Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Numéro d'article 26
Nombre de pages 35
DOI https://doi.org/10.1051/bsgf/2021015
Publié en ligne 28 avril 2021
  • Acosta-Vigil A, Rubatto D, Bartoli O, Cesare B, Meli S, Pedrera A, et al. 2014. Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 210–211: 147–167. https://doi.org/10.1016/j.lithos.2014.08.018. [CrossRef] [Google Scholar]
  • Afiri A, Gueydan F, Pitra P, Essaifi A, Précigout J. 2011. Oligo-Miocene exhumation of the Beni-Bousera peridotite through a lithosphere-scale extensional shear zone. Geodinamica Acta 24: 49–60. https://doi.org/10.3166/ga.24.49-60. [CrossRef] [Google Scholar]
  • Allmendinger RW, Cardozo NC, Fisher D. 2013, Structural Geology Algorithms: Vectors & Tensors. Cambridge, England: Cambridge University Press, 289 p. [Google Scholar]
  • Álvarez-Valero AM, Jagoutz O, Stanley J, Manthei C, El Maz A, Moukadiri A, et al. 2014. Crustal attenuation as a tracer for the emplacement of the Beni Bousera ultramafic massif (Betico-Rifean belt). Geol Soc Am Bull 126: 1614–1624. https://doi.org/10.1130/B31040.1. [CrossRef] [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for W-Tethys/N-Atlantic kinematics since the late Permian-Triassic. Solid Earth Discussions 1–24. https://doi.org/10.5194/se-2020-24. [Google Scholar]
  • Anovitz LM, Essene EJ. 1967. Phase equilibria in the system CaCO3–MgCO3–FeCO3. Journal of Petrology 28: 389–414. [CrossRef] [Google Scholar]
  • Arenas R, Sánchez Martínez S, Albert R, Haissen F, Fernández-Suárez J, Pujol-Solà N, et al. 2020. 100 Ma cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic to Devonian ophiolites from the NW African-Iberian margin of Gondwana and the Variscan Orogen. Geol Soc Lond Spec Publ. https://doi.org/10.1144/SP503-2020-3. [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo-passive margin, western Pyrenees (France). Tectonics 38: 1666–1693. https://doi.org/10.1029/2018TC005428. [CrossRef] [Google Scholar]
  • Augier R, Jolivet L, Robin C. 2005. Late Orogenic doming in the eastern Betic Cordilleras: Final exhumation of the Nevado-Filabride complex and its relation to basin genesis. Tectonics 24: 1–19. https://doi.org/10.1029/2004TC001687. [CrossRef] [Google Scholar]
  • Azambre B, Ravier J. 1978. Les écailles de gneiss du faciès granulite du Port de Saleix et de la région de Lherz (Ariège), nouveaux témoins du socle profond des Pyrénées. Bull Soc Géol Fr 20(3): 221–228. [Google Scholar]
  • Balanyá JC, García-Dueñas V, Azañón JM, Sánchez-Gómez M. 1997. Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc). Tectonics 16: 226–238. https://doi.org/10.1029/96TC03871. [CrossRef] [Google Scholar]
  • Balestro G, Festa A, Dilek Y. 2019. Structural architecture of the western alpine ophiolites, and the Jurassic seafloor spreading tectonics of the alpine Tethys. Journal of the Geological Society 176: 913–930. https://doi.org/10.1144/jgs2018-099. [CrossRef] [Google Scholar]
  • Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM. 2012. Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21: 1019–1036. [CrossRef] [Google Scholar]
  • Barich A, Acosta-Vigil A, Garrido CJ, Cesare B, Tajčmanová L, Bartoli O. 2014. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): implications for crustal anatexis. Lithos 206–207: 303–320. [CrossRef] [Google Scholar]
  • Baudelot S, Bouhdadi S, Durand-Delga M. 1984. Datation palynologique du Trias moyen au sein des grès rouges « permo-triasiques » des environs de Tétouan (Rif septentrional, Maroc). C R Acad Sci Paris 299: 1061–1068. [Google Scholar]
  • Bea F, Montero P, Talavera C, Abu Anbar M, Scarrow JA, Molina JF, et al. 2010. The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova 22: 341–346. [CrossRef] [Google Scholar]
  • Beltrando M, Zibra I, Montanini A, Tribuzio R. 2013. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition? Lithos 168–169: 99–112. https://doi.org/10.1016/j.lithos.2013.01.017. [CrossRef] [Google Scholar]
  • Benzaggagh M, Mokhtari A, Rossi P, Michard A, El Maz A, Chalouan A, et al. 2014. Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants? Journal of Geodynamics 77: 4–21. https://doi.org/10.1016/j.jog.2013.10.003. [CrossRef] [Google Scholar]
  • Berman RG. 1988. Internally-consistent thermodynamic data for minerals in the system: Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology 29: 445–522. [CrossRef] [Google Scholar]
  • Bessière E. 2019. Évolution géodynamique des Zones Internes des Cordillères Bétiques (Andalousie, Espagne) : Apports d’une étude pluridisciplinaire du Complexe Alpujárride. Orléans: Sci. Terre, Univ. https://tel.archives-ouvertes.fr/tel-02392008. [Google Scholar]
  • Bianchi GW, Pastorelli S, Martinotti G, Michard A, Piccardo G. 2003.Uplift of subcontinental lithospheric mantle during pre-oceanic rifting: The Geisspfad Complex, an example from the Western Alps. In: Third Intern. Coll. “3 Ma”. Univ. Hassan II Casablanca, Abstr. vol. and Poster. [Google Scholar]
  • Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H. 2001. Radiolarite ages in Alpine-Mediterranean ophiolites: Constraints on the oceanic spreading and the Tethys-Atlantic connection. Bulletin of the Geological Society of America 113: 129–143. https://doi.org/10.1130/0016-7606(2001)113<0129:RAIAMO>2.0.CO;2. [CrossRef] [Google Scholar]
  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, et al. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205: 115–140. [CrossRef] [Google Scholar]
  • Bosch D, Hammor D, Mechati M, Fernandez L, Bruguier O, Caby R, et al. 2014. Geochemical study (major, trace elements and Pb-Sr-Nd isotopes) of mantle material obducted onto the North African margin (Edough Massif, North Eastern Algeria): Tethys fragments or lost remnants of the Liguro-Provençal basin? Tectonophysics 626: 53–68. https://doi.org/10.1016/j.tecto.2014.03.031. [CrossRef] [Google Scholar]
  • Bouillin JP. 1978. La transversale de Collo et d’El Milia (Petite Kabylie) : une région-clef pour l’interprétation de la tectonique alpine de la chaîne littorale d’Algérie. Mém Soc Géol Fr (n.s.) 57(135): 84 p. [Google Scholar]
  • Bouillin JP. 1986. Le « bassin maghrébin » : une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes. Bull Soc Géol Fr 8(2): 547–558. [CrossRef] [Google Scholar]
  • Bouillin JP, Bellomo D. 1990. Les filons sédimentaires jurassiques de Longobucco-Calaveto (Calabre, Italie); application à l’étude des paléostructures d’une marge téthysienne. Geodinamica Acta 4: 111–120. https://doi.org/10.1080/09853111.1990.11105203. [CrossRef] [Google Scholar]
  • Bouillin JP, Durand-Delga M, Olivier P. 1986. Betic-Rifian and Tyrrhenian Arcs: distinctive features, genesis and development stages. In: Wezel JF, ed. The Origin of Arcs. Amsterdam: Elsevier Publ, pp. 281–304. https://doi.org/10.1016/B978-0-444-42688-8.50017-5. [CrossRef] [Google Scholar]
  • Bouybaouene ML. 1993. Étude pétrologiques des métapélites des Sebtides supérieures, Rif interne, Maroc. PhD thesis. Rabat: Univ. Mohamed V, 160 p. [Google Scholar]
  • Bouybaouene ML, Goffé B, Michard A. 1995. High pressure, low-temperature metamorphism in the Sebtides nappes, northern Rif, Morocco. Geogaceta 17: 117–119. [Google Scholar]
  • Bouybaouene ML, Goffé B, Michard A. 1998. High-pressure granulites on top of the Beni Bousera peridotites, Rif belt, Morocco: A record of an ancient thickened crust in the Alboran Domain. Bull Soc Géol Fr 169: 153–162. [Google Scholar]
  • Bradley DC, O’Sullivan P, Cosca MA, Motts HA, Horton JD, Taylor CD, et al. 2015. Synthesis of geological, structural, and geochronologic data (Phase V, Deliverable 53). In: Taylor CD, ed. Second Projet de Renforcement Institutionnel du Secteur Minier de la République Islamique de Mauritanie (PRISM-II). U.S. Geological Survey Open-File Report 2013-12080-A, chapter A, pp. 328. [Google Scholar]
  • Brodie KH, Vavra Rex D, Rutter EH. 1989. On the age of deep crustal extensional faulting in the Ivrea Zone, northern Italy. InCoward MP, Dietrich D, Frank RG, eds. Alpine tectonics. Geol Soc Lond Spec Publ 45: 1–29. [CrossRef] [Google Scholar]
  • Bucher K, Grapes R. 2011. Metamorphism of dolomites and limestones. Chapter 6 in Petrogenesis of Metamorphic Rocks, 8th ed. Berlin: Springer Verlag, pp. 225–255. [CrossRef] [Google Scholar]
  • Cardozo N, Allmendinger RW. 2013. Spherical projections with OSXStereonet. Computers & Geosciences 51: 193–205. https://doi.org/10.1016/j.cageo.2012.07.021. [CrossRef] [Google Scholar]
  • Castelli D, Rolfo F, Groppo C, Compagnoni R. 2007. Impure marbles from the UHP Brossasco-Isasca Unit (Dora-Maira Massif, western Alps): evidence for Alpine equilibration in the diamond stability field and evaluation of the X(CO2) fluid evolution. J Metamorphic Geol 25: 587–603. [CrossRef] [Google Scholar]
  • Cattaneo G, Gélard JP, Aïte MO, Mouterde R. 1999. La marge septentrionale de la Téthys maghrébine au Jurassique (Djurdjura et Chellata, Grande Kabylie, Algérie). Bull Soc Géol Fr 170: 173–188. [Google Scholar]
  • Chalouan A, Michard A. 1990. The Ghomarides nappes, Rif coastal ranges, Morocco: A Variscan chip in the Alpine belt. Tectonics 9: 1565–1583. https://doi.org/10.1029/TC009i006p01565. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A. 2004. The Alpine Rif Belt (Morocco): a case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl Geophys 161: 489–519. https://doi.org/10.1007/s00024-003-2460-7. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A, El Kadiri KH, Negro F, Frizon de Lamotte D, Soto JI, et al. 2008. The Rif belt, in Continental Evolution: The Geology of Morocco; Structure, Stratigraphy and Tectonics of the Africa–Atlantic–Mediterranean Triple Junction, edited by Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D. Lect. Notes Earth Sci 116: 203–302. [Google Scholar]
  • Chenin P, Manatschal G, Decarlis A, Schmalholz SM, Duretz T, Beltrando M. 2019. Emersion of Distal Domains in Advanced Stages of Continental Rifting Explained by Asynchronous Crust and Mantle Necking. Geochemistry, Geophysics, Geosystems 20: 3821–3840. https://doi.org/10.1029/2019GC008357. [CrossRef] [Google Scholar]
  • Chetouani K, Bodinier J-L, Garrido CJ, Marchesi C, Amri I, Targuisti K. 2016. Spatial variability of pyroxenite layers in the Beni Bousera orogenic peridotite (Morocco) and implications for their origin. C R Geosci 348: 619–629. [CrossRef] [Google Scholar]
  • Chopin F, Corsini M, Schulmann K, El Houicha M, Ghienne J-F, Edel J-B. 2014. Tectonic evolution of the Rehamna metamorphic dome (Morocco) in the context of the Alleghanian-Variscan orogeny. Tectonics 33: 1154–1177. https://doi.org/10.1002/2014TC003539. [CrossRef] [Google Scholar]
  • Claoué-Long JC, Compston W, Roberts J, Fanning CM. 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis, in: Geochronology, Time Scales, and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Spec Publ 4: 3–21. [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y. 2015. Reply to comment by P. Olivier on “Thermal control on the modes of crustal thinning leading to mantle exhumation: Insight from the Cretaceous Pyrenean hot paleomargins”. Tectonics 34: 2275–2278. https://doi.org/10.1002/2015TC003879. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleo-margin. Solid Earth 6: 643–668. https://doi.org/10.5194/se-6-643-2015. [CrossRef] [Google Scholar]
  • Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the western Betic flyschs: implications for the geodynamics of South Iberian margin and Alboran Domain. Tectonics 39. https://doi.org/10.1029/2020TC006093. [CrossRef] [Google Scholar]
  • Davies GR, Nixon PH, Pearson DG, Obata M. 1993. Tectonic implications of graphitized diamonds from the Ronda peridotite massif, southern Spain. Geology 21: 471–474. https://doi.org/10.1130/0091-7613(1993)021<0471:TIOGDF>2.3.CO;2. [CrossRef] [Google Scholar]
  • de Capitani C, Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95: 1006–1016. [CrossRef] [Google Scholar]
  • Decarlis A, Fellin MG, Maino M, Ferrando S, Manatschal G, Gaggero L, et al. 2017. Tectonothermal evolution of a distal rifted margin: Constraints from the Calizzano massif (Prepiedmont-Briançonnais domain, Ligurian Alps). Tectonics 36. https://doi.org/10.1002/2017TC004634. [Google Scholar]
  • Dercourt J, Zonenshain LP, Ricou LE, et al. 1986. Présentation de 9 cartes paléogéographiques au 1/20.000.000 s’étendant de l’Atlantique au Pamir pour la période du Lias a l’Actuel. Bull Soc Géol Fr 8(1): 637–652. [Google Scholar]
  • Didon J, Durand Delga M, Kornprobst J. 1973. Homologies géologiques entre les deux rives du détroit de Gibraltar. Bull Soc Géol Fr 7(15): 77–105. [CrossRef] [Google Scholar]
  • Díez-Fernández R, Arenas R, Pereira MF, Sanchez Martinez S, Albert R, Martin Parra L, et al. 2016. Tectonic evolutionof Variscan Iberia: Gondwana-Laurussia collision revisited. Earth Sci Rev 162: 269–292. [CrossRef] [Google Scholar]
  • Durand-Delga M, Kornprobst J. 1963. Esquisse géologique de la région de Ceuta (Maroc). C R Somm Séances Soc Géol Fr. https://doi.org/10.2113/gssgfbull.S7-V.7.1049. [Google Scholar]
  • Durand-Delga M. 2006. Geological adventures and misadventures of the Gibraltar Arc. Z Deuts Gesel Geowiss 157: 687–716. [Google Scholar]
  • Durand-Delga M, Esteras Martín M, Olivier P. 2007. Los “Taríquides” (Arco de Gibraltar): Problemas estructurales, paleogeográficos y consideración histórica. Rev Soc Geol España 20: 119–134. [Google Scholar]
  • Ebert A, Herwegh M, Pfiffner A. 2007. Cooling induced strain localization in carbonate mylonites within a large-scale shear zone (Glarus thrust, Switzerland). Journal of Structural Geology 29: 1164–1184. https://doi.org/10.1016/j.jsg.2007.03.007. [CrossRef] [Google Scholar]
  • El Atrassi F, Brunet F, Bouybaouene M, Chopin C, Chazot G. 2011. Melting textures and microdiamonds preserved in graphite pseudomorphs from the Beni Bousera peridotite massif, Morocco. European Journal of Mineralogy 23: 157–168. https://doi.org/10.1127/0935-1221/2011/0023-2094. [CrossRef] [Google Scholar]
  • Elbaghdadi M, Tabit A, Kornprobst J, Duthou JL. 1996. Les injections acides dans le massif des Beni Bousera et son enveloppe métamorphique: conséquence sur l’évolution du métamorphisme et la cinématique. Notes et Mémoires du Service géologique du Maroc 387: 33–44. [Google Scholar]
  • El Bakili A, Corsini M, Chalouan A, Münch P, Romagny A, Lardeaux JM, et al. 2020. Neogene polyphase deformation related to the Alboran basin evolution: new insights for the Beni Bousera massif (Internal Rif, Morocco). BSGF-Earth Sci Bull 191: 10. https://doi.org/10.1051/bsgf/2020008. [CrossRef] [Google Scholar]
  • El Hadi H, Simancas JF, Tahiri A, González-Lodeiro F, Azor A, Martínez-Poyatos D. 2006. Comparative review of the Variscan granitoids of Morocco and Iberia: Proposal of a broad zonation. Geodinamica Acta 19: 103–116. https://doi.org/10.3166/ga.19.103-116. [CrossRef] [Google Scholar]
  • El Hatimi N, Duée G, Hervouët Y. 1991. La dorsale calcaire du Haouz: ancienne marge continentale passive téthysienne (Rif, Maroc). Bull Soc Géol Fr 162: 79–90. [CrossRef] [Google Scholar]
  • El Kadiri KH, Linares A, Oloriz F. 1992. La Dorsale calcaire rifaine (Maroc septentrional) : évolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes Mém Serv Géol Maroc 336: 217–265. [Google Scholar]
  • El Kadiri KH. 2000–2002a. Jurassic ferruginous hardgrounds from the “Dorsale Calcaire” and the Jbel Moussa Group (internal Rif, Morocco) stratigraphical context and paleoceanographic consequences of mineralization processes. Geologica Romana 36: 33–70. [Google Scholar]
  • El Kadiri KH. 2000–2002b. “ Tectono-Eustatic Sequences” of the Jurassic successions from the Dorsale Calcaire (internal Rif, Morocco): evidence from a eustatic and tectonic scenario. Geologica Romana 36: 71–104. [Google Scholar]
  • El Kadiri KH, Chalouan A, El Mrihi A, Hlila R, López-Garrido A, Sanz de Galdeano C, et al. 2001. Les formations sédimentaires de l’Oligocène supérieur-Miocène inférieur dans l’unité ghomaride des Beni-Hozmar (secteur de Talembote, Rif septentrional, Maroc). Eclogae Geol Helv 94: 313–320. [Google Scholar]
  • El Kadiri K, Hlila R, Sanz de Galdeano C, López-Garrido AC, Chalouan A, Serrano F, et al. 2006. Regional correlations across the Internides-Externides front (northwestern Rif Belt, Morocco) during the Late Cretaceous − Early Burdigalian times: Palaeogeographical and palaeotectonic implications. Geological Society Special Publication 262: 193–215. https://doi.org/10.1144/GSL.SP.2006.262.01.12. [CrossRef] [Google Scholar]
  • El Kadiri KH, Horstemeyer MF, El Kadiri H, Pessagno EA. 2009. Jurassic radiolarite pulses from the Dorsale Calcaire (internal Rif, Morocco): A clue for correlating and interpreting the Tethyan radiolarites. Stratigraphy 6: 277–312. [Google Scholar]
  • Ellis DE. 1978. Stability and phase equilibria of chloride and carbonate bearing scapolites at 750 °C and 4000 bar. Geochimica Cosmochimica Acta 42: 1271–1281. [CrossRef] [Google Scholar]
  • El Maz A, Guiraud F. 2001. Example of low-variance parageneses in the metapelite of Filali (inner Rif, Morocco): Description, interpretation and geodynamic implication. Bull Soc Géol Fr 172: 469–485. https://doi.org/10.2113/172.4.469. [CrossRef] [Google Scholar]
  • Elter G, Elter P, Sturani C, Weidmann M. 1966. Sur la prolongation du domaine ligure de l’Apennin dans le Monferrat et les Alpes et sur l’origine de la Nappe de la Simme s.l. des Préalpes romandes et chablaisiennes. Archives Sci (Genève) 19: 279–377. [Google Scholar]
  • Esteban JJ, Cuevas J, Vegas N, Tubía JM. 2008. Deformation and kinematics in a melt-bearing shear zone from the Western Betic Cordilleras (Southern Spain). Journal of Structural Geology 30: 380–393. https://doi.org/10.1016/j.jsg.2007.11.010. [CrossRef] [Google Scholar]
  • Favre P. 1992. Géologie des massifs calcaires situés au front sud de l’unité de Kétama (Rif, Maroc). Publ Départ Géol Paléont Univ Genève 11–138. [Google Scholar]
  • Ferrando S, Bernoulli D, Compagnoni R. 2004. The Canavese zone (internal Western Alps): A distal margin of Adria. Schweizerische Mineralogische und Petrographische Mitteilungen 84: 237–256. [Google Scholar]
  • Ferry JM. 1996. Three novel isograds in metamorphosed siliceous dolomites from the Ballachulish aureole, Scotland. American Mineralogist 81: 485–494. [CrossRef] [Google Scholar]
  • Ferry JM. 2001. Calcite inclusions in forsterite. American Mineralogist 86: 773–779. [CrossRef] [Google Scholar]
  • Ferry JM, Newton RC, Manning CE. 2002. Experimental determination of the equilibria: rutile + magnesite = geikielite + CO2 and zircon + 2 magnesite = baddeleyite + forsterite + 2 CO2. American Mineralogist 87: 1342–1350. [CrossRef] [Google Scholar]
  • Festa A, Balestro G, Borghi A, De Caroli S, Succo A. 2020. The role of structural inheritance in continental break-up and exhumation of Alpine Tethyan mantle (Canavese Zone, Western Alps). Geoscience Frontiers 11: 167–188. https://doi.org/10.1016/j.gsf.2018.11.007. [CrossRef] [Google Scholar]
  • Frets EC, Tommasi A, Garrido CJ, Vauchez A, Mainprice D, Targuisti K, et al. 2014. The Beni Bousera Peridotite (Rif Belt, Morocco): an oblique-slip low-angle shear zone thinning the subcontinental mantle lithosphere. J Petrol 55: 283–313. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Saint Bezar B, Bracene R. 2000. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19: 740–761. https://doi.org/10.1029/2000TC900003. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau J-C, Blanpied C, Ringenbach JC. 2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 30: TC3002. https://doi.org/10.1029/2010TC002691. [CrossRef] [Google Scholar]
  • Galindo-Zaldivar J, Braga JC, et al. 2019. Extension in the Western Mediterranean. In: Quesada C, Oliveira JT, eds. The Geology of Iberia: A Geodynamic Approach. Springer Nature, pp. 61–103. [CrossRef] [Google Scholar]
  • García-Arias M, Díez-Montes A, Villaseca C, Blanco-Quintero IF. 2018. The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: A review. Earth-Science Reviews 176: 345–372. https://doi.org/10.1016/j.earscirev.2017.11.004. [CrossRef] [Google Scholar]
  • Garrido CJ, Gueydan F, Booth-Rea G, Precigout J, Hidas K, Padrón-Navarta JA, et al. 2011. Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology 39: 927–930. https://doi.org/10.1130/G31760.1. [CrossRef] [Google Scholar]
  • Gervilla F, González-Jiménez JM, Hidas K, Marchesi C, Piña R. 2019. Geology and metallogeny of the upper mantle rocks from the Serranía de Ronda. Soc Esp Miner Granada Univ: 122 p. [Google Scholar]
  • Gimeno-Vives O, Mohn G, Bosse V, Haissen F, Zaghloul MN, Atouabat A, et al. 2019. The Mesozoic margin of the Maghrebian Tethys in the Rif belt (Morocco): Evidence for polyphase rifting and related magmatic activity. Tectonics 38. https://doi.org/10.1029/2019TC005508. [Google Scholar]
  • Guerrera F, Martin-Algarra A, Perrone V. 1993. Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 5: 525–544. https://doi.org/10.1111/j.1365-3121.1993.tb00302.x. [CrossRef] [Google Scholar]
  • Guerrera F, Martín-Martín M, Tramontana M. 2019. Evolutionary geological models of the central-western peri-Mediterranean chains: a review. International Geology Review 00: 1–22. https://doi.org/10.1080/00206814.2019.1706056. [Google Scholar]
  • Gueydan F, Mazzotti S, Tiberi C, Cavin R, Villaseñor A. 2019. Western Mediterranean Subcontinental Mantle Emplacement by Continental Margin Obduction. Tectonics 38: 2142–2157. https://doi.org/10.1029/2018TC005058. [CrossRef] [Google Scholar]
  • Gueydan F, Pitra P, Afiri A, Poujol M, Essaifi A, Paquette JL. 2015. Oligo-Miocene thinning of the Beni Bousera peridotites and their Variscan crustal host rocks, Internal Rif, Morocco. Tectonics 34: 1244–1268. https://doi.org/10.1002/2014TC003769. [CrossRef] [Google Scholar]
  • Gysi AP, Jagoutz O, Schmidt M, Targuisti K. 2011. Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Bousera, northern Morocco. Journal of Petrology 52: 1679–1735. https://doi.org/10.1093/petrology/egr026. [CrossRef] [Google Scholar]
  • Haissen F, Garcia-Casco A, Torres-Roldan R, Aghzer A. 2004. Decompression reactions and P-T conditions in high-pressure granulites from Casares-Los Reales units of the Betic-Rif belt (S Spain and N Morocco). Journal of African Earth Sciences 39: 375–383. https://doi.org/10.1016/j.jafrearsci.2004.07.030. [CrossRef] [Google Scholar]
  • Handy MR, Zingg A. 1991. The tectonic and rheological evolution of an attenuated cross section of the continental crust: Ivrea crustal section, southern Alps, northwestern Italy and southern Switzerland. Geological Society of America Bulletin 103: 236–253. https://doi.org/10.1130/0016-7606(1991)103<0236:TTAREO>2.3.CO;2. [CrossRef] [Google Scholar]
  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102: 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002. [Google Scholar]
  • Handy MR, Ustaszewski K, Kissling E. 2015. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. International Journal of Earth Sciences 104: 1–26. https://doi.org/10.1007/s00531-014-1060-3. [CrossRef] [Google Scholar]
  • Hidas K, Varas-Reus MI, Garrido CJ, Marchesi C, Acosta-Vigil A, Padrón-Navarta JA, et al. 2015. Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean. Tectonophysics 650: 65–79. https://doi.org/10.1016/j.tecto.2015.03.011. [CrossRef] [Google Scholar]
  • Homonnay E, Corsini M, Lardeaux JM, Romagny A, Münch P, Bosch D, et al. 2018. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran Domain. Tectonophysics 722: 507–535. https://doi.org/10.1016/j.tecto.2017.11.028. [CrossRef] [Google Scholar]
  • Ikenne M, Souhassou M, Arai S, Soulaimani A. 2017. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton. J Afr Earth Sci 127: 3–15. [CrossRef] [Google Scholar]
  • Incerpi N, Martire L, Manatschal G, Bernasconi SM. 2017. Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss Journal of Geosciences 110: 439–456. https://doi.org/10.1007/s00015-016-0235-2. [CrossRef] [Google Scholar]
  • Jabaloy Sánchez A, Martín-Algarra A, Padrón-Navarta JA, Martín-Martín M, Gómez-Pugnaire MT, López Sánchez-Vizcaíno V, et al. 2019a. Lithological Successions of the Internal Zones and Flysch Trough Units of the Betic Chain. In: Quesada C, Oliveira JT, eds. The Geology of Iberia: A Geodynamic Approach. Springer Nature ed., pp. 377–432. https://doi.org/10.1007/978-3-030-11295-0_8. [CrossRef] [Google Scholar]
  • Jabaloy Sánchez A, Padrón-Navarta JA, Gómez-Pugnaire MT, López Sánchez-Vizcaíno V, Garrido CJ. 2019b. Alpine Orogeny: Deformation and Structure in the Southern Iberian Margin (Beticss.l.). In: Quesada C, Oliveira JT, eds. The Geology of Iberia: A Geodynamic Approach. Springer Nature ed., pp. 453–486. https://doi.org/10.1007/978-3-030-11295-0_10. [CrossRef] [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28: TC4012. https://doi.org/10.1029/2008TC002406. [CrossRef] [Google Scholar]
  • Janots E, Negro F, Brunet F, Goffé B, Engi M, Bouybaouène ML. 2006. Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos 87: 214–234. https://doi.org/10.1016/j.lithos.2005.06.008. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Piromallo C. 2009. From mantle to crust: Stretching the Mediterranean. Earth and Planetary Science Letters 285: 198–209. https://doi.org/10.1016/j.epsl.2009.06.017. [CrossRef] [Google Scholar]
  • Kornprobst J. 1974. Contribution à l’étude pétrographique et structurale de la Zone interne du Rif (Maroc septentrional). Notes Mém Serv Géol Maroc 251: 1–256. [Google Scholar]
  • Kornprobst J, Vielzeuf D. 1984. Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations. Kimberlites II: The Mantle and Crust-Mantle Relationships (Developments in Petrology, Volume 11B). Amsterdam: Elsevier, pp. 347–359. https://doi.org/10.1016/b978-0-444-42274-3.50035-4. [Google Scholar]
  • Labails C, Olivet JL, Aslanian D, Roest WR. 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297: 355–368. https://doi.org/10.1016/j.epsl.2010.06.024. [CrossRef] [Google Scholar]
  • Lafosse M, D’Acremont E, Rabaute A, et al. 2019. Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth Discussions 1–39. https://doi.org/10.5194/se-2019-122. [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019a. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, northwestern Pyrenees, France). BSGF − Earth Sciences Bulletin 190: 8. https://doi.org/10.1051/bsgf/2019007. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019b. Mantle exhumation at magma-poor passive continental margins. Part II. Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). https://doi.org/10.1051/bsgf/2019013. [Google Scholar]
  • Leprêtre R, De Lamotte DF, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF − Earth Sciences Bulletin 189. https://doi.org/10.1051/bsgf/2018009. [Google Scholar]
  • Li B, Massonne HJ. 2018. Two Tertiary metamorphic events recognized in high-pressure metapelites of the Nevado-Filábride Complex (Betic Cordillera, S Spain). J Metam Geol 36: 603–630. [CrossRef] [Google Scholar]
  • Liati A. 1988. Corundum- and zoisite-bearing marbles in the Rhodope Zone, Xanthi area (N. Greece): Estimation of the fluid phase composition. Mineralogy and Petrology 38: 53–60. [CrossRef] [Google Scholar]
  • Lonergan L, White N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16: 504–522. https://doi.org/10.1029/96TC03937. [CrossRef] [Google Scholar]
  • Loomis TH. 1972. Diapiric emplacement of the Ronda high-temperature ultramafic intrusion, southern Spain. Geol Soc Am Bull 83: 2475–2496. https://doi.org/10.1130/0016-7606(1972)83[2475:DEOTRH]2.0.CO;2. [CrossRef] [Google Scholar]
  • Lundeen MT. 1978. Emplacement of the Ronda peridotite, Sierra Bermeja, Spain. Geological Society of America Bull 89: 172–180. https://doi.org/10.1130/0016-7606(1978)89<172:EOTRPS>2.0.CO;2. [CrossRef] [Google Scholar]
  • Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences 93: 432–466. https://doi.org/10.1007/s00531-004-0394-7. [CrossRef] [Google Scholar]
  • Marrone S, Monié P, Rossetti F, Lucci F, Theye T, Bouybaouene ML, Zaghloul MN. 2020. The Pressure-Temperature-time-deformation history of the Beni Mzala unit (Upper Sebtides, Rif belt, Morocco): Refining the Alpine tectono-metamorphic evolution of the Alboran Domain of the Western Mediterranean. J Metam Geol. https://doi.org/10.1111/jmg.12587. [Google Scholar]
  • Martín-Martín M, Martín-Rojas I, Caracuel JE, Estévez-Rubio A, Algarra AM, Sandoval J. 2006. Tectonic framework and extensional pattern of the Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic − Cretaceous: Implications for the Westernmost Tethys geodynamic evolution. International Journal of Earth Sciences 95: 815–826. https://doi.org/10.1007/s00531-005-0061-7. [CrossRef] [Google Scholar]
  • Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace A, Perrone V, et al. 2009. Triassic continental rifting of Pangaea: Direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. Journal of the Geological Society 166: 447–458. https://doi.org/10.1144/0016-76492008-091. [CrossRef] [Google Scholar]
  • Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace A, Zamparelli V. 2012. The Triassic platform of the Gador-Turon unit (Alpujarride complex, Betic Cordillera, southeast Spain): Climate versus tectonic factors controlling platform architecture. Facies 58: 297–323. https://doi.org/10.1007/s10347-011-0275-z. [CrossRef] [Google Scholar]
  • Massonne H-J. 2014. Wealth of P-T-t information in medium-high grade metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos 208–209: 137–157. https://doi.org/10.1016/j.lithos.2014.08.027. [CrossRef] [Google Scholar]
  • Mazzoli S, Martín Algarra A. 2011. Deformation partitioning during transpressional emplacement of a “mantle extrusion wedge”: The Ronda peridotites, Western Betic Cordillera, Spain. Journal of the Geological Society 168: 373–382. https://doi.org/10.1144/0016-76492010-126. [CrossRef] [Google Scholar]
  • Mazzoli S, Martín-Algarra A, Reddy SM, Sánchez-Vizcaíno VL, Fedele L, Noviello A. 2013. The evolution of the footwall to the Ronda subcontinental mantle peridotites: Insights from the Nieves unit (western Betic Cordillera). Journal of the Geological Society 170: 385–402. https://doi.org/10.1144/jgs2012-105. [CrossRef] [Google Scholar]
  • Melchiorre M, Álvarez-Valero AM, Vergés J, Fernàndez M, Belousova EA, El Maz A, et al. 2017. In situ U-Pb zircon geochronology on metapelitic granulites of Beni Bousera (Betic-Rif system, N Morocco). In: Bianchini G, Bodinier JL, Braga R, Wilson M, eds. The Crust-Mantle and Lithosphere-Asthenosphere Boundaries: Insights from Xenoliths, Orogenic Deep Sections, and Geophysical Studies. Geol Soc Am Spec Pap 526: 151–171. [Google Scholar]
  • Michard A, Goffé B, Chalouan A, Saddiqi O. 1991. Les corrélations entre les chaînes bético-rifaines et les Alpes et leurs conséquences. Bull Soc Géol Fr 162: 1151–1160. [Google Scholar]
  • Michard A, Goffé B, Bouybaouene ML, Saddiqi O. 1997. Late Hercynian-Mesozoic thinning in the Alboran Domain: Metamorphic data from the northern Rif, Morocco. Terra Nova 9: 171–174. https://doi.org/10.1046/j.1365-3121.1997.d01-24.x. [CrossRef] [Google Scholar]
  • Michard A, Chalouan A, Feinberg H, Goffé B, Montigny R. 2002. How does the Alpine belt end between Spain and Morocco? Bulletin de la Société Géologique de France 173: 3–15. https://doi.org/10.2113/173.1.3. [CrossRef] [Google Scholar]
  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R, et al. 2006. Pressure-temperature-time constraints on the Maghrebide mountain building: Evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Geoscience 338: 92–114. https://doi.org/10.1016/j.crte.2005.11.011. [CrossRef] [Google Scholar]
  • Michard A, Frizon de Lamotte D, Negro F. 2007. Serpentinite slivers and metamorphism in the External Maghrebides: Arguments for an intra-continental suture in the African paleomargin (Morocco, Algeria). Revista de la Sociedad Geológica de España 20: 173–185. [Google Scholar]
  • Michard A, Soulaimani A, Hoepffner C, Ouanaimi H, Baidder L, Rjimati EC, et al. 2010. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 492: 1–24. [CrossRef] [Google Scholar]
  • Michard A, Mokhtari A, Chalouan A, Saddiqi O, Rossi P, Rjimati EC. 2014. New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides. Bulletin de la Société Géologique de France 185: 313–328. https://doi.org/10.2113/gssgfbull.185.5.313. [CrossRef] [Google Scholar]
  • Michard A, Saddiqi O, Chalouan A, Farah A. 2020a. Early exhumation of the Beni Bousera peridotite-granulite unit (Internal Rif, Morocco) inferred from its metasedimentary cap; a new view on some marbles and regional implications. In: Proceedings 2d Intern. Congr. Arab. J. Geosci. (CAJG 2), Sousse, Nov. 2019, Vol. 2, Sub-sect. 4.2, chapt. 125. [Google Scholar]
  • Michard A, Saddiqi O, Chalouan A, Chabou MC, Lach P, Rossi P, et al. 2020b. Comment on “The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity” by Gimeno-Vives, et al. Tectonics 38. https://doi.org/10.1029/2019TC006004. [Google Scholar]
  • Michard A, Chalouan A, Farah A, Saddiqi O. 2021. The westernmost Tethyan margins in the Rif Belt (Morocco), a review. In: Khomsi S, Roure F, eds. Geology of North Africa and Mediterranean regions: sedimentary basins and Georesources. Springer Nature, in press. [Google Scholar]
  • Mohn G, Manatschal G, Müntener O, Beltrando M, Masini E. 2010. Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences 99: 75–101. https://doi.org/10.1007/s00531-010-0566-6. [Google Scholar]
  • Molli G. 2008. Northern Apennine-Corsica orogenic system: an updated overview. In: Siegesmund, S, Fugenschuh B, Froitzheim N, eds. Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geological Society Special Publication 298: 413–442. https://doi.org/10.1144/SP298.19. [CrossRef] [Google Scholar]
  • Montel JM, Kornprobst J, Vielzeuf D. 2000. Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorph Geol 18: 335–342. [CrossRef] [Google Scholar]
  • Najih A, Montero P, Verati C, et al. 2019. Initial Pangean rifting north of the West African Craton: Insights from late Permian U-Pb and 40Ar/39Ar dating of alkaline magmatism from the Eastern Anti-Atlas (Morocco). Journal of Geodynamics 132: 101670. https://doi.org/10.1016/j.jog.2019.101670. [CrossRef] [Google Scholar]
  • Negro F, Beyssac O, Goffé B, Saddiqi O, Bouybaouène ML. 2006. Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman Spectroscopy of Carbonaceous Material. Journal of Metamorphic Geology 24: 309–327. https://doi.org/10.1111/j.1525-1314.2006.00639.x. [CrossRef] [Google Scholar]
  • Nold M, Uttinger J, Wildi W. 1981. Géologie de la Dorsale calcaire entre Tétouan et Assifane (Rif interne, Maroc). Notes Mém Serv Géol Maroc 300: 1–233. [Google Scholar]
  • Obata M. 1980. The Ronda peridotite—Garnet lherzolite, spinel-lherzolite, and plagioclase lherzolite facies and the P-T trajectories of a high-temperature mantle intrusion. J Petrol 21: 533–572. [CrossRef] [Google Scholar]
  • Olivier P, Durand-Delga M, Manivit H, Feinberg H, Peybernès B. 1996. Le substratum jurassique des flyschs maurétaniens de l’ouest des Maghrébides: l’unité de Ouareg (région de Targuist, Rif, Maroc). Bull Soc Géol Fr 167: 609–616. [Google Scholar]
  • Olivier P. 1990. Les unités de Beni Derkoul (Rif, Maroc). Place et signification dans l’évolution alpine de la marge nord de la Téthys maghrébine. Bull Soc Géol Fr 8(6): 145–154. https://doi.org/10.2113/gssgfbull.VI.1.145. [CrossRef] [Google Scholar]
  • Pastorelli S, Martinotti G, Piccardo GB, Rampone E, Scambelluri M. 1995. The Geisspfad Complex and its relationships with the Monte Leone Nappe (Lower Pennine, Western Alps). In: Polino R, Sacchi R, eds. Atti del Convegno Rapporti Alpi-Appennino 1994. Rend Accad Naz Scienze Scritti e Documenti 14: 349–358. [Google Scholar]
  • Pearson DG, Nowell GM. 2004. Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Sources. J Petrol 45: 439–455. https://doi.org/10.1093/petrology/egg102. [CrossRef] [Google Scholar]
  • Pedrera A, Ruiz-Constán A, García-Senz J, Azor A, Marín-Lechado C, Ayala C, et al. 2020. Evolution of the South-Iberian paleomargin: From hyperextension to continental subduction. J Struct Geol 138. https://doi.org/10.1016/j.jsg.2020.104122. [CrossRef] [Google Scholar]
  • Pelletier L, Müntener O, Kalt A, Vennemann T, Belgya T. 2008. Emplacement of ultramafic rocks into the continental crust monitored by light and other trace elements: An example from the Geisspfad body (Swiss-Italian Alps). Chemical Geology 255: 143–159. https://doi.org/10.1016/j.chemgeo.2008.06.024. [CrossRef] [Google Scholar]
  • Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: A new point of view. International Journal of Earth Sciences 98: 1581–1597. https://doi.org/10.1007/s00531-008-0337-9. [CrossRef] [Google Scholar]
  • Perrone V, Martin-Algarra A, Critelli S, et al. 2006. “Verrucano” and “Pseudoverrucano” in the Central-Western Mediterranean Alpine Chains: palaeogeographical evolution and geodynamic significance. In: Moratti G, Chalouan A, eds. Tectonics of the Western Mediterranean and North Africa. Geol Soc Lond Spec Publ 262: 1–43. https://doi.org/10.1144/GSL.SP.2006.262.01.01. [CrossRef] [Google Scholar]
  • Platt JP, Argles TW, Carter A, Kelley SP, Whitehouse MJ, Lonergan L. 2003. Exhumation of the Ronda peridotite and its crustal envelope: Constraints from thermal modelling of a P-T-time array. Journal of the Geological Society 160: 655–676. https://doi.org/10.1144/0016-764902-108. [CrossRef] [Google Scholar]
  • Précigout J, Gueydan F, Garrido CJ, Cogné N, Booth-Rea G. 2013. Deformation and exhumation of the Ronda peridotite (Spain). Tectonics 32: 1011–1025. https://doi.org/10.1002/tect.20062. [Google Scholar]
  • Puga E. 1990. The Betic Ophiolitic Association (southeastern Spain). Ofioliti 15: 97–117. [Google Scholar]
  • Puga E, Fanning CM, Nieto JM, Díaz de Federico A. 2005. New recrystallisation textures in zircons generated by ocean-floor and eclogite-facies metamorphism: A cathodoluminescence and U–Pb SHRIMP study with constraints from REE elements. The Canadian Mineralogist 43: 1349–1368. https://doi.org/10.2113/gscanmin.43.1.183. [CrossRef] [Google Scholar]
  • Reuber I, Michard A, Chalouan A, Juteau T, Jermoumi B. 1982. Structure and emplacement of the Alpine type peridotites from Beni Bousera, Rif, Morocco: A polyphase tectonic interpretation. Tectonophysics 82: 231–251. https://doi.org/10.1016/0040-1951(82)90047-6. [CrossRef] [Google Scholar]
  • Rodríguez-Cañero R, Jabaloy-Sánchez A, Navas-Parejo P, Martín-Algarra A. 2018. Linking Palaeozoic palaeogeography of the Betic Cordillera to the Variscan Iberian Massif: new insight through the first conodonts of the Nevado-Filábride Complex. International Journal of Earth Sciences 107: 1791–1806. https://doi.org/10.1007/s00531-017-1572-8. [CrossRef] [Google Scholar]
  • Rossetti F, Faccenna C, Goffé B, et al. 2001. Alpine structural and metamorphic signature of the Sila Piccola massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian arc. Tectonics 20: 112–133. https://doi.org/10.1029/2000TC900027. [CrossRef] [Google Scholar]
  • Rossetti F, Theye T, Lucci F, Bouybaouene ML, Dini A, Gerdes A, et al. 2010. Timing and modes of granite magmatism in the core of the Alboran Domain, Rif chain, northern Morocco: Implications for the Alpine evolution of the western Mediterranean. Tectonics 29. https://doi.org/10.1029/2009TC002487. [Google Scholar]
  • Rossetti F, Dini A, Lucci F, Bouybaouene ML, Faccenna C. 2013. Early Miocene strike-slip tectonics and granite emplacement in the Alboran Domain (Rif chain, Morocco): significance for the geodynamic evolution of western Mediterranean. Tectonophysics 608: 774–791. https://doi.org/10.1016/j.tecto.2013.08.002. [CrossRef] [Google Scholar]
  • Rossetti F, Lucci F, Theye T, Bouybaouene ML, Gerdes A, Opitz J, et al. 2020. Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Res 83: 157–182. https://doi.org/10.1016/j.gr.2020.01.020. [CrossRef] [Google Scholar]
  • Rossi P, Cocherie A, Fanning CM, Deloule É. 2006. Variscan to Eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos 87: 235–260. https://doi.org/10.1016/j.lithos.2005.06.009. [CrossRef] [Google Scholar]
  • Royden LH. 1993. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12: 629–638. https://doi.org/10.1029/92TC02641. [CrossRef] [Google Scholar]
  • Saddiqi O. 1988. Tectonique de la remontée du manteau: les péridotites des Beni Bousera et leur enveloppe métamorphique, Rif interne, Maroc. PhD thesis, Univ. Louis-Pasteur Strasbourg, 180 p. [Google Scholar]
  • Saddiqi O, Reuber I, Michard A. 1988. Sur la tectonique de dénudation du manteau infracontinental dans les Beni Bousera, Rif septentrional, Maroc. C R Acad Sci Paris 307(sér. II): 657–662. [Google Scholar]
  • Saddiqi O, Chalouan A, Farah A, Michard A. 2019. A forgotten marble zone on top of the Beni Bousera kinzigites (Internal Rif, Morocco); implications for the exhumation of the underlying peridotites and the regional tectonics. Workshop “Alboran Domain and Gibraltar Arc: geological research and natural hazards”. Spain: Granada Univ. [Google Scholar]
  • Sánchez-Gómez M, Balanyá JC, Garcia-Dueñas V, Azañón JM. 2002. Intracrustal tectonic evolution of large lithosphere mantle slabs in the western end of the Mediterranean orogen (Gibraltar arc). J Virtual Explor 8: 23–34. [Google Scholar]
  • Sánchez-Gómez M, García-Dueñas V, Muñoz M. 1995. Relations structurales entre les péridotites de Sierra Bermeja et les unités alpujarrides sous-jacentes (Benahavís, Ronda, Espagne). C R Acad Sci Paris 321(II): 885–892. [Google Scholar]
  • Sánchez-Navas A, García-Casco A, Mazzoli S, Martín-Algarra A. 2017. Polymetamorphism in the Alpujarride complex, Betic Cordillera, South Spain. J Geol 125: 637–657. https://doi.org/10.1086/693862. [CrossRef] [Google Scholar]
  • Sánchez-Rodríguez L, Gebauer D. 2000. Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe dating of zircon. Tectonophysics 316: 19–44. https://doi.org/10.1016/S0040-1951(99)00256-5. [CrossRef] [Google Scholar]
  • Santamaria-Lopez A, Lanari P, Sanz de Galdeano C. 2019. Deciphering the tectonometamorphic evolution of the Nevado-Filábride complex (Betic Cordillera, Spain) − A petrochronological study. Tectonophysics 767: 128–158. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, López-Garrido AC, Andreo B. 1999. The stratigraphic and tectonic relationships of the Alpujarride and Malaguide complexes in the western Cordillera (Casares, prov. of Malaga, South Spain). C R Acad Sci Paris 328: 113–119. [Google Scholar]
  • Sanz de Galdeano C, Andreo B, García-Tortosa FJ, López-Garrido AC. 2001. The Triassic palaeogeographic transition between the Alpujarride and Malaguide complexes. Betic-Rif Internal Zone (S Spain, N Morocco). Palaeogeogr Palaeoclim Palaeoecol 167: 157–173. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, El Kadiri K, Simancas JF, et al. 2006. Paleogeographical reconstruction of the Malaguide–Ghomaride Complex (Internal Betic-Rifian Zone) based on Carboniferous granitoid pebble provenance. Geologica Carpathica 57: 327–336. [Google Scholar]
  • Sanz de Galdeano C, Ruiz-Cruz MD. 2016. Formaciones del Paleozoico superior al Triásico depositadas discordantes sobre las peridotitas de Ronda: Evidencia de su emplazamiento cortical durante el Herciniano. Estudios Geológicos 72(1): e043. https://doi.org/10.3989/egeol.42046.368. [CrossRef] [Google Scholar]
  • Schenk V. 1980. U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, Southern Calabria (Italy). Contributions to Mineralogy and Petrology 73: 23–38. [CrossRef] [Google Scholar]
  • Schenk V. 1984. Petrology of felsic granulites, metapelites, metabasics, ultramafics, and metacarbonates from Southern Calabria (Italy): Prograde metamorphism, uplift and cooling of a former lower crust. Journal of Petrology 25: 255–298. [CrossRef] [Google Scholar]
  • Schmid SM, Kissling E, Diehl T, Van Hinsbergen DJJ, Molli G. 2017. Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. Swiss Journal of Geosciences 110: 581–612. https://doi.org/10.1007/s00015-016-0237-0. [CrossRef] [Google Scholar]
  • Seymour NM, Stockli DF, Beltrando M, Smye AJ. 2016. Tracing the thermal evolution of the Corsican lower crust during Tethyan rifting. Tectonics 35: 2439–2466. https://doi.org/10.1002/2016TC004178. [CrossRef] [Google Scholar]
  • Soulaimani A, Ouanaimi H, Saddiqi O, Baidder L, Michard A. 2018. The Anti-Atlas Pan-African belt (Morocco): overview and pending questions. C R Geosci 350: 279–288. [CrossRef] [Google Scholar]
  • Spakman W, Wortel MJR. 2004. A Tomographic View on Western Mediterranean Geodynamics. In: Cavazza W, et al. eds. The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Berlin: Springer Verlag, pp. 31–52. https://doi.org/10.1007/978-3-642-18919-7_2. [CrossRef] [Google Scholar]
  • Suter G. 1980. Carte structurale du Rif au 1/500.000. Notes et Mémoires du Service géologique du Maroc 245b. [Google Scholar]
  • Trümpy R. 1973. Situation au Trias, in Colloque Action Thématique Programmée INAG, 21 fév.–04 mars 1973 Tanger-Ronda. Bull Soc Géol Fr 7(15): 160–190. [Google Scholar]
  • Tubía JM, Cuevas J, Esteban JJ. 2012. Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). Journal of Structural Geology 50: 148–160. https://doi.org/10.1016/j.jsg.2012.06.010. [CrossRef] [Google Scholar]
  • Van Hinsbergen DJJ, Vissers RL, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393e419. [Google Scholar]
  • Varas-Reus MI, Garrido CJ, Marchesi C, Bosch D, Hidas K. 2018. Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth’s mantle. Geochimica et Cosmochimica Acta 232: 303–328. [CrossRef] [Google Scholar]
  • Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology 134: 380–404. https://doi.org/10.1007/s004100050492. [CrossRef] [Google Scholar]
  • Vidal O, Goffé B, Bousquet R, Parra T. 1999. Calibration and testing of an empirical chloritoid-chlorite thermometer and thermodynamic data for daphnite. J Metamorph Geol 10: 603–614. [CrossRef] [Google Scholar]
  • Vitale S, Ciarcia S. 2013. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics 583: 164–182. https://doi.org/10.1016/j.tecto.2012.11.004. [CrossRef] [Google Scholar]
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185–187. https://doi.org/10.2138/am.2010.3371. [CrossRef] [Google Scholar]
  • Wildi W, Nold M, Uttinger J. 1977. La Dorsale calcaire entre Tétouan et Assifane (Rif interne, Maroc). Eclogae Geol Helv 70: 371–415. [Google Scholar]
  • Youbi N, Gaggero L, Assafar H, et al. 2018. U-Pb Zircon Geochronological and Petrologic Constraints on the Post-Collisional Variscan Volcanism of the Khenifra Basin (Western Meseta, Morocco). In: 2nd International Congress on Permian and Triassic Stratigraphic and Petrogenetic Implications 53–54. Casablanca 25th–27th April 2018, Abstract Book. [Google Scholar]
  • Yuan S, Neubauer F, et al. 2020. Widespread Permian granite magmatism in Lower Austroalpine units: significance for Permian rifting in the Eastern Alps. Swiss J Geosci 113: 18. https://doi.org/10.1186/s00015-020-00371-5. [CrossRef] [Google Scholar]
  • Zeck HP, Whitehouse MJ. 1999. Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages for a Betic-Rif core complex, Alpine belt, W Mediterranean − Consequences for its P-T-t path. Contributions to Mineralogy and Petrology 134: 134–149. https://doi.org/10.1007/s004100050474. [CrossRef] [Google Scholar]
  • Zeck HP, Whitehouse MJ. 2002. Repeated age resetting in zircons from Hercynian-Alpine polymetamorphic schists (Betic-Rif tectonic belt, S. Spain)-A U-Th-Pb ion microprobe study. Chemical Geology 182: 275–292. https://doi.org/10.1016/S0009-2541(01)00296-0. [CrossRef] [Google Scholar]
  • Zouicha A, Voigt S, Saber H, Marchetti L, Hminna A, El Attari A, et al. 2021. First record of Permian continental trace fossils in the Jebilet massif, Morocco. J Afr Earth Sci 173: 104015. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.