Open Access
BSGF - Earth Sci. Bull.
Volume 191, 2020
Numéro d'article 35
Nombre de pages 23
Publié en ligne 24 novembre 2020
  • Agirrezabala LM, Kiel S, Blumenberg M, Schäfer N, Reitner J. 2013. Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology 390: 94–115. [CrossRef] [Google Scholar]
  • Aharon P. 2000. Microbial processes and products fueled by hydrocarbons at submarine seeps. In: Riding RE, Awramik SM, eds. Microbial sediments. Berlin: Springer-Verlag, pp. 270–281. [CrossRef] [Google Scholar]
  • Alperin ML, Reeburgh WS, Whiticar MJ. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles 2: 279–288 [CrossRef] [Google Scholar]
  • Aquilina L, Sureau JF, Steinberg M, GPF team. 1997. Comparison of surface, aquifer, and pore waters form a Mesozoïc sedimentary basin and its underlying Paleozoïc basement, Southeastern France. Chemical evolution of waters with diagenesis and relationship between aquifers. Chemical Geology 138: 185–209. [CrossRef] [Google Scholar]
  • Aquilina L, De Dreuzy J-R. 2011. Relationship of present saline fluid with paleomigration of basinal brines at the basement/sediment interface (Southeast basin − France). Applied Geochemistry 26: 1933–1945. [CrossRef] [Google Scholar]
  • Artru P. 1972. Les terres noires du bassin rhodanien (Bajocien supérieur à Oxfordien moyen) : stratigraphie, sédimentologie, géochimie − Alpes françaises. Ph.D. Thesis. Lyon, France: Claude Bernard University, 173 p. [Google Scholar]
  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Damste JSS, et al. 2002. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth and Planetary Science Letters 203(1): 195–203. [CrossRef] [Google Scholar]
  • Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J. 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters 184(1): 321–338. [CrossRef] [Google Scholar]
  • Amano K, Jenkins RG, Aikawa M, Nobuhara T. 2010. A Miocene chemosynthetic community from the Ogaya Formation in Joetsu: evidence for depth-related ecologic control among fossil seep communities in the Japan Sea back-arc basin. Palaeogeography, Palaeoclimatology, Palaeoecology 286: 164–170. [CrossRef] [Google Scholar]
  • Barbieri R, Cavalazzi B. 2005. Microbial fabrics from Neogene cold seep carbonates, Northern Apennine, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 143–155. [CrossRef] [Google Scholar]
  • Barlier J. 1974. Recherches paléothermométriques dans le domaine des Terres Noires subalpines méridionales. Thèse 3e cycle. Orléans, 98 p. [Google Scholar]
  • Bayon G, Henderson GM, Bohn M. 2009. U-Th stratigraphy of a cold seep carbonate crust. Chemical Geology 260: 47–56. [CrossRef] [Google Scholar]
  • Bayon G, Pierre C, Etoubleau J, Voisset M, Cauquil E, Marsset T, et al. 2007. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241: 93–109. [CrossRef] [Google Scholar]
  • Bellon H, Perthuisot V. 1980. Âges radiométriques K-Ar de feldspaths potassiques du Trias évaporitique vocontien. C R Acad Sci Paris 290: 1241–1244. [Google Scholar]
  • Bréheret JG. 1994. Faisceaux de bancs calcaires noduleux dans I’Apto-albien du bassin Vocontien: I’expression diagénétique d’une sédimentation saccadée. C R Acad Sci Paris 318: 513–519. [Google Scholar]
  • Bohrmann G, Greinert J, Suess E, Torres M. 1998. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26(7): 647–650. [CrossRef] [Google Scholar]
  • Bonijoly D, Perrin J, Roure F, Bergerat F, Courel L, Elmi S, et al. 1996. The Ardèche palaeomargin on the South-East Basin of France. Mesozoic evolution of a part of the Tethyan continental margin (Géologie Profonde de la France programme). Marine and Petroleum Geology 13: 607–624. [CrossRef] [Google Scholar]
  • Borowski WS, Paull CK, Ussler B. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensivity to underlying methane and gas hydrates. Marine Geology 159: 131–154. [CrossRef] [Google Scholar]
  • Bourseau JP. 1977. L’Oxfordien moyen à nodules des « Terres Noires » de Beauvoisin (Drôme). Nouv. Arch. Mus. Hist. Nat. Lyon 15: 116 p. [Google Scholar]
  • Caillaud A. 2018. Dépôts organiques en milieu marin: les facteurs clés des bassins hémipélagiques. Le Mésozoïque du bassin du Sud-Est de la France. PhD Thesis. Université de Lille, 354 p. [Google Scholar]
  • Campbell KA. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 362–407. [CrossRef] [Google Scholar]
  • Campbell KA, Farmer JD, Des Marais D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2: 63–94. [CrossRef] [Google Scholar]
  • Campbell KA, Bottjer DJ. 1995a. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23: 321–324. [CrossRef] [Google Scholar]
  • Campbell KA, Bottjer DJ. 1995b. Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod. Paleobiology 24: 461–478. [CrossRef] [Google Scholar]
  • Cangemi M, Di Leonardo R, Bellanca A, Cundy A, Neri R, Angelone M. 2010. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release from a mud volcano system. Chemical Geology 276: 294–308. [CrossRef] [Google Scholar]
  • Cavagna S, Clari P, Martire L. 1999. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary NW Italy). Sedimentary Geology 126: 253–270. [CrossRef] [Google Scholar]
  • Clari P, Martire L. 2000. Cold seep carbonates in the tertiary of northwest Italy: evidence of bacterial degradation of methane. In: Riding RE, Awramik SM, eds. Microbial Sediments. Berlin: Springer-Verlag, pp. 261–269. [CrossRef] [Google Scholar]
  • Clari P, Fornara L, Ricci B, Zuppi GM. 1994. Methane-derived carbonates and chemosymbiotic communities of Piedmont (Miocene, northern Italy): an update. Geo-Marine Letters 14: 201–209. [CrossRef] [Google Scholar]
  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curves of sulphur and oxygen isotopes in marine sulphate and their interpretation. Chemical Geology (Isotope geoscience section) 28: 199–260. [Google Scholar]
  • Craig H, Gordon I. 1965. Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E, ed. Stable Isotopes in Oceanographic Studies and Paleotemeratures. Pisa, Italy: Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, pp. 9–130. [Google Scholar]
  • Dardeau G. 1988. Tethyan evolution and Alpine reactivation of Jurassic extensional structures in the French “Alpes Maritimes”. Bulletin de la Société Géologique de France 8(4): 651–657. [CrossRef] [Google Scholar]
  • Debrand-Passard S. 1984. Grandes lignes et principales étapes de l’évolution géodynamique du Sud-Est de la France. In: Debrand-Passard S, et al., eds. Synthèse géologique du Sud-Est de la France. Mém. BRGM, 125: 581–599. [Google Scholar]
  • Desmaison YL, Nicot E, Guilhaumou N. 1988. Le materiel triassique inseré dans les Terres Noires: arguments petrographiques pour une halocinèse précoce dans la région de Buis-les-Baronnies. Bull Soc Geol Fr IV: 759–770. [CrossRef] [Google Scholar]
  • Deusner C, Holler T, Arnold GL, Bernasconi SM, Formolo MJ, Brunner B. 2014. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth and Planetary Science Letters 399: 61–73. [CrossRef] [Google Scholar]
  • Edon M, Guilhaumou N, Perthuisot V, Laval M. 1991. Diapirism and hydrothermalism from Diois and Baronnies (SE, France). PLINIUS. Supplemente italiano all’Europeen Journal of Mineral 5: 70–71. [Google Scholar]
  • Edon M. 1983. Contribution à la caracterisation P-T-t-X des fluides et des neoformations minérales dans le Trias en place ou diapirique et dans sa couverture sédimentaire dans le bassin sud∼est (France). Thèse. Université d’Orléans, 241 p. [Google Scholar]
  • Feng D, Roberts HH. 2011. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth and Planetary Science Letters 309: 89–99. [Google Scholar]
  • Feng D, Chen D, Peckmann J, Bohrmann G. 2010. Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Marine and Petroleum Geology 27(4): 748–756. [CrossRef] [Google Scholar]
  • Gaidon J-L. 1988. Minéralisations et structuration d’une marge continentale passive: l’exemple des concrétions tubulaires du barssin subalpin (Callovien-Oxfordien). Thèse de doctorat. Lyon: Université Claude Bernard-Lyon 1, 222 p. [Google Scholar]
  • Gaillard C, Neraudeau D, Thierry J. 2011. Tithonia oxfordiana , a new irregular echinoid associated with Jurassic seep deposits in South-East France. Palaeontology 54: 735–752. [CrossRef] [Google Scholar]
  • Gaillard C, Atrops F, Marchand D, Hanzo M, Lathuilière B, Bodeur Y, et al. 1996. Description stratigraphique préliminaire des faisceaux alternants de l’Oxfordien moyen dans le bassin dauphinois (Sud-Est de la France). Géologie de la France 1: 17–24. [Google Scholar]
  • Gaillard C, Rio M, Rolin Y, Roux M. 1992. Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7: 451–465. [CrossRef] [Google Scholar]
  • Gaillard C, Rolin Y. 1988. Relation entre tectonique synsédimentaire et pseudobiohermes (Oxfordien de Beauvoisin-Drôme-France). Un argument supplémentaire pour interpréter les pseudobiohermes comme formés au droit de sources sous-marines. Comptes Rendus de l’Académie des Sciences Paris 307: 1265–1270. [Google Scholar]
  • Gaillard C, Bourseau J-P., Boudeulle M, Pailleret P, Rio M, Roux M. 1985. Les pseudobiohermes de Beauvoisin (Drôme) : un site hydrothermal sur la marge téthysienne à l’Oxfordien ? Bulletin de la Société Géologique de France 1: 69–78. [CrossRef] [Google Scholar]
  • Gay A, Lopez M, Potdevin J-L, Vidal V, Varas G, Favier A, et al. 2019. 3D morphology and timing of the giant fossil pockmark of Beauvoisin, SE Basin of France. Journal of the Geological Society of Londons 176(1): 61–77. [CrossRef] [Google Scholar]
  • Gay A, Lopez M, Berndt C, Séranne M. 2007. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology 244: 68–92. [CrossRef] [Google Scholar]
  • Gay A, Lopez M, Ondreas H, Charlou J-L., Sermondadaz G, Cochonat P. 2006. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin. Marine Geology 226: 81–95. [CrossRef] [Google Scholar]
  • Gay A. 2002. Les marqueurs géologiques de la migration et de l’expulsion des fluides sédimentaires sur le plancher des marges passives matures. Exemples dans le Bassin du Congo. Thèse. Université de Lille 1, 426 p. [Google Scholar]
  • Ge L, Jiang S-Y, Swennen R, Yang T, Yang J-H, Wu N-Y, Liu J, Chen DH. 2010. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology 277: 21–30. [CrossRef] [Google Scholar]
  • Ge L, Jiang S-Y. 2013. Sr isotopic compositions of cold seep carbonates from the South China Sea and the Panoche Hills (California, USA) and their significance in palaeooceanography. Journal of Asian Earth Sciences 65: 34–41. [CrossRef] [Google Scholar]
  • Gradstein JG. 2012. “The Geologic Time Scale 2012” by J.G. Ogg, M.D. Schmitz and G.M. Ogg. Elsevier. [Google Scholar]
  • Guilhaumou N, Touray JC, Perthuisot V, Roure F. 1996. Palaeocirculation in the basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies. Marine and Petroleum Geology 13(6): 695–706. [CrossRef] [Google Scholar]
  • Haas A, Peckmann J, Elvert M, Sahling H, Bohrmann G. 2010. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Marine Geology 268(1):129–136. [CrossRef] [Google Scholar]
  • Himmler T, Birgel D, Bayon G, Pape T, Ge L, Bohrmann G, Peckmann J. 2015. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chemical Geology 415: 102–117. [CrossRef] [Google Scholar]
  • Iversen N, Jørgensen BB. 1985. Anaerobic methaneoxidation rates at the sulfate methane transition in marine-sediments from Kattegat and Skagerrak (Denmark). Limnologyand Oceanography 30(5): 944–955. [CrossRef] [Google Scholar]
  • Joseph C, Torres ME, Martin RA, Haley BA, Pohlman JW, Riedel M, Rose K. 2012. Using the 87Sr/86Sr of modern and paleoseep carbonates from the northern Cascadia to link modern fluid flow to the past. Chemical Geology 334: 122–130. [CrossRef] [Google Scholar]
  • Kiel S, Hansen BT. 2015. Cenozoic methane-seep faunas of the Caribbean region. PLoS One 10(10): e0140788. [CrossRef] [Google Scholar]
  • Kiel S, Hansen C, Nitzsche KN, Hansen BT. 2014. Using 87Sr/86Sr-ratios to date fossil methane seep deposits: methodological requirements and an example from the Great Valley Group California. Journal of Geology 122: 353–366. [CrossRef] [Google Scholar]
  • Kiel S. 2013. Lucind bivalves from ancient methane seeps. Journal of Molluscan Studies 79: 346–363. [CrossRef] [Google Scholar]
  • Kiel S. 2010. The fossil record of vent and seep mollusks. In: Kiel S, ed. The Vent and seep biota: aspects from microbes to ecosystems. Heidelberg: Springer. Topics in Geobiology 33: 255–278. [CrossRef] [Google Scholar]
  • Kiel S, Little CTS. 2006. Cold seep mollusks are older than the general marine mollusk fauna. Science 313: 1429–1431. [CrossRef] [Google Scholar]
  • Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology 63: 311–344. [CrossRef] [Google Scholar]
  • Ladanza A, Sampalmieri G, Cipollari P. 2015. Deep-seated hydrocarbons in the seep “Brecciated Limestones” of the Maiella area (Adriatic foreland basin): evaporitic sealing and oil re-mobilization effects linked to the drawdown of the Messinian Salinity Crisis. Marine and Petroleum Geology 66: 177–191. [CrossRef] [Google Scholar]
  • Ladanza A, Sampalmieri G, Cipollari P, Mola M, Cosentino D. 2013. The “Brecciated Limestones” of Maiella, Italy: rheological implications of hydrocarbon-charged fluid migration in the Messinian Mediterranean Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 390: 130–147. [CrossRef] [Google Scholar]
  • Lemoine M. 1985. Structuration jurassique des Alpes occidentales et palinspatique de la Téthys ligure. Bulletin de la Société Géologique de France I(1): 126–137. [Google Scholar]
  • Lemoine M, Arnaud-Vanneau A, Arnaud H, Létolle R, Mével C, Thieuloy JP. 1982. Indices possibles de paléo-hydrothermalisme marin dans le Jurassique et le Crétacé des Alpes occidentales (océan téthysien et sa marge continentale européenne): essai d’inventaire. Bulletin de la Société Géologique de France S7-XXIV(3): 641–647. [CrossRef] [Google Scholar]
  • Louis-Schmid B, Rais P, Logvinovich D, Bernasconi SM, Weissert H. 2007. Impact of methane seeps on the local carbon-isotope record: a case study from a Late Jurassic hemipelagic section. Terra Nova 19(4): 259–265. [CrossRef] [Google Scholar]
  • Martens CS, Berner RA. 1977. Interstitial water chemistry of anoxic Long Island Sound sediments. I. Dissolved gases. Limnology and Oceanography 22: 10–25. [CrossRef] [Google Scholar]
  • Martens CS, Berner RA. 1974. Methane production in interstitial waters of sulfate-depleted marine sediments. Science 185(4157): 1167–1169. [CrossRef] [Google Scholar]
  • Mascle G, et al. 1988. Salt tectonics, Tethyan rifting and Alpine folding in the French Alps. Bulletin de la Société Géologique de France 8(4): 747–758. [CrossRef] [Google Scholar]
  • McArthur JM, Howarth RJ, Shields GA. 2012. Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G, eds. The Geologic Time Scale. Elsevier, pp. 127–144. [CrossRef] [Google Scholar]
  • Mello UT, Karner GD, Anderson RN. 1995. Role of salt in restraining the maturation of subsalt source rocks. Marine and Petroleum Geology 12(7): 697–716. [CrossRef] [Google Scholar]
  • Naehr TH, Rodriguez NM, Bohrmann G, Paull CK, Botz R. 2000. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP, eds. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX: ODP, 164, pp. 1–16. [Google Scholar]
  • Paull CK, Chanton JP, Neumann AC, Coston JA, Martens CS. 1992. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida escarpment. In: Beauchamp B, Von Bitter P, eds. Chemosynthesis: Geological Processes and Products. − Soc. Econ. Paleontol. Mineral, pp. 361–375. [Google Scholar]
  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, et al. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–50. [CrossRef] [Google Scholar]
  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences 88: 60–75. [CrossRef] [Google Scholar]
  • Pellenard P, Deconinck JF, Huff WD, Thierry J, Marchand D, Trouiller A. 2003. Characterisation and correlation of Upper Jurassic (Oxfordian) bentonite deposits of the Paris Basin and the South-Eastern Basin of France. Sedimentology 50(6): 1035–1060. [CrossRef] [Google Scholar]
  • Perthuisot V, Guilhaumou N. 1983. Les diapirs triasiques du domaine vocontien: phases diapiriques et hydrothermales en domaine périalpin. Bull. Soc. Geol Fr. XXV: 397–410 [CrossRef] [Google Scholar]
  • Pin C, Briot D, Bassin C, Poitrasson F. 1994. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta 298(2): 209–217. [CrossRef] [Google Scholar]
  • Ranalli G, Rybach L. 2005. Heat flow, heat transfer and lithosphere rheology in geothermal areas: features and examples. Journal of Volcanology and Geothermal Research 148: 3–19. [CrossRef] [Google Scholar]
  • Richard P, Shimizu N, Allegre CJ. 1976. 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31: 269–278. [CrossRef] [Google Scholar]
  • Roberts HH, Aharon P, Walsh MM. 1993. Cold-seep carbonates of the Louisiana continental slope-to-basin floor. In: Rezak R, Lavoie DL, eds. Carbonate microfabrics. Springer-Verlagp, p. 95–104. [CrossRef] [Google Scholar]
  • Rolin Y, Gaillard C, Roux M. 1990. Écologie des pseudobiohermes des Terres Noires jurassiques liés à des paléo-sources sous-marines. Le site oxfordien de Beauvoisin (Drôme, Bassin du Sud-Est, France). Paleogeography, Palaeoclimatology, Palaeoecology 80: 79–105. [CrossRef] [Google Scholar]
  • Rolin Y. 1987. Gisements fossilifères liés à des sources sous-marines dans le bassin des Terres Noires : le site oxfordien de Beauvoisin (Drôme, Chaînes subalpines méridionales), comparaison avec les sites océaniques actuels. Thèse de doctorat. Lyon, 128 p. [Google Scholar]
  • Roure F, Brun JP, Colletta B, Vially R. 1994. Multiphase extensional structures, fault reactivation and petroleum plays in the alpine foreland basin of southeastern France. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France, Special publication. New York: Springer Verlag, pp. 245–248. [CrossRef] [Google Scholar]
  • Senowbari-Daryan B, Gaillard C, Peckmann J. 2007. Crustacean microprolites from Jurassic (Oxfordian) hydrocarbon-seep deposits of Beauvoisin, southeastern France. Facies 53: 229–238. [CrossRef] [Google Scholar]
  • Teichert BMA, van de Schootbrugge B, eds. 2013. Tracing Phanerozoic hydrocarbon seepage from local basins to the global Earth system. Elsevier. [Google Scholar]
  • Teichert BMA, Bohrmann G, Suess E. 2005. Chemoherms on Hydrate Ridge − Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 67–85. [CrossRef] [Google Scholar]
  • Touray JC, Barlier L. 1975. Liquid and gaseous hydrocarbon inclusions in quartz monocrystals from Terres noires and ’Flysch a helminthoides’ (French Alps). Fortschr Mineral 52: 419–426. [Google Scholar]
  • Tran TH, Kato K, Wada H, Fujioka K, Matsuzaki H. 2014. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: evidence from geochemistry and carbon, oxygen, and strontium isotopes. Journal of Geochemical Exploration 137: 55–64. [CrossRef] [Google Scholar]
  • Tribovillard N, Armynot du Châtelet E, Gay A, Barbecot F, Sansjofre P, Potdevin J-L. 2013. Geochemistry of cold seepage-impacted sediments: per-ascensum or per-descensum trace metal enrichment? Chemical Geology 340: 1–12. [CrossRef] [Google Scholar]
  • Tribovillard N-P., Cotillon P, Espitalié J. 1987. Relation entre venues salines par tectonique salifère et sédimentation, mise en évidence par l’étude de la matière organique. Le cas des Terres Noires jurassiques du bassin dauphinois (SE de la France). C. R. Acad. Sci., Paris 305(II): 23–26. [Google Scholar]
  • Vanneste H, Kastner M, James RH, Connelly DG, Fisher RE, Kelly-Gerreyn BA, et al. 2012. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: a record of palaeo-seepage of hydrocarbon bearing fluids. Chemical Geology 300–301: 24–39. [CrossRef] [Google Scholar]
  • Vrijenhoeck RC. 2013. On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Research II 92: 189–200. [CrossRef] [Google Scholar]
  • Wierzbowski H, Anczkiewicz R, Pawlak J, Rogov MA, Kuznetsov AB. 2017. Revised Middle-Upper Jurassic strontium isotope stratigraphy. Chemical Geology 466: 239–255. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.