP Leg 103, western Galicia margin, Spain). Tectonophysics 132: 335–342. [CrossRef] [Google Scholar]
  • Boschi C, Fruh-Green GL, Escartin J. 2006a. Occurrence and significance of serpentine-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31(2): 129–140. [Google Scholar]
  • Boschi C, Fruh-Green GL, Delacour A, Karson JA, Kelley DS. 2006b. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochemistry Geophysics Geosystems 7: Q01004. DOI: 10.1029/2005GC001074. [CrossRef] [Google Scholar]
  • Canérot J. 2017a. The pull apart-type Tardets-Mauléon Basin, a key to understand the formation of the Pyrenees. Bulletin Société géologique de France 188: 35. DOI: 10.1051/bsgf/2017198. [CrossRef] [Google Scholar]
  • Canérot J. 2017b. Origine de la chaîne des Pyrénées : collision entre les plaque ibérique et européenne ou inversion d’un ancien rift intracontinental avorté ? Bull. Soc. Hist. Nat. Toulouse 153: 95–110. [Google Scholar]
  • Canérot J, Delavaux F. 1986. Tectonic and sedimentation on the north Iberian margin, Chainons Béarnais south Pyrenean zone (Pyrenees basco-béarnaises) − New data about the signification of the lherzolites in the Saraillé area. C. R. Acad. Sci. Ser. II 302(15): 951–956. [Google Scholar]
  • Canérot J, Peybernes B, Cizsak R. 1978. Présence d’une marge méridionale à l’emplacement des Chaînons Béarnais (Pyrénées basco‐béarnaises). Bull. Soc. Geol. Fr. 7(20): 673–676. [CrossRef] [Google Scholar]
  • Cannat M, Manatschal G, Sauter D, Peron-Pinvidic G. 2009. Assessing the conditions of continental breakup at magma-poor rifted margins: what can we learn from slow spreading mid-ocean ridges? C. R. Geoscience. DOI: 10.1016/j.crte.2009.01.005. [Google Scholar]
  • Castanares LM, Robles S, Vicente-Bravo JC. 1997. Distribuciôn estratigrafica de los episodios volcanicos submarinos del Albiense-Santoniense en la Cuenca Vasca (sector Gernika-Plentzia. Bizkaia). Geogaceta 22: 43–46. [Google Scholar]
  • Castanares LM, Robles S, Gimeno D, Vicente Bravo JC. 2001. The Submarine Volcanic System of the Errigoiti Formation (Albian-Santonian of the Basque-Cantabrian Basin, Northern Spain): Stratigraphic Framework, Facies, and Sequences. J. Sedim. Res. 71(2): 318–333. [CrossRef] [Google Scholar]
  • Casteras M, Canérot J, Paris J-P., Tisin D, Azambre B, Alimen H. 1970. Carte géol. France (1/50 000), feuille Oloron-Sainte-Marie (1051). Orléans: BRGM. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non cylindrical crustal architecture of the Pyrenees. Scientific Reports 8: 9591. DOI: 10.1038/s41598-018-27889-x. [CrossRef] [Google Scholar]
  • Chew DM, van Staal CR. 2014. The ocean-continent transition zones along the Appalachian-Caledonian margin of Laurentia: examples of large-scale hyperextension during the opening of the Iapetus Ocean. Geoscience Canada 41: 165–185. [CrossRef] [Google Scholar]
  • Choukroune P, ECORS team. 1989. The Ecors deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [CrossRef] [Google Scholar]
  • Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrénées : sur le fonctionnement de la faille transformante nord-Pyrénéenne; comparaisons avec les modèles actuels. Bulletin de la société géologique de France 20: 689–700. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33(7): 1340–1359. [CrossRef] [Google Scholar]
  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2014. Ophicalcites from the Northern Pyrenean Belt: a field, petrographic and stable isotope study. Int. J. Earth Sci. 103: 141–163. DOI: 10.1007/s00531-013-0927-z. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the north Pyrenean passive paleomargin. Solid Earth 6: 643–668. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C., Vauchez A, Nalpas T, et al. 2016. Basement − Cover decoupling and progressive exhumation of metamorphic sediments at hot-rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. [CrossRef] [Google Scholar]
  • Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: new constraints from the Saraillé Massif (Chaînons Béarnais, North-Pyrenean Zone). Compt. Rendus Geosci. 348: 279–289. [CrossRef] [Google Scholar]
  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineralogy and Petrology. DOI: 10.1007/s00710-018-0559-x. [Google Scholar]
  • Corre B. 2017. La bordure nord de la plaque ibérique à l’Albo-Cénomanien. Architecture d’une marge passive de type ductile. Chaînons Béarnais, Pyrénées occidentales: Unpublished thesis, Univ. Rennes 1, 300 p. [Google Scholar]
  • Debroas E-J. 1978. Évolution de la fosse du flysch ardoisier de l’Albien supérieur au Sénonien inférieur (zone interne métamorphique des Pyrénées navarro-languedociennes). Bull. Soc. Géol. Fr. 20: 639–648. [CrossRef] [Google Scholar]
  • Debroas EJ, Canérot J, Bilotte M. 2010. Les Brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille Vraconnien-Cénomanien inférieur (zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Géol. Fr. 2: 53–63. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem. Geophys. Geosyst. 18(2): 631–652. [CrossRef] [Google Scholar]
  • Delacour A, Früh-Green GL, Bernasconi SM. 2008a. Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochimica et Cosmochimica Acta. 72: 5111–5127. DOI: 10.1016/j.gca.2008.07.018. [CrossRef] [Google Scholar]
  • Delacour A, Früh-Green GL, Frank M, Gutjahr M, Kelley DS. 2008b. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity. Chem. Geol. 254: 19–35. DOI: 10.1016/j.chemgeo.2008.05.018. [CrossRef] [Google Scholar]
  • Denny AR, Kelley DS, Früh-Green GL. 2015. Geologic evolution of the Lost City Hydrothermal Field. Geochem. Geophys. Geosyst. 17: 375–394. DOI: 10.1002/2015GC005869. [CrossRef] [Google Scholar]
  • Duée G, Lagabrielle Y, Coutelle A, Fortané A. 1984. Les lherzolites associées aux chaînons béarnais (Pyrénées Occidentales) : mise à l’affleurement anté-dogger et resédimentation albo-cénomanienne. C.R. Acad. Sci., Paris, t. 299(série II, n° 17): 1205–1209. [Google Scholar]
  • Escartin J, Hirth G, Evans B. 1997. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth and Planetary Science Letters 181–189. [CrossRef] [Google Scholar]
  • Escartín J, Mével C, MacLeod CJ, McCaig AM. 2003. Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45’N. Geochemistry, Geophys. Geosystems 4: 1067. DOI: 10.1029/2001GC000278. [Google Scholar]
  • Escartin J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455: 790–794. [CrossRef] [Google Scholar]
  • Escartín J, Mével C, Petersen S, Bonnemains D, Cannat M, Andreani M, et al. 2017. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge). Geochem. Geophys. Geosys. 18(4): 1451–1482. DOI: 10.1002/2016GC006775. [CrossRef] [Google Scholar]
  • Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C. 1991. Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. J. Petrol., sp. volume "Orogenic lherzolites and mantle processes" 55–76. [Google Scholar]
  • Fabriès J, Lorand J-P., Bodinier J-L. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292: 145–167. [CrossRef] [Google Scholar]
  • Fallourd S, Poujol M, Boulvais P, Paquette JL, de Saint Blanquat M, Rémy P. 2014. In situ LA-ICP-MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example. Int J Earth Sci 103(3): 667–682. [CrossRef] [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the Western ’’Chaînons Béarnais’’ (French Pyrénées): structural and paleogeographical pattern. Tectonophysics 129: 81–98. [CrossRef] [Google Scholar]
  • Früh-Green GL, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA, Butterfield DA, et al. 2003. 30,000 years of hydrothermal activity at the Lost City vent field. Science 301: 495–498. [CrossRef] [Google Scholar]
  • Gaudichet A. 1974. Étude pétrographique des lherzolites de la région d’Oloron-Ste Marie (Pyrénées Atlantiques). Unpublished Thesis, University of Paris VI. [Google Scholar]
  • Gillard M, Autin J, Manatschal G, Sauter D, Munschy M, Schaming M. 2015. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: constraints from seismic observations. Tectonics 34: 753–783. DOI: 10.1002/2015tc003850. [CrossRef] [Google Scholar]
  • Golberg J-M, Leyreloup A-F. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104(2): 194–207. DOI: 10.1007/BF00306443. [CrossRef] [Google Scholar]
  • Halls C, Zhao R. 1995. Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Miner. Deposita 30: 303–313. [CrossRef] [Google Scholar]
  • Harlov DE, Austrheim H. 2013. Metasomatism and the chemical transformation of rocks. The role of fluids in terrestrial and extraterrestrial processes. Lecture notes in Earth Sciences. Berlin Heidelberg: Springer-Verlag, 806 p. DOI: 10.1007/978-3-642-28394-9. [Google Scholar]
  • Jakob J, Andersen TB, Kjøll HJ. 2019. A review and revision of the rift − inherited architecture of the South and Central Scandinavian Caledonides − a magma-poor to magma-rich transition and the significance of reactivation of rift-inheritance during the Caledonian Orogeny. Earth Science Review. DOI: 10.1016/j.earscirev.2019.01.004. [Google Scholar]
  • Jammes S, Manatschal G, Lavier LL, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28(4). DOI: 10.1029/2008TC002406. [CrossRef] [Google Scholar]
  • Karson J, Früh‐Green G, Kelley DS, Williams E, Yoerger DR, Jakuba M. 2006. Detachment shear zone of the Atlantis Massif core complex, Mid‐Atlantic Ridge, 30 N. Geochem. Geophys. Geosystems 7. [Google Scholar]
  • Kelemen P, Matter J, Streit L, Rudge J, Curry B, Blusztajn J. 2011. Rates and mechanism of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences. DOI: 10.1146/annurev-earth-092010-152509. [Google Scholar]
  • Lafay R, Baumgartner PL, Schwartz S, Picazo S, Montes-Hernandez G, Torsten V. 2017. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): processes of carbonate cementation. Lithos V. 294-295, 319–338. DOI: 10.1016/j.lithos.2017.10.006. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1): 11–21. DOI: 10.1111/j.1365-3121.2007.00781. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29(4). [CrossRef] [Google Scholar]
  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Compt. Rendus Geosci. 348: 257–267. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Uzel J, Labaume P, et al. (2019). Mantle exhumation at magma-poor passive continental margins. Part II. Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, north-western Pyrenees, France). Geosciences Bulletin BSGF. (in press). [Google Scholar]
  • Larsen HC, Mohn G, Nirrengarten M, et al. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience 11(10). DOI: 10.1038/s41561-018-0198-1. [CrossRef] [Google Scholar]
  • Le Pichon X, Bonnin J, Sibuet JC. 1970. La faille nord-pyrénéenne : faille transformante liée à l’ouverture du Golfe de Gascogne. C.R. Acad. Sc. Paris 271(série D): 1941–1944. [Google Scholar]
  • Lemoine M. 1980. Serpentinites, gabbros and ophicalcites in the Piemont-Ligurian domain of the Western Alps: possible indicators of oceanic fracture zones and of associated serpentinite protrusions in the Jurassic-Cretaceous Tethys. Arch Sci 33: 103–115. [Google Scholar]
  • Lemoine M, Tricart P, Boillot G. 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel. Geology 15: 622–625. [CrossRef] [Google Scholar]
  • Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G. 2006. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 70: 3625–3645. [CrossRef] [Google Scholar]
  • Luhr JF, Aranda-Gomez JJ, Housh TB. 1995. San Quintin volcanic field, Baja California Norte, Mexico: geology, petrology and geochemistry. J. Geophys. Res. 100: 10353–10380. [CrossRef] [Google Scholar]
  • Machel HG. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings − old and new insights. Sedimentary Geology 140: 143–175. [CrossRef] [Google Scholar]
  • MacLeod CJ, Escartin J, Banerji D, Banks GJ, Gleeson M, Irving DHB, et al. 2002. Direct geological evidence for oceanic detachment faulting: the Mid-Atlanic Ridge, 15°45’N. Geology 30: 879–882. [CrossRef] [Google Scholar]
  • Manatschal G, Nievergelt P. 1997. A continent-ocean transition recorded in the Err and Platta nappes (eastern Switzerland). Eclogae Geol. Helv. 90: 3–27. [Google Scholar]
  • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int. J. Earth Sci. 93: 432–466. [CrossRef] [Google Scholar]
  • Marroni M, Pandolfi L. 2007. The architecture of an incipient oceanic basin: a tentative reconstruction of the Jurassic Liguria-Piemonte basin along the Northern Apennines − Alpine Corsica transect. International Journal of Earth Sciences 96: 1059–1078. [CrossRef] [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). Int. J. Earth Sci. 1–28. DOI: 10.1007/s00531-014-1023-8. [Google Scholar]
  • Menzel MD, Garrido CJ, Lopez Sanchez-Vizcaino V, Marchesi C, Hidas K, Escayola MP, et al. 2018. Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex. Newfoundland, Canada: Lithos. DOI: 10.1016/j.lithos.2018.06.001. [Google Scholar]
  • Mével C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosci. 335: 825–852. DOI: 10.1016/j.crte.2003.08.006. [CrossRef] [Google Scholar]
  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N. 2012. Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31: TC1012. DOI: 10.1029/2011TC002961. [CrossRef] [Google Scholar]
  • Monchoux P. 1970. Les lherzolites pyrénéennes. Contribution à l’étude de leur minéralogie, de leur genèse et de leurs transformations. Thèse d’état. Toulouse, 180 p. [Google Scholar]
  • Monchoux P, Fontan F, De Parseval P, Martin RF, Wang RC. 2006. Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. I. Mineralogical associations. Can Mineral. 44: 811–836. [CrossRef] [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar study of Cretaceous magmatism and metamorphism in the Pyrénées: age and length of rotation of the Iberian peninsula. Tectonophysics 129: 257–273. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. DOI: 10.1002/2014TC003663. [CrossRef] [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR, ed. Thrust tectonics. London, UK: Chapman and Hall, pp. 235–246. [Google Scholar]
  • Nteme J. 2017 Interactions fluides/roches durant l’exhumation du manteau. Étude des inclusions fluides dans un détachement majeur de la zone nord-Pyrénéenne (Urdach : Chaînons Béarnais). Unpublished Master 2 thesis. Géosciences. Rennes, France: 24 p. [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bull. Cent. Rech. Explor. Prod. Elf Aquitaine 20(1): 131–195. [Google Scholar]
  • Pérez-Gussinyé M, Phipps-Morgan J, Reston TJ, Ranero CR. 2006. From rifting to spreading at nonvolcanic margins: insights form numerical modeling. Earth and Planetary Science Letters 244: 458–473. [CrossRef] [Google Scholar]
  • Pérez-Gussinyé. 2013. A tectonic model for hyperextension at magma-poor rifted margins: an example from the West Iberia – Newfoundland conjugate margins. In : Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemčok M, Sinha ST, eds. Conjugate divergent margins. Geological Society, London: Special Publications, 369, pp. 403–427. [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. International Journal of Earth Sciences 98(7): 1581–1597. [CrossRef] [Google Scholar]
  • Péron-Pinvidic G, Osmundsen PT. 2016. Architecture of the distal and outer domains of the mid-Norwegian Vøring rifted margin: insights from the Rån Ridge system. Mar. Petrol. Geol. 77: 280–299. [CrossRef] [Google Scholar]
  • Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S. 2012. Deformation associated with the denudation of mantle‐derived rocks at the Mid‐Atlantic Ridge 13°-15° N: the role of magmatic injections and hydrothermal alteration. Geochem. Geophys. Geosystems 13. [Google Scholar]
  • Pin C, Paquette J-L., Monchoux P, Hammouda T. 2001. First field-scale occurrence of Si-Al-Na-rich low-degree partial melt from the upper mantle. Geology 29: 451–454. [CrossRef] [Google Scholar]
  • Pin C, Monchoux P, Paquette J-L., Azambre B, Wang RC, Martin RF. 2006. Igneous albitite dikes in orogenic lherzolites, Western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Canad. Mineral. 44: 843–856. [CrossRef] [Google Scholar]
  • Pinto VHG, Manatschal G, Karpoffv AM, Viana A. 2015. Tracing mantle-reacted fluids in magma-poor rifted margins: the example of Alpine Tethyan rifted margins. Geochem. Geophys. Geosyst. 16. DOI: 10.1002/2015GC005830. [Google Scholar]
  • Plissart G, Féménias O, Maruntiu M, Diot H, Demaiffe D. 2009. Mineralogy and geothermometry of gabbro-derived listvenites in the Tosovita-Iuti ophiolite, southwestern Romania. The Canadian Mineralogist 47: 81–105. DOI: 10.3749/canmin.47.1.81. [CrossRef] [Google Scholar]
  • Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J Geol Soc 167(4): 751–767. [CrossRef] [Google Scholar]
  • Reston TJ. 2009a. The extension discrepancy and syn-rift subsidence deficit at rifted margins. Petroleum Geoscience 15: 217–237. DOI: 10.1144/1354-079309-845. [CrossRef] [Google Scholar]
  • Reston TJ. 2009b. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a Synthesis. Tectonophysics 468: 6–27. [CrossRef] [Google Scholar]
  • Rodriguez Garcia D, Villanova-de-Benavent C, Butjosa L, Aiglesperger T, Melgarejo JC, Proenza JA, et al. 2015. Au Mineralisation in “Listvenites” from Mina Descanso, Central Cuba: preliminary results. Geodynamics, Orogenic cycles and mineral systems. Mineral resources in a sustainable world, 13th SGA Biennial Meeting 2015. Proceedings, V. 1, Conference Paper, August 2015. [Google Scholar]
  • Roure F, Choukroune P. 1998. Contribution of the Ecors seismic data to the Pyrenean geology: crustal architecture and geodynamic evolution of the Pyrenees. Mémoires de la Société géologique de France 173: 37–52. [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz JA, Vilien A, Matheron P, et al. 1989. Ecors deep seismic data and balanced cross sections: geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Roux JC. 1983. Recherches stratigraphiques et sédimentologiques sur les flysch crétacés pyrénéens au Sud d’Oloron (Pyrénées Atlantiques). Toulouse: Thèse 3ème cycle, Université Paul Sabatier. [Google Scholar]
  • Saint Blanquat de M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: new constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Compt. Rendus Geosci. 348: 268–278. [CrossRef] [Google Scholar]
  • Schärer U, de Parseval P, Polvé M, St Blanquat M. 1999. Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11(1): 30–37. DOI: 10.1046/j.13653121.1999.00224.x. [CrossRef] [Google Scholar]
  • Schoeffler J, Henry J, Villanova M. 1964. État des travaux de cartographie géologique réalisés par la Société nationale des pétroles d’Aquitaine (SNPA) dans les Pyrénées occidentales. C. R. somm. Soc. géol. Fr. 7: 241–246. [Google Scholar]
  • Schroeder T, John B, Frost BR. 2002. Geologic implications of seawater circulation through 1116 peridotite exposed at slow-spreading mid-ocean ridges. Geology 30: 367–370. 1117. DOI: 10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2. [CrossRef] [Google Scholar]
  • Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research, Washington 109: B08104. DOI: 10.1029/2003JB002514. 18 p. [Google Scholar]
  • Soto JI, Flinch JF, Tari G. 2017. Permo-Triassic salt provinces of Europe, North Africa and the Atlantic margins: a synthesis. In : Soto et al., eds. Permo-Triassic salt provinces of Europe, North Africa and the Atlantic margins. Tectonics and Hydrocarbon potential. Elsevier, pp. 3–41. [Google Scholar]
  • Sutra E, Manatschal G, Mohn G, Unternehr P. 2013. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst. 14(8): 2575–2597. DOI: 10.1002/ggge.20135. [CrossRef] [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3): 395–406. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: inferences from a new kinematic scenario. Comptes Rendus Geoscience 348, 257, 267. DOI: 10.1016/j.crte.2015.10.010. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. The present-day and past crustal structure of the Pyrenean-Cantabrian belt: a review and new interpretations from recent concepts and data. Tectonophysics DOI: 10.1016/j.tecto.2018.01.009. [Google Scholar]
  • Thiébault J, Durand-Wackenheim C, Debeaux M, Souquet P. 1992. Métamorphisme des évaporites triasiques du versant nord des Pyrénées centrales et occidentales. Bull Soc Hist Nat Toulouse 128: 77–84. [Google Scholar]
  • Trommsdorff V, Evans BW, Pfeifer H. 1980. Ophicarbonate rocks: metamorphic reactions and possible origin. Arch Sci Geneve 33: 3610364. [Google Scholar]
  • Treves BE, Harper GD. 1994. Exposure of serpentinites on the ocean floor: sequence of faulting and hydrofracturing in the northern Apennine ophicalcites. Ofioliti 19b: 435–466. [Google Scholar]
  • Tucholke BE, Sibuet J-C, Klaus A, eds. 2007. Proc. ODP, Sci. Results, 210: College Station, TX (Ocean Drilling Program). DOI: 10.2973/odp.proc.sr.210.2007. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33. DOI: 10.1002/2014TC003529. [CrossRef] [Google Scholar]
  • Vergés J, Garcia-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. In : Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S, eds. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive margins. Mémoires du Muséum Nationale d’Histoire Naturelle, 186, pp. 187–212. [Google Scholar]
  • Vergés J, Millán H, Muñoz JA, Marzo M, Cirès J, Den Bezemer T, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections. Marine and Petroleum Geology 12(8): 893–915. [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet. Sci. Lett. 67: 87–96. [CrossRef] [Google Scholar]
  • Vissers RLM, Meijer PT. 2012. Mesozoic rotation of Iberia: subduction in the Pyrenees ? Earth Sci Rev 110(1–4): 93–110. DOI: 10.1016/j.earscirev.2011.11.001. [CrossRef] [Google Scholar]
  • Wilson M. 1989. Igneous petrogenesis. A global tectonic approach. London: Chapman and Hall, 466 p. [Google Scholar]
  • Wilson M, Downes H. 1992. Mafic alkali volcanism associated with the European Cenozoic rift system. Tectonophysics 208: 173–182. [CrossRef] [Google Scholar]
  • Wrobel-Daveau J-C, Ringenbach J-C, Tavakoli S, Ruiz GMH, Masse P, Frizon de Lamotte D. 2010. Evidence for mantle exhumation along the Arabian marginin the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences 3(4): 499–513. DOI: 10.1007/s12517-010-0209-z. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.