Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
Numéro d'article 33
Nombre de pages 44
DOI https://doi.org/10.1051/bsgf/2021023
Publié en ligne 30 juin 2021
  • Aïssa M, Marignac C, Weisbrod A. 1987. Le stockwerk à ferbérite d’Echassières : évolution spatiale et temporelle ; cristallochimie des ferbérites. Géologie de la France 2-3: 311–333. [Google Scholar]
  • Alekseev VI, Gembitskaya IM, Marin YB. 2011. Wolframoixiolite and niobian ferberite from zinnwaldite granitic rocks of the Chukchi Peninsula. Geology of Ore Deposits 53: 639–648. [CrossRef] [Google Scholar]
  • Alexandre P. 2007. U-Pb zircon SIMS ages from the French Massif Central and implication for the pre-Variscan tectonic evolution in Western Europe. Comptes Rendus Geoscience 339: 613–621. [CrossRef] [Google Scholar]
  • Alexandre P, Le Carlier de Veslud C, Cuney M, Ruffet G, Virlogeux D, Cheilletz A. 2002. Datation 40Ar/39Ar des leucogranites sous couverture du complexe plutonique de Charroux–Civray (Vienne). Comptes Rendus Geoscience 334: 1141–1148. [CrossRef] [Google Scholar]
  • Alexandrov P, Cheilletz A, Deloule E, Cuney M. 2000. 319 ± 7 Ma crystallization age for the Blond granite (northwest Limousin, French Massif Central) obtained by U/Pb ion-probe dating of zircons. Comptes Rendus de l’Académie des Sciences 330: 617–622. [Google Scholar]
  • Alexandrov P, Floc’h JP, Cuney M, Cheilletz A. 2001. Datation U–Pb à la microsonde ionique des zircons de l’unité supérieure des gneiss dans le Sud Limousin, Massif Central. Comptes Rendus de l’Académie des Sciences 332: 625–632. [Google Scholar]
  • Alikouss S. 1993. Contribution à l’étude des fluides crustaux : approche analytique et expérimentale. Unpublished Ph.D. Thesis, Institut National Polytechnique de Lorraine, France, 255 p. [Google Scholar]
  • Anderson ED, Atkinson Jr WW, Marsh T, Iriondo A. 2009. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: evidence for a magmatic–hydrothermal origin. Mineralium Deposita 44: 151–170. [CrossRef] [Google Scholar]
  • Arniaud D, Dupuy C, Dostal J. 1984. Geochemistry of Auriat granite (Massif Central, France). Chemical Geology 45: 263–277. [CrossRef] [Google Scholar]
  • Aubert G. 1969. Les coupoles granitiques de Montebras et d’Echassières (Massif Central Français) et la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium. Mémoires du BRGM 46: 350. [Google Scholar]
  • Audion AS, Labbé JF. 2012. Panorama mondial 2011 du marché du tungstène. Rapport Public BRGM, RP-61341-FR, 108 p. [Google Scholar]
  • Baker EM, Andrew AS. 1991. Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Australia. Economic Geology 86: 810–830. [Google Scholar]
  • Bakker RJ. 1997. Clathrates: Computer programs to calculate fluid inclusion VX properties using clathrate melting temperatures. Computers & Geosciences 23: 1–18. [CrossRef] [Google Scholar]
  • Bakker RJ. 1999. Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system. Chemical Geology 154: 225–236. [CrossRef] [Google Scholar]
  • Bakker RJ. 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194: 3–23. [CrossRef] [Google Scholar]
  • Bakker RJ, Schilli SE. 2016. Formation conditions of leucogranite dykes and aplite-pegmatite dykes in the eastern Mt. Capanne plutonic complex (Elba, Italy): fluid inclusion studies in quartz, tourmaline, andalusite and plagioclase. Mineralogy and Petrology 110: 43–63. [CrossRef] [Google Scholar]
  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse JL. 2016. Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 44: 231–234. [CrossRef] [Google Scholar]
  • Bea F. 2010. Crystallization dynamics of granite magma chambers in the absence of regional stress: multiphysics modeling with natural examples. Journal of Petrology 51: 1541–1569. [CrossRef] [Google Scholar]
  • Bebout GE, Cooper DC, Bradley AD, Sadofsky SJ. 1999. Nitrogen-isotope record of fluid-rock interactions in the Skiddaw aureole and granite, English Lake District. American Mineralogist 84: 1495–1505. [CrossRef] [Google Scholar]
  • Belkasmi M, Cuney M. 1998. Les columbo-tantalites zonées du granite de Montebras (Massif Central Français). Implications pétrogénétiques. Comptes Rendus de l’Académie des Sciences 326: 459–465. [Google Scholar]
  • Belkasmi M, Cuney M, Pollard PJ, Bastoul A. 2000. Chemistry of the Ta–Nb–Sn–W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples. Mineralogical Magazine 64: 507–523. [CrossRef] [Google Scholar]
  • Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier JCC, et al. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): age, tectonic setting and fluid–rock interactions. Lithos 118: 365–382. [CrossRef] [Google Scholar]
  • Berthier F, Duthou JL, Roques M. 1979. Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l’un de ses faciès types. Bulletin du BRGM 1: 31–42. [Google Scholar]
  • Bertrand JM, Leterrier J, Cuney M, Brouand M, Stussi JM, Delaperriere E, et al. 2001. Géochronologie U–Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (Poitou) et de Vendée. Géologie de la France 1-2: 167–180. [Google Scholar]
  • Bertrand G, Charles N, Melleton J, Tourlière B, Cassard D, Dupuy JJ, et al. 2015. Réévaluation du potentiel français en ressources minérales : retraitement des données géochimiques de l’Inventaire et établissement de fiches de cibles minières. Synthèse des travaux réalisés de 2013 à 2015. Rapport BRGM, RP-65165-FR, 434 p. [Google Scholar]
  • Blundy J, Cashman KV, Rust A, Witham F. 2010. A case for CO2-rich arc magmas. Earth and Planetary Science Letters 290: 289–301. [CrossRef] [Google Scholar]
  • Bobos I, Noronha F, Mateus A. 2018. Fe–, Fe, Mn– and Fe, Mg–chlorite: a genetic linkage to W, (Cu, Mo) mineralization in the magmatic-hydrothermal system at Borralha, northern Portugal. Mineralogical Magazine 82: 259–279. [CrossRef] [Google Scholar]
  • Bodnar RJ, Binns PR, Hall DL. 1989. Synthetic fluid inclusions. VI. Quantitative evaluation of the decrepitation behavior of fluid inclusion in quartz at one atmosphere confining pressure. Journal of Metamorphic Geology 7: 229–242. [CrossRef] [Google Scholar]
  • Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J. 2003. Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chemical Geology 194: 119–141. [CrossRef] [Google Scholar]
  • Boiron MC, Cathelineau M, Ruggieri G, Jeanningros A, Gianelli G, Banks D. 2007. Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chemical Geology 237: 303–328. [CrossRef] [Google Scholar]
  • Borodulin GP, Chevychelov VY, Zaraysky GP. 2009. Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts. Doklady Earth Sciences 427: 868–873. [CrossRef] [Google Scholar]
  • Bouchot V, Ledru P, Lerouge C, Lescuyer JL, Milesi JP. 2005. 5: Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. Ore Geology Reviews 27: 169–197. [CrossRef] [Google Scholar]
  • Boulliung J, Füri E, Dalou C, Tissandier L, Zimmermann L, Marrocchi Y. 2020. Oxygen fugacity and melt composition controls on nitrogen solubility in silicate melts. Geochimica et Cosmochimica Acta 284: 120–133. [CrossRef] [Google Scholar]
  • Boutin A, de Saint Blanquat M, Poujol M, Boulvais P, de Parseval P, Rouleau C, et al. 2016. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit. International Journal of Earth Sciences 105: 747–770. [CrossRef] [Google Scholar]
  • Breiter K, Müller A, Leichmann J, Gabašová A. 2005. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos 80: 323–345. [Google Scholar]
  • Breiter K, Škoda R, Uher P. 2007. Nb–Ta–Ti–W–Sn–oxide minerals as indicators of a peraluminous P-and F-rich granitic system evolution: Podlesí, Czech Republic. Mineralogy and Petrology 91: 225–248. [CrossRef] [Google Scholar]
  • Breiter K, Korbelová Z, Chládek Š, Uher P, Knesl I, Rambousek P, et al. 2017. Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic). European Journal of Mineralogy 29: 727–738. [CrossRef] [Google Scholar]
  • Bril H, Beaufort D. 1989. Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralization, Haut Allier, Massif Central, France. Economic Geology 84: 2237–2251. [CrossRef] [Google Scholar]
  • Burke EA. 2001. Raman microspectrometry of fluid inclusions. Lithos 55: 139–158. [CrossRef] [Google Scholar]
  • Burnham CW. 1985. Energy release in subvolcanic environments; implications for breccia formation. Economic Geology 80: 1515–1522. [CrossRef] [Google Scholar]
  • Burnol L. 1974. Géochimie du béryllium et types de concentrations dans les leucogranites du Massif Central Français. Mémoires du BRGM 85: 168. [Google Scholar]
  • Cabral AR, Rios FJ, de Oliveira LAR, de Abreu FR, Lehmann B, Zack T, et al. 2015. Fluid-inclusion microthermometry and the Zr-in-rutile thermometer for hydrothermal rutile. International Journal of Earth Sciences 104: 513–519. [CrossRef] [Google Scholar]
  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25: 187–198. [CrossRef] [Google Scholar]
  • Carocci E, Marignac C, Cathelineau M, Truche L, Lecomte A, Pinto F. 2019. Rutile from Panasqueira (Central Portugal): an excellent pathfinder for wolframite deposition. Minerals 9: 9. [CrossRef] [Google Scholar]
  • Carocci E, Marignac C, Cathelineau M, Truche L, Poujol M, Boiron MC, et al. 2021. Incipient Wolframite Deposition at Panasqueira (Portugal): W Rutile and Tourmaline Compositions as Proxies for the Early Fluid Composition. Economic Geology 116: 123–146. [CrossRef] [Google Scholar]
  • Cartannaz C. 2005. Magmatismes et déformations polyphasés : exemple des massifs de Guéret et de Millevaches (Massif Central Français). Origine des magmas et contexte de mise en place. Unpublished Ph.D. Thesis, Université de Franche-Comté, France, 317 p. [Google Scholar]
  • Cartannaz C, Rolin P, Cocherie A, Marquer D, Legendre O, Fanning CM, et al. 2007. Characterization of wrench tectonics from dating of syn-to post-magmatism in the north-western French Massif Central. International Journal of Earth Sciences 96: 271–287. [CrossRef] [Google Scholar]
  • Casanova V, Kouzmanov K, Audétat A, Wälle M, Ubrig N, Ortelli M, et al. 2018. Fluid inclusion studies in opaque ore minerals: II. A comparative study of syngenetic synthetic fluid inclusions hosted in quartz and opaque minerals. Economic Geology 113: 1861–1883. [CrossRef] [Google Scholar]
  • Černý P, Blevin PL, Cuney M, London D. 2005. Granite-related ore deposits. Economic Geology 100th Anniversary Vol.: 337–370. [Google Scholar]
  • Chalier M, Virlogeux D, Duthou JL. 1994. Les lamprophyres du district aurifère de Saint Yrieix (Limousin, Massif Central français). Age Rb/Sr Autunien et relations chronologiques avec le dépôt de l’or. Comptes Rendus de l’Académie des Sciences 319: 1511–1518. [Google Scholar]
  • Charoy B, Noronha F. 1996. Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology 37: 73–94. [Google Scholar]
  • Chauris L, Marcoux E. 1994. Metallogeny of the Armorican Massif. In: Chantraine J, Rolet J, Santallier DS, Piquet A, Keppie JD, eds. Pre-Mesozoic Geology in France and Related Areas. Berlin Heidelberg: Springer, pp. 243–264. [CrossRef] [Google Scholar]
  • Cheilletz A, Archibald DA, Cuney M, Charoy B. 1992. Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique. Comptes Rendus de l’Académie des Sciences 315: 329–336. [Google Scholar]
  • Chelle-Michou C, Laurent O, Moyen JF, Block S, Paquette JL, Couzinié S, et al. 2017. Pre-Cadomian to late- Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Research 46: 170–190. [CrossRef] [Google Scholar]
  • Chen YJ, Pirajno F, Li N, Guo DS, Lai Y. 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: implications for ore genesis. Ore Geology Reviews 35: 245–261. [CrossRef] [Google Scholar]
  • Chenevoy M, Constans JE, Recoing M. 1984. Carte géologique à 1/50 000 Saint-Léonard-de-Noblat et notice explicative. Éditions BRGM, 44 p. [Google Scholar]
  • Chicharro E, Boiron MC, López-García JÁ, Barfod DN, Villaseca C. 2016. Origin, ore forming fluid evolution and timing of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews 72: 896–913. [CrossRef] [Google Scholar]
  • Connolly JA. 1997. Mid-crustal focused fluid movement: thermal consequences and silica transport. In: Jamtveit B, Yardley BWD, eds. Fluid Flow and Transport in Rocks: Mechanisms and Effects. Dordrecht: Springer, pp. 235–250. [CrossRef] [Google Scholar]
  • Couzinié S. 2017. Evolution of the continental crust and significance of the zircon record, a case study from the French Massif Central. Unpublished Ph.D. Thesis, Université de St-Etienne, France, 436 p. [Google Scholar]
  • Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen JF, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin. Lithos 286: 16–34. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Chelle-Michou C, Bouilhol P, Paquette JL, Gannoun AM, et al. 2019. Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Research 324: 269–284. [CrossRef] [Google Scholar]
  • Cuney M, Friedrich M, Blumenfeld P, Bourguignon A, Boiron MC, Vigneresse JL, Poty B. 1990. Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations – A comparison with Sn, W and Au. Tectonophysics 177: 39–57. [CrossRef] [Google Scholar]
  • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Economic Geology 87: 1766–1794. [Google Scholar]
  • Cuney M, Stussi JM, Brouand M, Dautel D, Michard A, Gros Y, et al. 1993. Âge U/Pb du granite de Largeasse, un épisode magmatique peralumineux viséen dans le haut Bocage vendéen. Comptes Rendus de l’Académie des Sciences 316: 1383–1390. [Google Scholar]
  • Cuney M, Alexandrov P, Le Carlier de Veslud C, Cheilletz A, Raimbault L, Ruffet G, et al. 2002. The timing of W–Sn rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). In: Blundell DJ, Neubauer F, Von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. Geological Society of London Special Publication 204: 213–228. [Google Scholar]
  • Debon F, Le Fort P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh 73: 135–149. [CrossRef] [Google Scholar]
  • Deino AL. 2013. Berkeley Geochronology Center, Mass Spec, 40Ar/39Ar data measurement and reduction software. http://www.bgc.org/facilities/other_facil.html. [Google Scholar]
  • Demirel S, Göncüoğlu MC, Topuz G, Isik V. 2009. Geology and chemical variations in tourmaline from the quartz-tourmaline breccias within the Kerkenez granite–monzonite massif, Central Anatolian Crystalline Complex, Turkey. The Canadian Mineralogist 47: 787–799. [CrossRef] [Google Scholar]
  • Dewaele S, De Clercq F, Hulsbosch N, Piessens K, Boyce A, Burgess R, Muchez P. 2016. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe–Ankole belt, Central Africa. Mineralium Deposita 51: 283–307. [CrossRef] [Google Scholar]
  • Do Couto D, Faure M, Augier R, Cocherie A, Rossi P, Li XH, et al. 2016. Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central. International Journal of Earth Sciences 105: 557–579. [CrossRef] [Google Scholar]
  • Downes H, Duthou JL. 1988. Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chemical Geology 68: 291–308. [CrossRef] [Google Scholar]
  • Downes H, Shaw A, Williamson BJ, Thirlwall MF. 1997. Sr, Nd and Pb isotopic evidence for the lower crustal origin of Hercynian granodiorites and monzogranites, Massif Central, France. Chemical Geology 136: 99–122. [CrossRef] [Google Scholar]
  • Driesner T, Heinrich CA. 2007. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta 71: 4880–4901. [CrossRef] [Google Scholar]
  • Duan Z, Møller N, Weare JH. 1996. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta 60: 1209–1216. [CrossRef] [Google Scholar]
  • Dubessy J, Poty B, Ramboz C. 1989. Advances in C–O–H–N–S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. European Journal of Mineralogy 1: 517–534. [CrossRef] [Google Scholar]
  • Dubessy J, Derome D, Sausse J. 2003. Numerical modelling of fluid mixings in the H2O–NaCl system application to the North Caramal U prospect (Australia). Chemical Geology 194: 25–39. [CrossRef] [Google Scholar]
  • Dudek B. 1978. Cartographie et typologie des schistes cristallins et des granites de la région de Bujaleuf (Haut Limousin, Massif Central Français). Unpublished Ph.D. Thesis, Université Claude Bernard Lyon, France, 110 p. [Google Scholar]
  • Duthou JL. 1978. Les granitoïdes du Haut Limousin (Massif central français), chronologie Rb/Sr de leur mise en place; le thermo-métamorphisme carbonifère. Bulletin de la Société Géologique de France 20: 229–235. [CrossRef] [Google Scholar]
  • Duthou JL, Cantagrel JM, Didier J, Vialette Y. 1984. Palaeozoic granitoids from the French Massif Central: age and origin studied by 87Rb–87Sr system. Physics of the Earth and Planetary Interiors 35: 131–144. [CrossRef] [Google Scholar]
  • El Korh A, Boiron MC, Cathelineau M, Deloule E, Luais B. 2020. Tracing metallic pre-concentrations in the Limousin ophiolite-derived rocks and Variscan granites (French Massif Central). Lithos 356: 105345. [CrossRef] [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009a. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience 341: 202–213. [Google Scholar]
  • Faure M, Mezeme EB, Cocherie A, Melleton J, Rossi P. 2009b. The South Millevaches Middle Carboniferous crustal melting and its place in the French Variscan belt. Bulletin de la Société Géologique de France 180: 473–481. [CrossRef] [Google Scholar]
  • Fricker MB. 2012. Design of ablation cells for LA-ICP-MS: from modeling to high spatial resolution analysis applications. Unpublished Ph.D. Thesis, ETH Zürich, Switzerland, 173 p. [Google Scholar]
  • Fuertes-Fuente M, Martin-Izard A, Boiron MC, Mangas J. 2000. Fluid evolution of rare-element and muscovite granitic pegmatites from central Galicia, NW Spain. Mineralium Deposita 35: 332–345. [CrossRef] [Google Scholar]
  • Gardien V, Vanderhaeghe O, Arnaud N, Cocherie A, Grange M, Lécuyer C. 2011. Thermal maturation and exhumation of a middle orogenic crust in the Livradois area (French Massif Central). Bulletin de la Société Géologique de France 182: 5–24. [CrossRef] [Google Scholar]
  • Gauthier JC. 1973. Evolution granitique, développement des granites à deux micas et géochimie des alcalins dans la Marche Orientale (Massif Central Français). I-L’évolution granitique. Sciences de la Terre (Nancy) 18: 315–352 [Google Scholar]
  • Gebauer H, Bernard-Griffiths J, Gnünenfelder M. 1981. U/Pb zircon and monazite dating of mafic-ultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Massif Central. Contributions to Mineralogy and Petrology 76: 292–300. [CrossRef] [Google Scholar]
  • Gébelin A. 2004. Déformation et mise en place des granites (360–300 Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central). Unpublished Ph.D. Thesis, Université de Montpellier, France, 235 p. [Google Scholar]
  • Gébelin A, Brunel M, Monié P, Faure M, Arnaud N. 2007. Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar investigations. Tectonics 26. [Google Scholar]
  • Gébelin A, Roger F, Brunel M. 2009. Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif Central, France. Tectonophysics 477: 229–243. [CrossRef] [Google Scholar]
  • Gibert F, Moine B, Schott J, Dandurand JL. 1992. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contributions to Mineralogy and Petrology 112: 371–384. [CrossRef] [Google Scholar]
  • Gonçalves A, Lima L, Mota A, Ramos V, Barros J, Noronha F. 2017. The Santa Helena Breccia Pipe (Borralha – North Portugal). A new type of W ore deposit in the Iberian Tin-Tungsten Metallogenic Province. Comunicações Geológicas 104: 1–6. [Google Scholar]
  • Guedes A, Noronha F, Boiron MC, Banks DA. 2002. Evolution of fluids associated with metasedimentary sequences from Chaves (North Portugal). Chemical Geology 190: 273–289. [CrossRef] [Google Scholar]
  • Guyonnaud G, Burnol L, Recoing M. 1977. Carte géologique à 1/50 000 Limoges et notice explicative. Éditions BRGM, 25 p. [Google Scholar]
  • Hall DL, Bodnar RJ. 1990. Methane in fluid inclusions from granulites: A product of hydrogen diffusion? Geochimica et Cosmochimica Acta 54: 641–651. [CrossRef] [Google Scholar]
  • Halls C. 1994. Energy and mechanism in the magmatic-hydrothermal evolution of the Cornubian batholith: a review. In: Seltmann R, Kämpf H, Möller P, eds. Metallogeny of Collisional Orogens. Prague: Czech Geological Survey, pp. 274–294. [Google Scholar]
  • Harlaux M. 2016. Tungsten and rare-metal (Nb, Ta, Sn) hydrothermal metallogenic systems in the late-Variscan orogenic context: Example of the French Massif Central. Unpublished Ph.D. Thesis, Université de Lorraine, Nancy, France, 576 p. [Google Scholar]
  • Harlaux M, Marignac C, Cuney M, Mercadier J. 2015a. The Puy-les-Vignes breccia pipe (Massif Central, France): a unique occurrence of polymetallic W–Nb ± Ta–HREE–Bi–Cu–As ± Au–Ag mineralization in the Variscan belt. Proceedings of the 13th Biennial SGA Meeting, 24–27 August 2015, Nancy 2: 749–752. [Google Scholar]
  • Harlaux M, Marignac C, Cuney M, Mercadier J, Magott R, Mouthier B. 2015b. Nb–Ti–Y–HREE–W–U oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-les-Vignes deposit (Massif Central, France): evidence for rare metal mobilization by late hydrothermal fluids with a peralkaline signature. The Canadian Mineralogist 53: 653–672. [CrossRef] [Google Scholar]
  • Harlaux M, Mercadier J, Bonzi WME, Kremer V, Marignac C, Cuney M. 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): insights from LA-ICPMS analysis of primary fluid inclusions. Geofluids 2017: 1–25. [CrossRef] [Google Scholar]
  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M. 2018a. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U–Pb dating of wolframite. Mineralium Deposita 53: 21–51. [CrossRef] [Google Scholar]
  • Harlaux M, Mercadier J, Marignac C, Peiffert C, Cloquet C, Cuney M. 2018b. Tracing metal sources in peribatholitic hydrothermal W deposits based on the chemical composition of wolframite: The example of the Variscan French Massif Central. Chemical Geology 479: 58–85. [CrossRef] [Google Scholar]
  • Harlaux M, Mercadier J, Marignac C, Villeneuve J, Mouthier B, Cuney M. 2019. Origin of the atypical Puy-les-Vignes W breccia pipe (Massif Central, France) constrained by trace element and boron isotopic composition of tourmaline. Ore Geology Reviews 114: 103132. [CrossRef] [Google Scholar]
  • Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta 73:1039–1051. [CrossRef] [Google Scholar]
  • Heinrich CA. 1990. The chemistry of hydrothermal tin(–tungsten) ore deposition. Economic Geology 85: 457–481. [CrossRef] [Google Scholar]
  • Holliger P, Cuney M, Friedrich M, Turpin L. 1986. Age Carbonifère de l’unité de Brâme du complexe granitique peralumineux de Saint Sylvestre (N.O. Massif Central) défini par les données isotopiques U–Pb sur zircon et monazite. Comptes Rendus de l’Académie des Sciences 303: 1309–1314. [Google Scholar]
  • Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, et al. 2016. Community-Derived Standards for LA-ICP-MS U–(Th–)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40: 311–332. [CrossRef] [Google Scholar]
  • Huerta AD, Royden LH, Hodges KV. 1998. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. Journal of Geophysical Research: Solid Earth 103: 15287–15302. [CrossRef] [Google Scholar]
  • Huff TA, Nabelek PI. 2007. Production of carbonic fluids during metamorphism of graphitic pelites in a collisional orogen − an assessment from fluid inclusions. Geochimica et Cosmochimica Acta 71: 4997–5015. [CrossRef] [Google Scholar]
  • Huizenga JM. 2001. Thermodynamic modelling of C–O–H fluids. Lithos 55: 101–114. [CrossRef] [Google Scholar]
  • Hulsbosch N, Boiron MC, Dewaele S, Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda). Geochimica et Cosmochimica Acta 175: 299–318. [CrossRef] [Google Scholar]
  • Jébrak M. 1997. Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geology Reviews 12: 111–134. [CrossRef] [Google Scholar]
  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, et al. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35: 397–429. [CrossRef] [Google Scholar]
  • Joly A, Chen Y, Faure M, Martelet G. 2007. A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault – Relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central: 1. Geochronology, mineral fabrics, and tectonic implications. Journal of Geophysical Research: Solid Earth 112. [Google Scholar]
  • Kouzmanov K, Pokrovski GS. 2012. Hydrothermal controls on metal distribution in porphyry Cu (–Mo–Au) systems. Special Publication of the Society of Economic Geologists 16: 573–618. [Google Scholar]
  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne R, Wijbrans JR. 2008. Synchronizing Rock Clocks of Earth History. Science 320: 500–504. [CrossRef] [Google Scholar]
  • Lafon JM, Respaut JP. 1988. Géochronologie U–Pb et leucogranites varisques : cas des massifs de Grandrieu (Lozère) et de la Porcherie (Limousin), Massif Central Français. Bulletin de Minéralogie 111: 225–237. [CrossRef] [Google Scholar]
  • Lamy-Chappuis B, Heinrich CA, Driesner T, Weis P. 2020. Mechanisms and patterns of magmatic fluid transport in cooling hydrous intrusions. Earth and Planetary Science Letters 535: 116111. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, et al. 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geological Society of London Special Publications 405: 7–44. [CrossRef] [Google Scholar]
  • Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen JF, Villaros A, et al. 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences 106: 421–451. [CrossRef] [Google Scholar]
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27: 745–750. [CrossRef] [Google Scholar]
  • Le Carlier de Veslud C, Alexandre P, Ruffet G, Cuney M, Cheilletz A. 2013. A two-stage exhumation in Western French Massif Central: New geochronological evidences of syn-collisional extension. Lithos 175: 1–15. [CrossRef] [Google Scholar]
  • Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, Wӓlle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology 45: 579–582. [Google Scholar]
  • Leger JM, Wang X, Lameyre J. 1990. Les leucogranites de Saint-Goussaud en Limousin : Pétrographie, éléments majeurs et traces dans le sondage de Villechabrolle (Projet Energeroc). Bulletin de la Société Géologique de France 6: 515–524. [CrossRef] [Google Scholar]
  • Legros H, Richard A, Tarantola A, Kouzmanov K, Mercadier J, Vennemann T, et al. 2019. Multiple fluids involved in granite-related W–Sn deposits from the world-class Jiangxi province (China). Chemical Geology 508: 92–115. [CrossRef] [Google Scholar]
  • Legros H, Harlaux M, Mercadier J, Romer RL, Poujol M, Camacho A, et al. 2020. The world-class Nanling metallogenic belt (Jiangxi, China): W and Sn deposition at 160 Ma followed by 30 my of hydrothermal metal redistribution. Ore Geology Reviews 117: 103302. [CrossRef] [Google Scholar]
  • Lerouge C, Bouchot V, Guerrot C. 2000. Fluids and the W (± As, Au) ore deposits of the Enguialès-Leucamp District, La Châtaigneraie, French Massif Central. Journal of Geochemical Exploration 69: 343–347. [CrossRef] [Google Scholar]
  • Leroy J, Sonet J. 1976. Contribution à l’étude géochronologique des filons de lamprophyres recoupant le granite à deux micas de Saint-Sylvestre (Limousin, Massif Central Français). Comptes Rendus de l’Académie des Sciences 283: 1477–1480. [Google Scholar]
  • Linnen RL, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In: Linnen RL, Samson IM, eds. Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, Short Course Notes 17: 45–68. [Google Scholar]
  • Liu X, Xing H, Zhang D. 2017. Influences of hydraulic fracturing on fluid flow and mineralization at the vein-type tungsten deposits in southern China. Geofluids 2017: 1–11. [CrossRef] [Google Scholar]
  • Longerich HP, Jackson SE, Günther D. 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11: 899–904. [CrossRef] [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Van Den Driessche J. 2017. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. International Journal of Earth Sciences 106: 501–515. [CrossRef] [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 308: 381–394. [CrossRef] [Google Scholar]
  • Lowenstern JB. 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36: 490–502. [CrossRef] [Google Scholar]
  • Ludwig KR. 2008. ISOPLOT Version 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 5: 75. [Google Scholar]
  • Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, et al. 2009. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology 261: 346–369. [CrossRef] [Google Scholar]
  • Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineralium Deposita 34: 472–504. [CrossRef] [Google Scholar]
  • McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology 120: 223–253. [NASA ADS] [CrossRef] [Google Scholar]
  • Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Research 17: 13–25. [CrossRef] [Google Scholar]
  • Melleton J, Gloaguen E, Frei D. 2015. Rare-elements (Li–Be–Ta–Sn–Nb) magmatism in the European Variscan belt, a review. Proceedings of the 13th Biennial SGA Meeting, Nancy 2: 24–27. [Google Scholar]
  • Melleton J, Gloaguen E, Tourlière B, Martelet G. 2017. Promotion des districts miniers métropolitains. Le district à tungstène de Puy-les-Vignes (87). Rapport BRGM/RP-66905-FR, 46 p. [Google Scholar]
  • Michaud JAS, Pichavant M. 2019. The H/F ratio as an indicator of contrasted wolframite deposition mechanisms. Ore Geology Reviews 104: 266–272. [CrossRef] [Google Scholar]
  • Michaud JAS, Gumiaux C, Pichavant M, Gloaguen E, Marcoux E. 2020. From magmatic to hydrothermal Sn–Li–(Nb–Ta–W) mineralization: The Argemela area (central Portugal). Ore Geology Reviews 116: 103215. [CrossRef] [Google Scholar]
  • Moine B, Guillot C, Gibert F. 1994. Controls of the composition of nitrogen-rich fluids originating from reaction with graphite and ammonium-bearing biotite. Geochimica et Cosmochimica Acta 58: 5503–5523. [CrossRef] [Google Scholar]
  • Monecke T, Monecke J, Reynolds TJ, Tsuruoka S, Bennett MM, Skewes WB, et al. 2018. Quartz solubility in the H2O–NaCl system: A framework for understanding vein formation in porphyry copper deposits. Economic Geology 113: 1007–1046. [CrossRef] [Google Scholar]
  • Monnier L, Salvi S, Jourdan V, Sall S, Bailly L, Melleton J, et al. 2020. Contrasting fluid behavior during two styles of greisen alteration leading to distinct wolframite mineralizations: The Echassières district (Massif Central, France). Ore Geology Reviews 124: 103648. [CrossRef] [Google Scholar]
  • Moritz R. 2006. Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling – A note of caution. Journal of Geochemical Exploration 89: 284–287. [CrossRef] [Google Scholar]
  • Mourey Y. 1985. Le leucogranite à topaze de Chavence. Un nouvel exemple de massif à Sn, W, Li dans le Nord du Massif Central Français. Comptes Rendus de l’Académie des Sciences 300: 951–954. [Google Scholar]
  • Mouthier B. 2005. La mine de tungstène de Puy-les-Vignes (Haute-Vienne). Connaissance et Sauvegarde de Saint-Léonard, 2e éd., 256 p. [Google Scholar]
  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, et al. 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
  • Noronha F, Doria A, Dubessy J, Charoy B. 1992. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W–Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita 27: 72–79. [CrossRef] [Google Scholar]
  • Ortelli M, Kouzmanov K, Wälle M, Ubrig N, Casanova V. 2018. Fluid inclusion studies in opaque ore minerals: I. Trace element content and physical properties of ore minerals controlling textural features in transmitted near-infrared light microscopy. Economic Geology 113: 1845–1860. [CrossRef] [Google Scholar]
  • Paquette JL, Piro JL, Devidal JL, Bosse V, Didier A, Sanac S, et al. 2014. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: Application to radiometric dating of U–Th–bearing minerals. Agilent ICP-MS Journal 58: 1–5. [Google Scholar]
  • Pitcairn IK, Teagle DA, Kerrich R, Craw D, Brewer TS. 2005. The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: evidence from the Otago and Alpine Schists, New Zealand. Earth and Planetary Science Letters 233: 229–246. [CrossRef] [Google Scholar]
  • Poitrenaud T, Poujol M, Augier R, Marcoux E. 2019. The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): insights from REE and U/Pb LA-ICP-MS analyses. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00923-2. [Google Scholar]
  • Pollard PJ, Pichavant M, Charoy B. 1987. Contrasting evolution of fluorine- and boron-rich tin systems. Mineralium Deposita 22: 315–321. [CrossRef] [Google Scholar]
  • Raimbault L. 1998. Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chèdeville, Massif Central, France. The Canadian Mineralogist 36: 563–583. [Google Scholar]
  • Raimbault L, Burnol L. 1998. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare metal granites. The Canadian Mineralogist 36: 265–282. [Google Scholar]
  • Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL. 1995. Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology 90: 548–576. [CrossRef] [Google Scholar]
  • Ramboz C, Schnapper D, Dubessy J. 1985. The P–V̄–T–X–fO2 evolution of H2O–CO2–CH4–bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies. Geochimimica et Cosmochimica Acta 49: 205–219. [CrossRef] [Google Scholar]
  • Ren SK, Walshe JL, Paterson RG, Both RA, Andrew A. 1995. Magmatic and hydrothermal history of the porphyry-style deposits of the Ardlethan tin field, New South Wales, Australia. Economic Geology 90: 1620–1645. [CrossRef] [Google Scholar]
  • René M, Škoda R. 2011. Nb–Ta–Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic. Mineralogy and Petrology 103: 37–48. [CrossRef] [Google Scholar]
  • Renne PR, Norman EB. 2001. Determination of the half-life of 37Ar by mass spectrometry. Physical Review C 63: 047302. [CrossRef] [Google Scholar]
  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145: 117–152. [CrossRef] [Google Scholar]
  • Roig JY, Faure M, Ledru P. 1996. Polyphase wrench tectonics in the southern French Massif Central: kinematic inferences from pre- and syntectonic granitoids. Geologische Rundschau 85: 138–153. [CrossRef] [Google Scholar]
  • Roig JY, Faure M, Maluski H. 2002. Superimposed tectonic and hydrothermal events during the late-orogenic extension in the Western French Massif Central: a structural and 40Ar/39Ar study. Terra Nova 14: 25–32. [CrossRef] [Google Scholar]
  • Rolin P, Marquer D, Colchen M, Cartannaz C, Cocherie A, Thiery V, et al. 2009. Famenno-Carboniferous (370–320 Ma) strike slip tectonics monitored by syn-kinematic plutons in the French Variscan belt (Massif Armoricain and French Massif Central). Bulletin de la Société Géologique de France 180: 231–246. [CrossRef] [Google Scholar]
  • Rolin P, Marquer D, Cartannaz C, Rossi P. 2014. Carboniferous magmatism related to progressive pull-apart opening in the western French Massif Central. Bulletin de la Société Géologique de France 185: 171–189. [CrossRef] [Google Scholar]
  • Romer RL, Kroner U. 2016. Phanerozoic tin and tungsten mineralization – Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research 31: 60–95. [CrossRef] [Google Scholar]
  • Rudnick RL, Gao S. 2003. Composition of the Continental Crust. Treatise on Geochemistry 3: 1–64. [Google Scholar]
  • Scaillet S, Cheilletz A, Cuney M, Farrar E, Archibald DA. 1996a. Cooling pattern and mineralization history of the Saint Sylvestre and western Marche leucogranite pluton, French Massif Central: I. 40Ar/39Ar isotopic constraints. Geochimica et Cosmochimica Acta 60: 4653–4671. [CrossRef] [Google Scholar]
  • Scaillet S, Cuney M, Le Carlier de Veslud C, Cheilletz A, Royer JJ. 1996b. Cooling pattern and mineralization history of the Saint Sylvestre and western Marche leucogranite pluton, French Massif Central: II. Thermal modelling and implications for the mechanisms of uranium mineralization. Geochimica et Cosmochimica Acta 60: 4673–4688. [CrossRef] [Google Scholar]
  • Schmidt C, Romer RL, Wohlgemuth-Ueberwasser CC, Appelt O. 2020. Partitioning of Sn and W between granitic melt and aqueous fluid. Ore Geology Reviews 117: 103263. [CrossRef] [Google Scholar]
  • Schulmann K, Schaltegger U, Jezek J, Thompson AB, Edel JB. 2002. Rapid burial and exhumation during orogeny: Thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe). American Journal of Science 302: 856–879. [CrossRef] [Google Scholar]
  • Sillitoe RH. 1985. Ore-related breccias in volcanoplutonic arcs. Economic Geology 80: 1467–1514. [CrossRef] [Google Scholar]
  • Skewes MA, Holmgren C, Stern CR. 2003. The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Mineralium Deposita 38: 2–21. [CrossRef] [Google Scholar]
  • Solgadi F, Moyen JF, Vanderhaeghe O, Sawyer EW, Reisberg L. 2007. The role of crustal anatexis and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois area, French Massif Central. The Canadian Mineralogist 45: 581–606. [CrossRef] [Google Scholar]
  • Solomovich LI, Trifonov BA, Sabelnikov SE. 2012. Geology and mineralization of the Uchkoshkon tin deposit associated with a breccia pipe, Eastern Kyrgyzstan. Ore Geology Reviews 44: 59–69. [CrossRef] [Google Scholar]
  • Somarin AK, Ashley P. 2004. Hydrothermal alteration and mineralisation of the Glen Eden Mo–W–Sn deposit: a leucogranite-related hydrothermal system, Southern New England Orogen, NSW, Australia. Mineralium Deposita 39: 282–300. [CrossRef] [Google Scholar]
  • Soufi M. 1988. Étude des magmatismes leucogranitique et ongonitique de Blond (Haut Limousin, Massif Central Français). Relations avec une mise en place syntectonique du massif granitique. Unpublished Ph.D. Thesis, Université de Nancy, France, 304 p. [Google Scholar]
  • Spell TL, McDougall I. 2003. Characterization and calibration of 40Ar/39Ar dating standards. Chemical Geology 198: 189–211. [CrossRef] [Google Scholar]
  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ. 2012. Short note: HokieFlincs_H2O–NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computers & Geosciences 49: 334–337. [CrossRef] [Google Scholar]
  • Steiger RH, Jäger E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36: 359–362. [CrossRef] [Google Scholar]
  • Sterner SM, Bodnar RJ. 1984. Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta 48: 2659–2668. [CrossRef] [Google Scholar]
  • Stussi JM. 1989. Granitoid chemistry and associated mineralization in the French Variscan. Economic Geology 84: 1363–1381. [CrossRef] [Google Scholar]
  • Thiéry V, Rolin P. 2012. Notice explicative de la carte géologique d’Ussel au 1/50 000, 715. Orléans : Éditions BRGM. [Google Scholar]
  • Thiéry R, Van Den Kerkhof AM, Dubessy J. 1994. vX properties of CH4–CO2 and CO2–N2 fluid inclusions: modelling for T < 31 °C and P < 400 bars. European Journal of Mineralogy 6: 753–771. [CrossRef] [Google Scholar]
  • Thompson AB, Connolly JA. 1992. Migration of metamorphic fluid: some aspects of mass and heat transfer. Earth-Science Reviews 32: 107–121. [CrossRef] [Google Scholar]
  • Thompson JFH, Sillitoe RH, Baker T, Lang JR, Mortensen JK. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita 34: 323–334. [CrossRef] [Google Scholar]
  • Timofeev A, Migdisov AA, Williams-Jones AE. 2015. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta 158: 103–111. [CrossRef] [Google Scholar]
  • Timofeev A, Migdisov AA, Williams-Jones AE. 2017. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta 197: 294–304. [CrossRef] [Google Scholar]
  • Vallance J, Cathelineau M, Marignac C, Boiron MC, Fourcade S, Martineau F, Fabre C. 2001. Microfracturing and fluid mixing in granites: W–(Sn) ore deposition at Vaulry (NW French Massif Central). Tectonophysics 336: 43–61. [CrossRef] [Google Scholar]
  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL. 2001. Appendix III: Data reduction software for LA–ICP–MS. In Sylvester PJ (ed) Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada, Short Course Series 29: 239–243. [Google Scholar]
  • Van den Kerkhof AM, Touret JLR, Maijer JB, Jansen BH. 1991. Retrograde methane-dominated fluid inclusions from high-temperature granulites of Rogaland, southwestern Norway. Geochimica et Cosmochimica Acta 55: 2533–2544. [Google Scholar]
  • Van Lichtervelde M, Salvi S, Beziat D, Linnen RL. 2007. Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower pegmatite, Manitoba, Canada. Economic Geology 102: 257–276. [Google Scholar]
  • Vermeesch P. 2012. On the visualisation of detrital age distributions. Chemical Geology 312: 190–194. [Google Scholar]
  • Villaros A, Pichavant M. 2019. Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central). Chemical Geology 528: 119265. [Google Scholar]
  • Villaros A, Laurent O, Couzinié S, Moyen JF, Mintrone M. 2018. Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central. International Journal of Earth Sciences 107: 2819–2842. [Google Scholar]
  • Villaseca C, Barbero L, Herreros V. 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 89: 113–119. [Google Scholar]
  • Vindel E, López García JÁ, Boiron MC, Cathelineau M, Prieto Colorado ÁC. 1995. P–V–T–X–fO2 evolution from wolframite to sulphide depositional stages in intragranitic W-veins. An example from the Spanish Central System. European Journal of Mineralogy 7: 675–688. [Google Scholar]
  • Vry JK, Baker JA. 2006. LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta 70: 1807–20. [Google Scholar]
  • Wang RC, Fontan F, Monchoux P. 1992. Minéraux disséminés comme indicateurs du caractère pegmatitique du granite de Beauvoir, Massif d’Echassières, Allier, France. The Canadian Mineralogist 30: 763–770. [Google Scholar]
  • Wang XS, Timofeev A, Williams-Jones AE, Shang LB, Bi XW. 2019. An experimental study of the solubility and speciation of tungsten in NaCl-bearing aqueous solutions at 250, 300, and 350 °C. Geochimica et Cosmochimica Acta 265: 313–329. [Google Scholar]
  • Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151: 413–433. [CrossRef] [Google Scholar]
  • Wei W, Hu R, Bi X, Peng J, Su W, Song S, Shi S. 2012. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China. Mineralium Deposita 47: 589–605. [Google Scholar]
  • Weis P, Driesner T, Heinrich CA. 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338: 1613–1616. [Google Scholar]
  • Weppe M. 1951. Contribution à l’étude des gîtes de tungstène français : Puy-les-Vignes (Haute Vienne), La Châtaigneraie (Cantal). Nancy : Revue de Géologie appliquée et de Prospection minière, Société d’Impressions Typographiques, 210 p. [Google Scholar]
  • Weppe M. 1958. Contribution à la géologie minière et à la minéralogie minière. Les gisements de wolfram de Leucamp, Puy-les-Vignes, Montbelleux. Nancy : Société d’Impressions Typographiques, 196 p. [Google Scholar]
  • Williamson BJ, Shaw A, Downes H, Thirlwall MF. 1996. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chemical Geology 127: 25–42. [CrossRef] [Google Scholar]
  • Wood SA, Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology 95: 143–182. [Google Scholar]
  • Wu M, Samson IM, Zhang D. 2018. Textural features and chemical evolution in Ta–Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, Southeastern China. Economic Geology 113: 937–960. [Google Scholar]
  • Yang K, Bodnar RJ. 2004. Orthomagmatic origin for the Ilkwang Cu–W breccia-pipe deposit, southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Sciences 24: 259–270. [Google Scholar]
  • Yardley BWD, Graham JT. 2002. The origins of salinity in metamorphic fluids. Geofluids 2: 249–256. [Google Scholar]
  • Zack T, Stockli D, Luvizotto G, Barth M, Belousova E, Wolfe M, et al. 2011. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology 162: 515–530. [Google Scholar]
  • Zajacz Z, Halter WE, Pettke T, Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICP-MS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochimica et Cosmochimica Acta 72: 2169–2197. [Google Scholar]
  • Zaraisky GP, Korzhinskaya V, Kotova N. 2010. Experimental studies of Ta2O5 and columbite–tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Mineralogy and Petrology 99: 287–300. [Google Scholar]
  • Zhu JC, Li RK, Li FC, Xiong XL, Zhou FY, Huang XL. 2001. Topaz–albite granites and rare metal mineralization in the Limu district, Guangxi Province, southeast China. Mineralium Deposita 36: 393–405. [Google Scholar]
  • Zhu ZY, Wang RC, Che XD, Zhu JC, Wei XL, Huang XE. 2015. Magmatic–hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb–Ta–Zr minerals. Ore Geology Reviews 65: 749–760. [Google Scholar]
  • Zhu ZY, Wang RC, Marignac C, Cuney M, Mercadier J, Che XD, et al. 2019. Petrogenesis of Nb–(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. Lithos 346-347: 105150. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.