Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Minéralisations périgranitiques
Numéro d'article 2
Nombre de pages 26
DOI https://doi.org/10.1051/bsgf/2020046
Publié en ligne 23 février 2021
  • Ackerson M, Mysen BO, Tailby N, Watson E. 2018. Low-temperature crystallization of granites and the implications for crustal magmatism. Nature 559. https://doi.org/10.1038/s41586-018-0264-2. [Google Scholar]
  • Alfonso P, Melgarejo JC, Yusta I, Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. The Canadian Mineralogist 41: 103–116. [Google Scholar]
  • Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46. [CrossRef] [Google Scholar]
  • Audétat A, Pettke T, Heinrich CA, Bodnar RJ. 2008. Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F mineralized Mole granite (Australia). Geochim Cosmochim Acta 64: 3373–3393. [Google Scholar]
  • Azor A, Dias da Silva Í, Gómez Barreiro J, González-Clavijo E, Martínez Catalán JR, Simancas JF, et al. 2019. Deformation and structure. In: Quesada C, Oliveira JT, eds. The Geology of Iberia: A Geodynamic Approach: Vol. 2: The Variscan Cycle, Regional Geology Reviews. Cham: Springer International Publishing, pp. 307–348. https://doi.org/10.1007/978-3-030-10519-8_10. [Google Scholar]
  • Ballouard C, Poujol M, Mercadier J, Deloule E, Boulvais P, Baele JM, et al. 2018. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation. Mineralium Deposita 53: 601–628. [CrossRef] [Google Scholar]
  • Belissont R, Boiron MC, Luais B, Cathelineau M. 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Ac. 126: 518–540. [Google Scholar]
  • Bishop AC. 1989. Greisen. In: Petrology. Encyclopedia of Earth Science. Boston, MA: Springer. [Google Scholar]
  • Bouzari F, Hart CJR, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology 111: 1397–1410. [CrossRef] [Google Scholar]
  • Breiter K, Müller A, Leichmann J, Gabašová A. 2005. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos 80: 323–345. [Google Scholar]
  • Breiter K, Svojtka M, Ackerman L, Švecová K. 2012. Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany): insights into the volcano-plutonic complex evolution. Chem. Geol. 326-327: 36–50. [Google Scholar]
  • Breiter K, Ďurišová J, Dosbaba M. 2017a. Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geology Reviews 90: 25–35. [Google Scholar]
  • Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Vaňková MH, Galiová MV, et al. 2017b. Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe. Lithos 292: 198–217. [CrossRef] [Google Scholar]
  • Breiter K, Hložková M, Korbelová Z, Vasinova Galiova M. 2019. Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews 106. https://doi.org/10.1016/j.oregeorev.2019.01.013. [Google Scholar]
  • Bussink RW. 1984. Geochemistry of the Panasqueira Tungsten-Tin Deposit, Portugal. Geol. Ultraiectina. [Google Scholar]
  • Carocci E, Marignac C, Cathelineau M, Truche L, Lecomte A, Pinto F. 2018. Rutile from Panasqueira (Central Portugal): An Excellent Pathfinder for Wolframite Deposition. Minerals 9: 9. https://doi.org/10.3390/min9010009. [Google Scholar]
  • Carocci E, Marignac C, Cathelineau M, Truche L, Poujol M, Boiron M, et al. 2020. Incipient wolframite deposition at Panasqueira (Portugal): W-rutile and tourmaline compositions as proxies for early fluid composition. Economic Geology. [Google Scholar]
  • Castro A, Corretgé GL, De La Rosa J, Enrique P, Martínez FJ, Pascual E, et al. 2002 Palaeozoic Magmatism. In: Gibbons W, Moreno MT, eds. The Geology of Spain. London: Geological Society, pp. 117–53. [Google Scholar]
  • Černý P, Blevin PL, Cuney M, London D. 2005. Granite-Related Ore Deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JR, eds. Economic Geology – One Hundredth Anniversary Volume, pp. 337–370. [Google Scholar]
  • Chamberlain KR, Bowring SA. 2001. Apatite-feldspar U–Pb thermochronometer: a reliable, mid-range (∼ 450 °C), diffusion controlled system. Chemical Geology 172: 173–200. [CrossRef] [Google Scholar]
  • Chen LL, Ni P, Dai BZ, Li WS, Chi Z, Pan JY. 2019. The genetic association between quartz vein-and greisen-type mineralization at the maoping W–Sn deposit, southern Jiangxi, China: insights from zircon and cassiterite U–Pb ages and cassiterite trace element composition. Minerals 9(7): 411. [CrossRef] [Google Scholar]
  • Chen G, Gao J, Lu J, Zhang R. 2020. In situ LA-ICP-MS analyses of mica and wolframite from the Maoping tungsten deposit, southern Jiangxi, China. Acta Geochimica, 1–19. [Google Scholar]
  • Chew DM, Petrus JA, Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199. [CrossRef] [Google Scholar]
  • Clark AH. 1964. Preliminary study of the temperatures and confining pressures of granite emplacement and mineralization, Panasqueira, Portugal. Inst. Mining Metall. Trans. 73: 813–824. [Google Scholar]
  • Cochrane R, Spikings RA, Chew D, Wotzlaw JF, Chiaradia M, Tyrrell S, et al. 2014. High temperature (> 350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56. [CrossRef] [Google Scholar]
  • Codeço M, Weis P, Trumbull R, Pinto F, Lecumberri-Sanchez P, Wilke F. 2017. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal. Chemical Geology 468: 1–16. https://doi.org/10.1016/j.chemgeo.2017.07.011. [CrossRef] [Google Scholar]
  • Codeço MS, Weis P, Trumbull RB, Glodny J, Wiedenbeck M, Romer RL. 2019. Boron-isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn-ore formation. Economic Geology 114(1): 153–163. https://doi.org/10.5382/econgeo.2019.4625. [Google Scholar]
  • Codeço MS, Weis P, Trumbull RB, Van Hinsberg V, Pinto F, Lecumberri-Sanchez P, et al. 2020. The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W–Sn–Cu deposit, Portugal. Mineralium Deposita. [Google Scholar]
  • Conliffe J, Feely M. 2006. Microthermometrics characteristics of fluids associated with granite and greisen quartz and vein quartz and beryl from Rosses Granite complex, Donegal, NW Ireland. J Geochem Explor 89: 73–77. [Google Scholar]
  • Dias G, Leterrier J, Mendes A, Simões P, Bertrand JM. 1998. U-Pb zircon and monazite geochronology of syn- to post-tectonic Hercynian granitoids from the central Iberian Zone (northern Portugal). Lithos 45: 349–369. [Google Scholar]
  • Dolejs D. 2015. Quantitative characterization of hydrothermal systems and reconstruction of fluid fluxes: the significance of advection, disequilibrium, and dispersion. In: SGA Proceedings 13th SGA Biennial Meeting. [Google Scholar]
  • Dostal J, Kontak DJ, Ochir G, Shellnutt J, Fayek M. 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos 236-237: 173–189. [Google Scholar]
  • Foxford KA, Nicholson R, Polya DA. 1991. Textural evolution of W–Cu–Sn bearing hydrothermal quartz veins at Minas da Panasqueira, Portugal. Mineralogical Magazine 55: 435–445. [CrossRef] [Google Scholar]
  • Foxford KA, Nicholson R, Polya DA, Hebblethwaite RPB. 2000. Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal: Evidence from vein spatial distributions, displacements and geometries. J. Struct. Geol. 22: 1065–1086. [Google Scholar]
  • Gomes M, Neiva A. 2000. Chemical zoning of muscovite from the Ervedosa granite, northern Portugal. Mineralogical Magazine 64: 347–358. https://doi.org/10.1180/002646100549247. [Google Scholar]
  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ. 2004. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography 1. Geochimica et Cosmochimica Acta 68: 3741–3759. [Google Scholar]
  • Grant JA. 1986. The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology 81(8): 1976–1982. [Google Scholar]
  • Guidotti CV. 1984. Micas in metamorphic rocks. In: Bailey SW, ed. Micas. Washington: Mineralogical Society of America, pp. 357–467. [Google Scholar]
  • Gurbanov AG, Chernukha DG, Koshchug DG, Kurasova SP, Fedyushchenko SV. 1999. EPR spectroscopy and geochemistry of rock-forming quartz as an indicator of the superimposed processes in rocks of igneous associat ions of various ages in the Greater Caucasus. Geochem. Int. 37: 519–604. [Google Scholar]
  • Halter WE, Williams-Jones AE, Kontak DJ. 1996. The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia. Economic Geology 91(2): 368–385. [CrossRef] [Google Scholar]
  • Harlov DE, Wirth R, Förster HJ. 2005. An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petr 150: 268–286. [CrossRef] [Google Scholar]
  • Heaney PJ, Veblen DR, Post JE. 1994. Structural disparities between chalcedony and macrocrystalline quartz. American Mineralogist 79: 452–460. [Google Scholar]
  • Hebblethwaite RPB, Antao AM. 1982. A report on the study of dilation patterns within the Panasqueira ore body: Barroca Grande, Beralt Tin Wolfram (Portugal), unpub. rept., 15 p. [Google Scholar]
  • Heinrich CA. 1990. The chemistry of hydrothermal tin-tungsten ore deposits. Econ. Geol. 85: 457–481. [CrossRef] [Google Scholar]
  • Huang R, Audétat A. 2012. The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochimica et Cosmochimica Acta 84: 75–89. [CrossRef] [Google Scholar]
  • Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim. Cosmochim. Acta 132: 349–374. [Google Scholar]
  • Icenhower J, London D. 1995. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am. Mineral. 80: 1229–1251. [Google Scholar]
  • Icenhower J, London D. 1996. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. Am. Mineral. 81: 719–734. [Google Scholar]
  • Jacamon F, Larsen RB. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: the Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos 107: 281–291. [Google Scholar]
  • Johnson JW, Oelkers EH, Helgeson HC. 1992. SUPCRT92-A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1-bar to 5000-bar and 0 °C to 1000 °C. Computer and Geosciences 18: 899–947. [NASA ADS] [CrossRef] [Google Scholar]
  • Jolliff BL, Papike JJ, Shearer CK. 1992. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim. Cosmochim. Acta 56: 1915–1939. [Google Scholar]
  • Julivert M, Fontboté JM, Ribeiro A, Conde L. 1972. Mapa Tectonico de la Peninsula Iberica y Baleares E. 1:1 000 000. Inst. Geol. Min., España, Madrid. [Google Scholar]
  • Kaeter D, Barros R, Menuge J, Chew D. 2018. The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite. Geochimica et Cosmochimica Acta. 240. https://doi.org/10.1016/j.gca.2018.08.024. [CrossRef] [Google Scholar]
  • Kelly WC, Rye RO. 1979. Geologic, fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ Geol 74: 1721–1822. [Google Scholar]
  • Korges M, Weis P, Lüders V, Laurent O. 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology 46(1): 75–78. [Google Scholar]
  • Kotlyar BB, Ludington S, Mosier DL. 1995. Descriptive, grade, and tonnage models for molybdenum-tungsten greisen deposits: U.S. Geological Survey, Open-File Report 95-584, 30 p. [Google Scholar]
  • Larsen RB, Henderson H, Ihlen PM, Jacamon F. 2004. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from granite from South Norway. Contributions to Mineralogy and Petrology 147: 615–628. [Google Scholar]
  • Launay G, Sizaret S, Guillou-Frottier L, Gloaguen E, Pinto F. 2018. Deciphering fluid flow at the magmatic-hydrothermal transition: A case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal). Earth and Planetary Science Letters 499: 1–12. [Google Scholar]
  • Launay G. 2019. Dynamic permeability related to greisenization in Sn–W ore deposits: Quantitative petrophysical and experimental evidence. Geofluids. https://doi.org/10.1155/2019/5976545. [Google Scholar]
  • Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, Wälle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology 45: 579–582. [Google Scholar]
  • Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang R-C, et al. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W–Sn deposit (Jiangxi, China). Lithos 264: 108–124. [CrossRef] [Google Scholar]
  • Legros H, Marignac C, Tabary T, Mercadier J, Richard A, Cuney M, et al. 2018. The ore-forming magmatic-hydrothermal system of the Piaotang W–Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. American Mineralogist. 103: 39–54. https://doi.org/10.2138/am-2018-6196. [CrossRef] [Google Scholar]
  • Lehmann B. 1990. Lehmann Metallogeny of tin. In: Lecture notes in Earth Sciences 32, Springer-Verlag, 211 p. [Google Scholar]
  • London D, Hervig RL, Morgan GB. 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib. Mineral. Petrol. 99: 360–373. [CrossRef] [Google Scholar]
  • Lüders V. 1996. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (Wolframite, Stibnite, Bournonite): Metallogenic implications. Economic Geology 91(8): 1462–1468. [Google Scholar]
  • Ludwig KR. 2012. User’s Manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, pp. 1–75. [Google Scholar]
  • Luth WC, Jahns RH, Tuttle OF. 1964. The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. 69(4): 759–773. https://doi.org/10.1029/JZ069i004p00759. [Google Scholar]
  • Mao Z, Cheng Y, Liu J, Yuan S, Wu S, Xiang X, et al. 2013. Geology and molybdenite Re–Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews 53: 422–433. [CrossRef] [Google Scholar]
  • Marignac C, Cuney M, Cathelineau M, Lecomte A, Carocci E, Pinto F. 2020. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W–Sn–Cu vein deposit: a petrographic, mineralogical, and geochemical study. Minerals 10(6): 562. [CrossRef] [Google Scholar]
  • Martins I, Mateus A, Figueiras J, Rodrigues P, Pinto F. 2020. Thermal evolution of the W–Sn(–Cu) Panasqueira ore system (Portugal): insights from pyrite-pyrrhotite and arsenopyrite geothermometers. Comunicações Geológicas. [Google Scholar]
  • Mateus A, Figueiras J, Martins I, Rodrigues PC, Pinto F. 2020. Relative abundance and compositional variation of silicates, oxides and phosphates in the W-Sn-rich lodes of the Panasqueira mine (Portugal): implications for the ore-forming process. Minerals 10(6): 551. [CrossRef] [Google Scholar]
  • McDowell FW, McIntosh WC, Farley KA. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology 214: 249–263. [Google Scholar]
  • Michaud J, Gumiaux C, Pichavant M, Gloaguen E, Marcoux E. 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geology Reviews 116: 103215. https://doi.org/10.1016/j.oregeorev.2019.103215. [CrossRef] [Google Scholar]
  • Migdisov AA, Williams-Jones AE. 2005. An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350 °C. Implications for tin ore formation. Chemical Geology 217: 29–40 [Google Scholar]
  • Miller CF, Stoddard EF, Bradfish LJ, Dollase WA. 1981. Composition of plutonic muscovite: genetic implications. Can. Mineral. 19: 25–34. [Google Scholar]
  • Monecke T, Kempe U, Götze J. 2002. Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth and Planetary Science Letters 202: 709–724. [Google Scholar]
  • Monier G, Merggoil-Daniel J, Labernardière H. 1984. Générations successives de muscovites et feldspaths potassiques dans les leucogranites du massif de Millevaches (Massif Central Francais). Bull. Mineral. 107: 55–68. [Google Scholar]
  • Monier G, Robert J-L. 1986. Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O–Li2O–MgO–FeO–Al2O3–SiO2–H2O–HF at 600 °C, 2 kbar PH2O: comparison with natural lithium micas. Mineralogical Magazine 50: 641–651. [CrossRef] [Google Scholar]
  • Monnier L, Lach P, Salvi S, Melleton J, Bailly L, Béziat D, et al. 2018. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France. Lithos 320-321: 355–377. [Google Scholar]
  • Monnier L, Salvi S, Melleton J, Bailly L, Béziat D, Parseval P, et al. 2019. Multiple generations of wolframite mineralization in the Echassieres District (Massif Central, France). Minerals 9: 637. https://doi.org/10.3390/min9100637. [CrossRef] [Google Scholar]
  • Monnier L, Salvi S, Jourdan V, Sall S, Bailly L, Melleton J, et al. 2020. Contrasting fluid behavior during two styles of greisen alteration leading to distinct wolframite mineralizations: the Echassières district (Massif Central, France). Ore Geology Reviews, 103648. [CrossRef] [Google Scholar]
  • Mlynarczyk M, Sherlock R, Williams-Jones A. 2002. San Rafael, Peru: Geology and structure of the worlds richest tin lode. Mineralium Deposita 38: 555–567. [Google Scholar]
  • Müller A, Kronz A, Breiter K. 2002. Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesí Granite System (Krušné Hory, Czech Republic). Bulletin of the Czech Geological Survey 77: 135–145. [Google Scholar]
  • Müller A, van den Kerkhof AM, Behr H-J, Kronz A, Koch-Müller M. 2010. The evolution of late-Hercynian granites and rhyolites documented by quartz – A review. Geol. Soc. Am. Spec. Pap. 472: 185–204. [Google Scholar]
  • Müller A, Herklotz G, Giegling H. 2018. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany. Journal of Geochemical Exploration 190: 357–373. [Google Scholar]
  • Nash WP, Crecraft HR. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta 49: 2309–2322. [Google Scholar]
  • Neiva AMR. 1987. Geochemistry of greisenized granites and metasomatic schists of tungsten-tin deposits in Portugal. In: Helgeson HC, ed. Chemical Transport in Metasomatic Processes. NATO ASI Series C218, pp. 681–700. [Google Scholar]
  • Neiva AMR, Silva MMVG, Gomes MEP. 2007. Crystal chemistry of tourmaline from Variscan granites, associated tin-tungsten- and gold deposits, and associated metamorphic and metasomatic rocks from northern Portugal. Neues Jahrbuch für Mineralogie – Abhandlungen 184(1): 45–76. [CrossRef] [Google Scholar]
  • Noronha F, Doria A, Dubessy J, Charoy B. 1992. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita 27: 72–79. https://doi.org/10.1007/BF00196084. [CrossRef] [Google Scholar]
  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems 11. [Google Scholar]
  • Pearce N, Perkins W, Westgate J, Gorton M, Jackson S, Neal C, Chenery S. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research 21: 115–144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x. [CrossRef] [Google Scholar]
  • Philpotts JA, Schnetzler CC. 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta 34: 307–322. [Google Scholar]
  • Pichavant M. 1981. An experimental study of the effect of boron on a water-saturated haplogranite at 1 kbar vapour pressure. Contributions to Mineralogy and Petrology 76: 430–439. [CrossRef] [Google Scholar]
  • Pichavant M, Villaros A, Deveaud S, Scaillet B, Lahlafi M. 2016. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids. The Canadian Mineralogist 54: 559–581. https://doi.org/10.3749/canmin.1500079. [CrossRef] [Google Scholar]
  • Pirajno F. 1992. Greisen systems. In: Hydrothermal Mineral Deposits. Berlin, Heidelberg: Springer, pp. 280–324. [Google Scholar]
  • Pirajno F. 2009. Hydrothermal processes and mineral systems. Dordrecht: Springer. [CrossRef] [Google Scholar]
  • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, et al. 2016. U–Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am. Mineral. 101: 2430–2442. [CrossRef] [Google Scholar]
  • Pollard PJ, Taylor RG, Cuff C. 1988. Genetic Modelling of Greisen-Style Tin Systems. In: Hutchison CS, ed. Geology of Tin Deposits in Asia and the Pacific. Berlin, Heidelberg: Springer, pp 59–72. [Google Scholar]
  • Polya DA. 1989. Chemistry of the main-stage ore-forming fluids of the Panasqueira W–Cu–(Ag)–Sn deposit, Portugal: implications for models of ore genesis. Econ. Geol. 84: 1134–1152. [CrossRef] [Google Scholar]
  • Polya DA, Foxford KA, Stuart F, Boyce A, Fallick AE. 2000. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: New evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochim. Cosmochim. Acta 64: 3357–3371. [Google Scholar]
  • Ribeiro RF. 2017. Gravimetric Modelling and Geological Interpretation of Argemela-Panasqueira Area. Upublished MSc thesis, Universidade do Porto. [Google Scholar]
  • Robb L. 2005. Introduction to ore-forming processes. Malden, MA: Blackwell Publishing, 373 p. [Google Scholar]
  • Rusk B. 2012. Cathodoluminescent textures and trace elements in hydrothermal quartz. In Götze J, Möckel R, eds. Quartz: Deposits, Mineralogy and Analytics. Heidelberg, New York: Springer, pp. 307–329. [Google Scholar]
  • Rusk B, Reed M. 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30(8): 727–730. [Google Scholar]
  • Sanderson DJ, Roberts S, Gumiel P, Greenfield C. 2008. Quantitative Analysis of Tin- and Tungsten-Bearing Sheeted Vein Systems. Economic Geology 103: 1043–1056. https://doi.org/10.2113/gsecongeo.103.5.1043. [Google Scholar]
  • Schmidt C. 2018. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica et Cosmochimica Acta 220: 499–511. [CrossRef] [Google Scholar]
  • Schoene B, Bowring SA. 2006. U–Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contributions to Mineralogy and Petrology 151: 615–630. [CrossRef] [Google Scholar]
  • Smith MP, Banks DA, Yardley BWD. 1996. Fluid inclusion and stable isotope constraints on the genesis of the Cligga Head Sn-W deposit, SW England. Eur J Mineral 8: 961–974. [Google Scholar]
  • Snee LW, Sutter JF, Kelly WC. 1988. Thermochronology of economic mineral deposits; dating the stages of mineralization at Panasqueira, Portugal, by highprecision 40Ar/39Ar age spectrum techniques on muscovite. Econ Geol 83: 335–354. [Google Scholar]
  • Speer JA. 1984. Micas in igneous rocks. In: Bailey SW, ed. Micas. Reviews in Mineralogy, Vol. 13. Washington D.C.: Mineralogical Society of America, pp. 299–356. [Google Scholar]
  • Stacey JS, Kramer JD. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planetary Sciences Letters 26: 207–221. [CrossRef] [Google Scholar]
  • Stemprok M. 1987. Greisenization (a review). Geologische Rundschau, Springer-Verlag 76: 169–175. [CrossRef] [Google Scholar]
  • Stemprok M, Pivec E, Langrova A. 2005. The petrogenesis of a wolframitebearing greisen in the Vykmanov granite stock, Western Krušné hory pluton (Czech Republic). Bulletin of Geosciences 80(3): 163–184. [Google Scholar]
  • Taylor RG. 1979. Geology of tin deposits. Developments in Economic Geology, Elsevier, 11: 543. [Google Scholar]
  • Taylor RG, Pollard PJ. 1988. Pervasive hydrothermal alteration in tin-bearing granite and implications for the evolution of ore-bearing magmatic fluids. Canadian Institute of Mining and Metallurgy Special 39: 86–95. [Google Scholar]
  • Thadeu D. 1951. Geologia do couto mineiro da Panasqueira. Comunic Serv Geol Port 32: 5–64. [Google Scholar]
  • Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A. 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology 160: 743–759. [CrossRef] [Google Scholar]
  • Tischendorf G, Gottesmann B, Förster H-J., Trumbull RB. 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag. 61: 809–834. https://doi.org/10.1180/minmag.1997.061.409.05. [Google Scholar]
  • Tuttle OF, Bowen NL. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America. https://doi.org/10.1130/MEM74. [Google Scholar]
  • Van Daele J, Hulsbosch N, Dewaele S, Boiron MC, Piessens K, Boyce A. 2018. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda. Ore Geology Reviews. 101. https://doi.org/10.1016/j.oregeorev.2018.07.020. [Google Scholar]
  • Vilas L, de San Jose MA, Garcia-Hidalgo JF, Herranz P, Pelaez JR, Perejon A, et al. 1990. Autochthonous Sequences. In : Dallmeyer RD, Garcia EM, eds. Pre-Mesozoic Geology of Iberia, IGCP-Project 233. Berlin, Heidelberg: Springer, pp. 145–219. https://doi.org/10.1007/978-3-642-83980-1_14. [CrossRef] [Google Scholar]
  • Villaseca C, Merino E, Oyarzun R, Orejana D, Pérez-Soba C, Chicharro E. 2014. Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research 245: 131–145. https://doi.org/10.1016/j.precamres.2014.02.006. [Google Scholar]
  • Wark DA, Watson EB. 2006. TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology 152: 743–754. [Google Scholar]
  • Weil JA. 1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals 10: 149–165. [Google Scholar]
  • Werner ABT, Sinclair WD, Amey EB. 2014. International strategic mineral issues summary report – Tungsten (ver. 1.1, November 2014). U.S. Geological Survey Circular 930-O, 74 p. [Google Scholar]
  • Wheeler A. 2015. Technical report on the mineral resources and reserves of the Panasqueira mine, Portugal. Report NI 43-101, Prepared for Almonty Industries. [Google Scholar]
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. Am. Mineral 95: 185–187. [Google Scholar]
  • Williamson BJ, Stanley CJ, Wilkinson JJ. 1997. Implications from inclusions in topaz for greisenisation and mineralisation in the Hensbarrow topaz granite, Cornwall, England. Contributions to Mineralogy and Petrology 127(1-2): 119–128. [CrossRef] [Google Scholar]
  • Winderbaum L, Ciobanu CL, Cook NJ, Paul M, Metcalfe A, Gilbert S. 2012. Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Math. Geosci. 44: 823–842. [Google Scholar]
  • Yokart B, Barr SM, Williams-Jones AE, Macdonald AS. 2003. Late-stage alteration and tin-tungsten mineralization in the Khuntan Batholith, northern Thailand. Journal of Asian Earth Sciences 21(9): 999–1018. [CrossRef] [Google Scholar]
  • Zhao WW, Zhou MF, Li YHM, Zhao Z, Gao JF. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. Journal of Asian Earth Sciences 137: 109–140. [CrossRef] [Google Scholar]
  • Zheng Z, Chen YJ, Deng XH, Yue SW, Chen HJ, Wang QF. 2018. Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China. Ore Geology Reviews 95: 280–291. [CrossRef] [Google Scholar]
  • Zimmer K, Zhang YL, Lu P, Chen YY, Zhang GR, Dalkilic M, et al. 2016. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. Computer and Geosciences 90: 97–111. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.