Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Numéro d'article 19
Nombre de pages 36
DOI https://doi.org/10.1051/bsgf/2021011
Publié en ligne 8 avril 2021
  • Al Hamawi M. 1992. Sédimentologie, pétrographie sédimentaire et diagenèse des calcaires du Crétacé supérieur de la marge ibérique. PhD Thesis. France: Bordeaux 1 University. [Google Scholar]
  • Allen A, Allen JR. 2005. Basin analysis. Oxford: Blackwell Science Publications. [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: the Aquitaine basin (SW France). Tectonics 37: 1–20. [Google Scholar]
  • Aragüés LMR, Fernández JMG, Fraile DB, de Busto JML, López SG. 1989. Folletto explicativo del mapa geologico de España de Sallent (1/50000). Madrid: Instituto Tecnológico GeoMinero de España. [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35: 1843–1862. [CrossRef] [Google Scholar]
  • Barnolas A, Guérangé B, Chiron JC, Courbouleix S, Autran A, Durand-Delga M, et al. 2015. Synthèse géophysique et géologique des Pyrénées 2. AGSO and BRGM. [Google Scholar]
  • Bayona G, Cardona A, Jaramillo C, Mora A, Montes C, Caballero V, et al. 2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean-South American convergence in early Palaeogene time. J Geol Soc Lond 377: 285–314. [Google Scholar]
  • Bilotte M. 1984. Les grands foraminifères benthiques du Crétacé supérieur pyrénéen : biostratigraphie. Réflexions sur les corrélations mesogéennes. In: Oertli HJ, ed. Benthos ’83: 2nd Int. Symp. On Benthic Foraminifera − Elf Aquitaine, Esso REP and Total CFP, Pau and Bordeaux, pp. 55–60. [Google Scholar]
  • Bilotte M. 1985. Le Crétacé supérieur des plates-formes est-pyrenéennes. PhD Thesis. Toulouse (France): Paul Sabatier University. [Google Scholar]
  • Bilotte M. 2007. Permanence, au Crétacé supérieur, de la position de la limite plate-forme/bassin dans la zone sous-pyrénéenne orientale (Aude, France) : implications géodynamiques. Géologie de la France 1: 33–53. [Google Scholar]
  • Biteau J-J, Marrec AL, Vot ML, Masset J-M. 2006. The Aquitaine Basin. Petrol Geosci 12: 247–273. [Google Scholar]
  • Boix C, Villalonga R, Caus E, Hottinger L. 2009. Late Cretaceous rotaliids (Foraminiferida) from the Western Tethys. Neues Jahrb Geol P 253: 197–227. [Google Scholar]
  • Boix C, Frijia G, Vicedo V, Bernaus JM, Di Lucia M, Parente M, et al. 2011. Larger foraminifera distribution and strontium isotope stratigraphy of the La Cova limestones (Coniacian–Santonian, “Serra del Montsec”, Pyrenees, NE Spain). Cretaceous Res 32: 806–822. [Google Scholar]
  • Bond GC, Kominz MA, Devlin WJ. 1983. Thermal subsidence and eustasy in the Lower Palaeozoic miogeocline of western North America. Nature 306: 775–779. [Google Scholar]
  • Booler J, Tucker E. 2002. Distribution and geometry of facies and early diagenesis: the key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees. Sediment Geol 146: 225–247. [Google Scholar]
  • Brinkmann RV, Lögters H. 1968. Diapirs in Western Pyrenees and Foreland Spain. American Association of Petroleum Geologists Memoir 8: 275–292. [Google Scholar]
  • Bronner A, Sauter D, Manatschal G, Péron-Pinvidic G, Munschyn M. 2011. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nat Geosci 4: 549–553. [Google Scholar]
  • Burchette TP, Wright VP. 1992. Carbonate ramp depositional systems. Sediment Geol 79: 3–57. [Google Scholar]
  • Burg J-P, Van Den Driessche J, Brun J-P. 1994. Syn- to post-thickening extension: mode and consequences. C R Acad Sci II 319: 1019–1032. [Google Scholar]
  • Cámara P, Flinch JF. 2017. The southern Pyrenees: a salt-based fold-and-thrust belt. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, pp. 395–415. [Google Scholar]
  • Casteras M. 1971. Notice explicative de la carte géologique de Tardets-Sorholus (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • Casteras M, Villanova M, Godechot Y, Blanc R, Labourguigne J, Deloffre R, et al. 1970. Notice explicative de la carte géologique de Lourdes (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, et al. 2009. Towards the standardization of sequence stratigraphy. Earth Sci Rev 92: 1–33. [Google Scholar]
  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, et al. 2011. Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44: 173–245. [Google Scholar]
  • Caus E, Cornella A. 1983. Macroforaminifères du Crétacé supérieur du bassin sud-pyrénéen. Géologie Méditerranéenne 10: 137–142. [Google Scholar]
  • Caus E, Gómez-Garrido A. 1989. Upper Cretaceous biostratigraphy of the southcentral Pyrenees (Lleida, Spain). Geodin Acta 3: 221–228. [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C, Vauchez A, Nalpas T, et al. 2016. Basement − Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, De Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol Fr 183: 443–459. [CrossRef] [Google Scholar]
  • Cochelin B, Lemirre B, Denèle Y, de Saint Blanquat M, Lahfid A, Duchêne S. 2017. Structural inheritance in the central pyrenees: the variscan to Alpine tectonometamorphic evolution of the Axial Zone. J Geol Soc Lond 175: 336–351. [Google Scholar]
  • Curry ME, van der Beek P, Huismans RS, Wolf SG, Muñoz J-A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet Sci Lett 515: 26–37. [Google Scholar]
  • De Grasiansky PC, Dardeau G, Lemoine M, Tricart P. 1989. The inverted margin of the French Alps and foreland basin inversion. In: Cooper MA, Williams GD, eds. Inversion tectonics. Geol Soc Spec Publ 44: 87–104. [Google Scholar]
  • Desegaulx P, Brunet M-F. 1990. Tectonic subsidence of the Aquitaine basin since Cretaceous times. Bull Soc Géol Fr 2: 295–306. [Google Scholar]
  • Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD. 1989. Kinematics of the western Mediterranean. In: Woward MP, Dietrich D, Park RG, eds. Alpine Tectonics. Geol Soc Spec Publ 45: 265–283. [Google Scholar]
  • Drzewiecki PA, Simó JA. 1997. Carbonate platform drowning and oceanic anoxic events on a Mid-Cretaceous carbonate platform, south-central Pyrenees, Spain. J Sediment Res 67: 698–714. [Google Scholar]
  • Drzewiecki PA, Simó JA. 2000. Tectonic, eustatic and environmental controls on mid-Cretaceous carbonate platform deposition, south-central Pyrenees, Spain. Sedimentology 47: 471–495. [Google Scholar]
  • Drzewiecki PA, Simó JA. 2002. Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain. Sediment Geol 146: 155–189. [Google Scholar]
  • Dubois P, Seguin J-C. 1978. Les flyschs crétacé et éocène de la zone commingeoise et leur environnement. Bull Soc Géol Fr 5: 657–671. [Google Scholar]
  • Embry A. 2009. Practical sequence stratigraphy. Canadian Society of Petroleum Geologists. [Google Scholar]
  • Escalona A, Mann P. 2011. Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Mar Petrol Geol 28: 8–39. [Google Scholar]
  • Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764: 25–45. [CrossRef] [Google Scholar]
  • Espurt N, Hippolyte J-C., Saillard M, Bellier O. 2012. Geometry and kinematic evolution of a long-living foreland structure inferred from field data and cross section balancing, the Sainte-Victoire System, Provence, France. Tectonics 31: TC4021. [CrossRef] [Google Scholar]
  • Flügel E. 2010. Microfacies of carbonate rocks: analysis, interpretation and implications, 2nd ed. Berlin, New York: Springer-Verlag. [Google Scholar]
  • Gaspar-Escribano JM, Van Wees JD, Ter Voorde M, Cloetingh SAPL, Roca E, Cabrera L, et al. 2001. Three-dimensional flexural modelling of the Ebro Basin (NE Iberia). Geophysical J Int 145: 349–367. [Google Scholar]
  • Goldhammer RK. 1997. Compaction and decompaction algorithms for sedimentary carbonates. J Sediment Res 67: 26–35. [Google Scholar]
  • Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. [Google Scholar]
  • Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights into the crustal-scale dynamics of a doubly Vergent Orogen from a quantitative analysis of its forelands: a case study of the Eastern Pyrenees. Tectonics 37: 450–476. [CrossRef] [Google Scholar]
  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102: 121–158. [CrossRef] [Google Scholar]
  • Haq BU. 2014. Cretaceous eustasy revisited. Glob Planet Change 113: 44–58. [Google Scholar]
  • Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167. [CrossRef] [PubMed] [Google Scholar]
  • Hardenbol J, Thierry J, Farley MB, Jacquin T, De Graciansky P-C, Vail PR. 1998. Cretaceous sequence chronostratigraphy − chart 4. In: De Graciansky P-C, Hardenbol J, Jacquin T, Vail PR, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60: 3–15. [Google Scholar]
  • Hillgärtner H, Strasser A. 2003. Quantification of high-frequency sea-level fluctuations in shallow-water carbonates: an example from the Berriasian-Valanginian (French Jura). Palaeogeogr Palaeoclimatol Palaeoecol 200: 43–63. [Google Scholar]
  • Hillgärtner H, Dupraz C, Hug W. 2001. Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology 48: 117–131. [Google Scholar]
  • Hottinger L. 1966. Foraminifères rotaliformes et orbitoïdes du Sénonien inférieur pyrénéen. Eclogae Geol Helv 59: 277–301. [Google Scholar]
  • Hudec MR, Jackson MPA. 2007. Terra infirma: understanding salt tectonics. Earth Sci Rev 82: 1–28. [Google Scholar]
  • Issautier B, Saspiturry N, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the European margin of the hyperextended Mauléon basin (Early Cretaceous Arzacq and Tartas Basins). Mar Petrol Geol 118. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28: 1–24. [Google Scholar]
  • Jervey MT. 1988. Quantitative modeling of siliciclastic rock sequences and their seismic expression. SEPM Spec Publ 42: 47–69. [Google Scholar]
  • Jolivet L, Gorini C, Smit J, Leroy S. 2015. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics 34: 662–679. [CrossRef] [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776: 1–15. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth Planet Sci Lett 512: 89–99. [Google Scholar]
  • Lacombe O, Angelier J, Laurent P. 1992. Determining paleostress orientations from faults and calcite twins: a case study near the Sainte-Victoire Range (southern France). Tectonophysics 201: 141–156. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29: 1–26. [Google Scholar]
  • Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teiwell A, et al. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: how pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth Sci Rev 201. [Google Scholar]
  • Lasseur E. 2007. La Craie du Bassin de Paris (Cénomanien-Campanien, Crétacé supérieur). Sédimentologie de faciès, stratigraphie séquentielle et géométrie 3D. PhD Thesis. France: Rennes 1 University. [Google Scholar]
  • Leleu S. 2005. Les cônes alluviaux Crétacé supérieur/paléocène en Provence : traceurs de l’évolution morpho-tectonique des stades précoces de collision. PhD Thesis. Strasbourg, France: Louis Pasteur University. [Google Scholar]
  • Leleu S, Ghienne J-F, Manatschal G. 2009. Alluvial fan development andmorpho-tectonic evolution in response to contractional fault reactivation (Late Cretaceous Palaeocene), Provence, France. Basin Res 21: 157–187. [Google Scholar]
  • Le Pochat G, Lenguin M, Napias J-C, Thibault C, Roger P, Bois J-P. 1978. Notice explicative de la carte géologique de Saint-Jean-Pied-de-Port (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • Le Pochat G, Lenguin M, Thibault C. 1976. Notice explicative de la carte géologique de Mauléon-Licharre (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • López-Mir B, Muñoz JA, García-Senz J. 2014. Restoration of basins driven by extension and salt tectonics: example from the Cotiella Basin in the central Pyrenees. J Struc Geol 69: 147–162. [Google Scholar]
  • López-Mir B, Muñoz JA, García-Senz J. 2015. Extensional salt tectonics in the partially inverted Cotiella post-rift basin (south-central Pyrenees): structure and evolution. Int J Earth Sci 104: 419–434. [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new Southern North Atlantic Isochron Map: insights Into the Drift of the Iberian Plate Since the Late Cretaceous. J Geophys Res: Solid Earth 122: 1–24. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament J-M. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci 103: 1569–1596. [Google Scholar]
  • McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40: 25–32. [Google Scholar]
  • Merle J-M. 1974. Recherches sur les relations paléogéographiques et structurales entre les massifs basques au sud de Saint-Jean-Pied-de-Port (Pyrénées occidentales). PhD Thesis. France: Toulouse University. [Google Scholar]
  • Mey PBW, Nagtegaal PJC, Roberti KJ, Hartevelt JJA. 1968. Lithostratigraphic subdivision of post-hercynian deposits in the southcentral Pyrenees, Spain. Leidsc Gcologische Mededelingen 41: 221–228. [Google Scholar]
  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, et al. 2005. The Phanerozoic Record of Global Sea-Level Change. Science 310: 1293–1298. [CrossRef] [Google Scholar]
  • Mirouse R. 1962. Recherches géologiques dans la partie occidentale de la Zone primaire axiale des Pyrénées. PhD Thesis. France: Toulouse University, v. 1. [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. [CrossRef] [Google Scholar]
  • Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay K, ed. Thrust tectonics. Dordrecht ( Netherlands): Springer, pp. 235–246. [Google Scholar]
  • Neres M, Front E, Miranda JM, Camps P, Terrinha P, Mirão J. 2012. Reconciling Cretaceous paleomagnetic and marine magnetic data for Iberia: New Iberian paleomagnetic poles. J Geophys Res Solid Earth 117: 1–21. [Google Scholar]
  • Neres M, Miranda JM, Font E. 2013. Testing Iberian kinematics at Jurassic-Cretaceous times. Tectonics 32: 1312–1319. [Google Scholar]
  • Ogg JG, Ogg G, Gradstein FM. 2016. A Concise Geologic Time Scale: 2016. Amsterdam: Elsevier. [Google Scholar]
  • Olivet J. 1996. La cinématique de la plaque ibérique. Bull Cent Rech Explor Prod Elf Aquitaine 20: 131–195. [Google Scholar]
  • Papon J-P. 1969. Étude de la zone sud-Pyrénéenne dam le Massif du Turbòn (Prov. de Huesca- Espagne) collision. PhD Thesis. France: Toulouse University. [Google Scholar]
  • Philip J, Floquet M, Platel JP, Bergerat F, Sandulescu M, Bara-Boshkin E, et al. 2000. Paris: Atlas Peri-Tethys, Palaeogeographical map 14-Late Cenomanian (94.7 to 93.5 Ma). CCGM/CGMW. [Google Scholar]
  • Platel J-P. 1987. Le Crétacé supérieur de la plate-forme septentrionale du Bassin d’Aquitain. PhD Thesis. Orléans (France): BRGM. [Google Scholar]
  • Platel J-P. 1990. Notice explicative de la feuille de Cazaubon (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • Plint AG. 2010. Wave- and storm-dominated shoreline and shallow-marine systems. In: James NP, Dalrymple RW, eds. Facies Models 4: GEOtext 6. St. John’s, Newfoundland: Geological Association of Canada, pp. 167–199. [Google Scholar]
  • Pomar L, Gili E, Obrador A, Ward WC. 2005. Facies architecture and high-resolution sequence stratigraphy of an Upper Cretaceous platform margin succession, southern central Pyrenees, Spain. Sediment Geol 175: 339–365. [Google Scholar]
  • Poprawski Y, Basile C, Jaillard E, Gaudin M, Lopez M. 2016. Halokinetic sequences in carbonates systems: An example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain). Sediment Geol 334: 34–52. [Google Scholar]
  • Porthault B. 1974. Le Crétacé supérieur de la « Fosse vocontienne » et des régions limitrophes (France sud-est). PhD Thesis. Lyon, France: Claude Bernard University. [Google Scholar]
  • Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the Southern Pyrenees. In: McClay KR, ed. Thrust Tectonics. Dordrecht: Springer, pp. 247–254. [Google Scholar]
  • Puigdefàbregas C, Souquet P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129: 173–203. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées basques à l’ouest de la transformante de Pamplona (province de Labour). PhD Thesis. France: Bordeaux III University. [Google Scholar]
  • Robin C, Guillocheau F, Allemand P, Bourquin S, Dromart G, Gaulier JM, et al. 2000. Time and space-scales of the tectonic control on a flexural intracratonic basin: the Paris Basin. Bull Soc Géol Fr 171: 181–196. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. [CrossRef] [Google Scholar]
  • Royden L, Keen CE. 1980. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet Sci Lett 51: 343–361. [Google Scholar]
  • Sahagian D, Pinous O, Olferiev A, Zakharov V. 1996. Eustatic curve for the Middle Jurassic-Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. AAPG Bull 80: 1433–58. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019a. Symmetry vs. asymmetry of a hyper-thinned rift: example of the Mauléon Basin (Western Pyrenees, France). Mar Petrol Geol 104: 86–105. [Google Scholar]
  • Saspiturry S, Cochelin B, Razin P, Leleu S, Lemirre B, Bouscary C, et al. 2019b. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees). Tectonophysics 768. [Google Scholar]
  • Saspiturry N, Razin P, Allanic C, Issautier B, Baudin T, Lasseur E, et al. 2020a. Closure of a hyperextended system in an orogenic lithospheric pop-up, Western Pyrenees: The role of mantle buttressing and rift structural inheritance. Terra Nova 00: 1–8. [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020b. Paleogeothermal Gradients across an Inverted Hyperextended Rift System: Example of the Mauléon Fossil Rift (Western Pyrenees). Tectonics 39: 1–36. [Google Scholar]
  • Saspiturry N, Issautier B, Razin P, Baudin T, Asti R, Lagabrielle Y, et al. 2021, Review of Iberia-Eurasia plate-boundary basins: role of sedimentary burial on depth-dependent continental crust ductile thinning during rifting and continental breakup. Bassin Res 33: 1626–1661. [Google Scholar]
  • Saura E, Oró i Ardèvol L, Teixell A, Vergès J. 2016. Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics 35: 638–662. [CrossRef] [Google Scholar]
  • Schlager W. 1993. Accommodation and supply − a dual control on stratigraphic sequences. Sediment Geol 86: 111–136. [Google Scholar]
  • Schlager W. 2004. Fractal nature of stratigraphic sequences. Geology 32: 185–188. [Google Scholar]
  • Schlager W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. In: SEPM Concepts in Sedimentology and Paleontology. [Google Scholar]
  • Serrano O. 2001. Le Crétacé supérieur-Paléogène du basin compressif nord-pyrénéen (Bassin de l’Adour) : sédimentologie, stratigraphie, géodynamique. PhD Thesis. France: Rennes I University. [Google Scholar]
  • Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. J Geophys Res Solid Earth 109: 1–18. [Google Scholar]
  • Simó JA. 1986. Carbonate platform depositional sequences, Upper Cretaceous, south-central Pyrenees (Spain). Tectonophysics 129: 205–231. [Google Scholar]
  • Simó JA. 1993. Cretaceous carbonate platforms and stratigraphic sequences, south-central Pyrenees, Spain. In: Simó JA, Scott RW, Masse J-P, eds. Cretaceous Carbonate Platforms. American Association of Petroleum Geologists, Memoir 56: 325–342. [Google Scholar]
  • Sinclair HD, Naylor M. 2012. Foreland Basin Subsidence Driven by Topographic Growth versus Plate Subduction. Geol Soc Am Bull 124: 368–79. [Google Scholar]
  • Skelton PW, Gili E, Vincens E, Obrador A, López YG. 2003. Revised lithostratigraphy of the Upper Cretaceous (Santonian) carbonate platform succession on the northern flank of Sant Corneli, southern Central Pyrenees. J Iber Geol 29: 73–87. [Google Scholar]
  • Souquet P. 1967. Le Crétacé supérieur sud-pyrénéen en Catalogne, Aragon et Navarre. Thèse d’état. France: Toulouse Science Faculty. [Google Scholar]
  • Souquet P, Peybernès B, Bilotte M, Debroas E-J. 1977. La chaîne alpine des Pyrénées. Géologie Alpine 53: 193–216. [Google Scholar]
  • Srivastava S, Sibuet J-C., Cande S, Roest W, Reid ID. 2000. Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet Sci Lett 182: 61–76. [Google Scholar]
  • Steckler MS, Watts AB. 1978. Subsidence of the Atlantic-type continental margin off New-York. Earth Planet Sci Lett 41: 1–13. [Google Scholar]
  • Teixell A. 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. J Geol Soc Lond 153: 301–310. [Google Scholar]
  • Teixell A, Garcia-Sansegundo J, Zamorano M, Caus E, Robador A, Remacha E, et al. 1994. Folletto explicativo del mapa geologico de España de Ansó (1/50000). Madrid: Instituto Tecnológico GeoMinero de España. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724–725: 146–170. [Google Scholar]
  • Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. C R Geosci 348: 257–267. [Google Scholar]
  • Tempier C, Durand JP. 1981. Importance de l’épisode tectonique d’âge Crétacé supérieur dans la structure du versant méridional de la montagne Sainte-Victoire (Proverice). C R Acad Sci Paris 293: 629–632. [Google Scholar]
  • Ternet Y. 1965. Étude du synclinal complexe des Eaux-Chaudes (Basses Pyrénées). PhD Thesis. France: Toulouse University. [Google Scholar]
  • Ternet Y, Majesté-Menjoulas C, Canerot J, Baudin T, Cocherie A, Guerrot C, et al. 2004. Notice explicative de la carte géologique de Laruns-Somport (1/50000). Orléans: Éditions du BRGM. [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological Evidence of Early Orogenesis, Eastern Pyrenees, France. Tectonics 38: 1308–1336. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2014. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geol Soc Spec Publ 413: 171–203. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43: 15–18. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huygues D, Paquette J-L, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: a synthesis from sedimentological, geochronological and kinematic constraints. Earth Sci Rev 172 43–74. [Google Scholar]
  • Vergés J. 1993. Estudi geològic del vessant Sud del Pirineu Oriental i Central: Evolució en 3D. PhD Thesis. Spain: Universitat de Barcelona. [Google Scholar]
  • Vergés J, Marzo M, Santaeulària T, Serra-Kiel J, Burbank DW, Muñoz JA, et al. 1998. Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin. London Geological Society Special Publications 134: 107–134. [Google Scholar]
  • Vergés J, Millán H, Roca E, Muñoz JA, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn and post-collisional crustal-scale cross-sections. Mar Petrol Geol 12: 903–915. [Google Scholar]
  • Vergés J, Mufloz JA, Martfnez A. 1992. South Pyrenean fold-and-thrust belt: role of foreland evaporitic levels in thrust geometry. In: McClay KR, ed. Thrust Tectonics. London: Chapman & Hall, pp. 255–264. [CrossRef] [Google Scholar]
  • Vincens E, López G, Obrador A. 1998. Facies succession, biostratigraphy and rudist faunas of Coniacian to Santonian platform deposits in the Sant Corneli anticline (southern central Pyrenees). Geobios 22: 403–427. [Google Scholar]
  • Vissers R, Meijer PT. 2012. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth Sci Rev 110: 93–110. [Google Scholar]
  • Xie X, Heller PL. 2009. Plate tectonics and basin subsidence history. Geol Soc Am Bull 121: 55–64. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.