Numéro |
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
|
|
---|---|---|
Numéro d'article | 38 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.1051/bsgf/2021028 | |
Publié en ligne | 1 septembre 2021 |
- Anderson AJ, Hodges KV, van Soest MC. 2017. Empirical constraints on the effects of radiation damage on helium diffusion in zircon. Geochimica et Cosmochimica Acta 218(Supplement C): 308–322. https://doi.org/10.1016/j.gca.2017.09.006. [CrossRef] [Google Scholar]
- Angrand P, Mouthereau F. 2021. Evolution of the Alpine orogenic belts in the Western Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate boundary. BSGF Earth Sciences Bulletin. https://doi.org/10.13140/RG.2.2.15228.46729. [Google Scholar]
- Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. https://doi.org/10.1002/2017TC004670. [CrossRef] [Google Scholar]
- Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth 11(4): 1313–1332. https://doi.org/10.5194/se-11-1313-2020. [CrossRef] [Google Scholar]
- Azambre B, Ravier J. 1978. Les écailles de gneiss du facies granulite du Port de Saleix et de la région de Lherz (Ariège), nouveaux témoins du socle profond des Pyrénées. Bulletin de La Société Géologique de France S7-XX(3): 221–228. https://doi.org/10.2113/gssgfbull.S7-XX.3.221. [CrossRef] [Google Scholar]
- Barbarand J, Carter A, Wood I, Hurford T. 2003. Compositional and structural control of fission-track annealing in apatite. Chemical Geology 198(1-2): 107–137. https://doi.org/10.1016/S0009-2541(02)00424-2. [CrossRef] [Google Scholar]
- Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints: differences between models of Iberia. Tectonics 35(8): 1843–1862. https://doi.org/10.1002/2015TC004019. [CrossRef] [Google Scholar]
- Batt GE, Brandon MT, Farley KA, Roden-Tice M. 2001. Tectonic synthesis of the Olympic Mountains segment of the Cascadia wedge, using two-dimensional thermal and kinematic modeling of thermochronological ages. Journal of Geophysical Research: Solid Earth 106(B11): 26731–26746. https://doi.org/10.1029/2001JB000288. [CrossRef] [Google Scholar]
- Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology 259(3): 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043. [CrossRef] [Google Scholar]
- Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, et al. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524-525: 1–28. https://doi.org/10.1016/j.tecto.2011.12.035. [CrossRef] [Google Scholar]
- Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology 38(2): 191–192. https://doi.org/10.1130/focus022010.1. [CrossRef] [Google Scholar]
- Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, et al. 2016.New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). Comptes Rendus Geoscience 348(3-4): 312–321. https://doi.org/10.1016/j.crte.2015.11.008. [CrossRef] [Google Scholar]
- Cherniak DJ, Watson EB, Thomas JB. 2009. Diffusion of helium in zircon and apatite. Chemical Geology 268(1): 155–166. https://doi.org/10.1016/j.chemgeo.2009.08.011. [CrossRef] [Google Scholar]
- Choukroune P, ECORS-Pyrenees Team. 1989. The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8(1): 23–39. https://doi.org/10.1029/TC008i001p00023. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33(7): 1340–1359. https://doi.org/10.1002/2013TC003471. [CrossRef] [Google Scholar]
- Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6(2): 643–668. https://doi.org/10.5194/se-6-643-2015. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y, Labaume P, Ringenbach J-C, Vauchez A, Nalpas T, et al. 2016. Basement-Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. https://doi.org/10.1016/j.tecto.2016.07.022. [CrossRef] [Google Scholar]
- Debroas EJ. 1987. Modèle de bassin triangulaire à l’intersection de décrochements divergents pour le fossé albo-cénomanien de la Ballongue (zone nord-pyrénéenne, France). Bulletin de la Société Géologique de France III(5): 887–898. https://doi.org/10.2113/gssgfbull.III.5.887. [CrossRef] [Google Scholar]
- Debroas EJ. 1990. Le Flysch noir albo-cénomanien témoin de la structuration albienne à sénonienne de la zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France). Bulletin de La Société Géologique de France VI(2): 273–285. https://doi.org/10.2113/gssgfbull.VI.2.273. [CrossRef] [Google Scholar]
- Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The Tectono-thermal Evolution of a Fossil Hyperextended Rift Basin. Tectonics 38(11): 3881–3915. https://doi.org/10.1029/2018TC005348. [CrossRef] [Google Scholar]
- Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021. Basement-Cover Decoupling During the Inversion of a Hyperextended Basin: Insights From the Eastern Pyrenees. Tectonics 40(5): e2020TC006512. https://doi.org/10.1029/2020TC006512. [CrossRef] [Google Scholar]
- Erdös Z, Beek P, Huismans RS. 2014. Evaluating balanced section restoration with thermochronology data: A case study from the Central Pyrenees. Tectonics 33(5): 617–634. https://doi.org/10.1002/2013TC003481. [CrossRef] [Google Scholar]
- Farley KA. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research: Solid Earth 105(B2): 2903–2914. https://doi.org/10.1029/1999JB900348. [CrossRef] [Google Scholar]
- Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, et al. 2020. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. Journal of the Geological Society 178(2). https://doi.org/10.1144/jgs2020-079. [Google Scholar]
- Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters 173(3): 157–170. https://doi.org/10.1016/S0012-821X(99)00225-3. [CrossRef] [Google Scholar]
- Flowers RM, Shuster DL, Wernicke BP, Farley KA. 2007. Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology 35(5): 447–450. https://doi.org/10.1130/G23471A.1. [CrossRef] [Google Scholar]
- Flowers RM, Ketcham RA, Shuster DL, Farley KA. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta 73(8): 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015. [CrossRef] [Google Scholar]
- Ford M, Vergés J. 2021. Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France. Journal of the Geological Society 178(1): jgs2019-157. https://doi.org/10.1144/jgs2019-157. [Google Scholar]
- Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. Journal of the Geological Society 173(3): 419–437. https://doi.org/10.1144/jgs2015-129. [Google Scholar]
- Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth 117(B2). https://doi.org/10.1029/2011JB008825. [Google Scholar]
- Garver JI, Reiners PW, Walker LJ, Ramage JM, Perry SE. 2005. Implications for Timing of Andean Uplift from Thermal Resetting of Radiation-Damaged Zircon in the Cordillera Huayhuash, Northern Peru. The Journal of Geology 113(2): 117–138. https://doi.org/10.1086/427664. [CrossRef] [Google Scholar]
- Gautheron C, Tassan-Got L, Barbarand J, Pagel M. 2009. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology 266(3): 157–170. https://doi.org/10.1016/j.chemgeo.2009.06.001. [CrossRef] [Google Scholar]
- Gibson M, Sinclair HD, Lynn GJ, Stuart FM. 2007. Late- to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Research 19(3): 323–334. https://doi.org/10.1111/j.1365-2117.2007.00333.x. [CrossRef] [Google Scholar]
- Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104(2): 194–207. https://doi.org/10.1007/BF00306443. [CrossRef] [Google Scholar]
- Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G. 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science 313(3): 145–198. https://doi.org/10.2475/03.2013.01. [CrossRef] [Google Scholar]
- Guenthner WR, Reiners PW, Tian Y. 2014. Interpreting date–eU correlations in zircon (U-Th)/He datasets: A case study from the Longmen Shan, China. Earth and Planetary Science Letters 403: 328–339. https://doi.org/10.1016/j.epsl.2014.06.050. [CrossRef] [Google Scholar]
- Guenthner WR, Reiners PW, DeCelles PG, Kendall J. 2015. Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: Radiation damage and He inheritance effects on partially reset detrital zircons. Geological Society of America Bulletin 127(3-4): 323–348. https://doi.org/10.1130/B31032.1. [CrossRef] [Google Scholar]
- Gunnell Y, Calvet M, Brichau S, Carter A, Aguilar J-P, Zeyen H. 2009. Low long-term erosion rates in high-energy mountain belts: Insights from thermo- and biochronology in the Eastern Pyrenees. Earth and Planetary Science Letters 278(3-4): 208–218. https://doi.org/10.1016/j.epsl.2008.12.004. [CrossRef] [Google Scholar]
- Hart NR, Stockli DF, Lavier LL, Hayman NW. 2017. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 36(6): 2016TC004365. https://doi.org/10.1002/2016TC004365. [Google Scholar]
- Herman F, Copeland P, Avouac J-P, Bollinger L, Mahéo G, Fort PL, et al. 2010. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research: Solid Earth 115(B6). https://doi.org/10.1029/2008JB006126. [Google Scholar]
- Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Geophysical Monograph Series Vol. 138, pp. 83–105. Washington, D.C.: American Geophysical Union. https://doi.org/10.1029/138GM06. [Google Scholar]
- Johnson JE, Flowers RM, Baird GB, Mahan KH. 2017. “Inverted” zircon and apatite (U-Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (< 50 °C) thermochronometer. Earth and Planetary Science Letters 466(Supplement C): 80–90. https://doi.org/10.1016/j.epsl.2017.03.002. [CrossRef] [Google Scholar]
- Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [CrossRef] [Google Scholar]
- Jourdon A, Mouthereau F, Pourhiet LL, Callot J-P. 2020. Topographic and Tectonic Evolution of Mountain Belts Controlled by Salt Thickness and Rift Architecture. Tectonics 39(1): e2019TC005903. https://doi.org/10.1029/2019TC005903. [CrossRef] [Google Scholar]
- Ketcham RA. 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry 58(1): 275–314. https://doi.org/10.2138/rmg.2005.58.11. [CrossRef] [Google Scholar]
- Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ. 2007a. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist 92(5-6): 789–798. https://doi.org/10.2138/am.2007.2280. [CrossRef] [Google Scholar]
- Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ. 2007b. Improved modeling of fission-track annealing in apatite. American Mineralogist 92(5-6): 799–810. https://doi.org/10.2138/am.2007.2281. [CrossRef] [Google Scholar]
- Ketcham RA, Guenthner WR, Reiners PW. 2013. Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. American Mineralogist 98(2–3): 350–360. https://doi.org/10.2138/am.2013.4249. [CrossRef] [Google Scholar]
- Lagabrielle Y, Bodinier J-L. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1): 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [CrossRef] [EDP Sciences] [Google Scholar]
- Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies: Pyrenean lherzolites, gravity tectonics. Tectonics 29(4): n/a–n/a. https://doi.org/10.1029/2009TC002588. [Google Scholar]
- Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. https://doi.org/10.1002/2017JB014769. [Google Scholar]
- Malusà MG, Danišík M, Kuhlemann J. 2016. Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Research 31: 135–149. https://doi.org/10.1016/j.gr.2014.12.011. [CrossRef] [Google Scholar]
- May DA, Brown J, Pourhiet LL. 2014. pTatin3D: High-Performance Methods for Long-Term Lithospheric Dynamics. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, IEEE, pp. 274–284. https://doi.org/10.1109/SC.2014.28. [Google Scholar]
- May DA, Brown J, Le Pourhiet L. 2015. A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Computer Methods in Applied Mechanics and Engineering 290: 496–523. https://doi.org/10.1016/j.cma.2015.03.014. [CrossRef] [Google Scholar]
- McQuarrie N, Ehlers TA. 2015. Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya: geometry, rates, and modeled cooling ages. Tectonics 34(6): 1055–1079. https://doi.org/10.1002/2014TC003783. [CrossRef] [Google Scholar]
- Mesalles L, Mouthereau F, Bernet M, Chang C-P, Lin AT-S, Fillon C, Sengelen X. 2014. From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology 42(10): 907–910. https://doi.org/10.1130/G35854.1. [CrossRef] [Google Scholar]
- Morris RG, Sinclair HD, Yelland AJ. 1998. Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Research 10(1): 69–85. https://doi.org/10.1046/j.1365-2117.1998.00053.x. [CrossRef] [Google Scholar]
- Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence: Plate convergence in the Pyrenees. Tectonics 33(12): 2283–2314. https://doi.org/10.1002/2014TC003663. [CrossRef] [Google Scholar]
- Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia-Newfoundland: implications for plate reconstructions. Terra Nova 29(1): 20–28. https://doi.org/10.1111/ter.12240. [CrossRef] [Google Scholar]
- Olivet JL. 1996. Kinematics of the Iberian Plate. Bulletin Des Centres De Recherches Exploration-Production Elf Aquitaine 20(1): 131–195. [Google Scholar]
- Peyton SL, Carrapa B. 2013. An Introduction to Low-temperature Thermochronologic Techniques, Methodology, and Applications, pp. 15–36. https://doi.org/10.1306/13381688St653578. [Google Scholar]
- Powell J, Schneider D, Stockli D, Fallas K. 2016. Zircon (U-Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera: Mackenzie Mountains thermochronology. Tectonics 35(3): 663–689. https://doi.org/10.1002/2015TC003989. [CrossRef] [Google Scholar]
- Ranalli G, Murphy DC. 1987. Rheological stratification of the lithosphere. Tectonophysics 132(4): 281–295. https://doi.org/10.1016/0040-1951(87)90348-9. [CrossRef] [Google Scholar]
- Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal Evolution of the Cameros Basin: Implications for Tectonics of North Iberia. Tectonics 38(2): 440–469. https://doi.org/10.1029/2018TC005294. [CrossRef] [Google Scholar]
- Ravier J, Thiébaut J. 1982. Sur l’origine lagunaire des marbres et cornéennes mésozoïques du col d’Agnès (Ariège). Comptes rendus des séances de l’Académie des Sciences Paris. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, Tome 294, Première partie : janvier–mars 1982: 127–130. https://gallica.bnf.fr/ark:/12148/bpt6k6327319s/f141.item. [Google Scholar]
- Ravier J. 1957. Le métamorphisme des terrains secondaires des Pyrénées. In: Mémoires de la Société Géologique de France, NS, T. 38 (Mémoire N° 86). Thèse de doctorat. Université, Faculté des Sciences. [Google Scholar]
- Reiners PW, Spell TL, Nicolescu S, Zanetti KA. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with (40)Ar/(39)Ar dating. Geochimica et Cosmochimica Acta 68(8): 1857–1887. https://doi.org/10.1016/J.GCA.2003.10.021. [CrossRef] [Google Scholar]
- Reiners PW, Farley KA, Hickes HJ. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349(1): 297–308. https://doi.org/10.1016/S0040-1951(02)00058-6. [CrossRef] [Google Scholar]
- Roest WR, Srivastava SP. 1991. Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology 19(6): 613–616. https://doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2. [CrossRef] [Google Scholar]
- Rosenbaum G, Lister GS, Duboz C. 2002a. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 08. https://doi.org/10.3809/jvirtex.2002.00053. [Google Scholar]
- Rosenbaum G, Lister GS, Duboz C. 2002b. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359(1-2): 117–129. https://doi.org/10.1016/S0040-1951(02)00442-0. [CrossRef] [Google Scholar]
- Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, et al. 1989. ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics 8(1): 41–50. https://doi.org/10.1029/TC008i001p00041. [CrossRef] [Google Scholar]
- Rybacki E, Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research: Solid Earth 105(B11): 26017–26036. https://doi.org/10.1029/2000JB900223. [CrossRef] [Google Scholar]
- Saint Blanquat M de, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus Geoscience 348(3-4): 268–278. https://doi.org/10.1016/j.crte.2015.12.003. [CrossRef] [Google Scholar]
- Schettino A, Scotese C. 2002. Global kinematic constraints to the tectonic history of the Mediterranean region and surrounding areas during the Jurassic and Cretaceous. Journal of the Virtual Explorer 8: 149–168. https://doi.org/10.3809/jvirtex.2002.00056. [CrossRef] [Google Scholar]
- Shuster DL, Farley KA. 2009. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochimica et Cosmochimica Acta 73(1): 183–196. https://doi.org/10.1016/j.gca.2008.10.013. [CrossRef] [Google Scholar]
- Shuster DL, Flowers RM, Farley KA. 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters 249(3-4): 148–161. https://doi.org/10.1016/j.epsl.2006.07.028. [CrossRef] [Google Scholar]
- Sinclair HD, Gibson M, Naylor M, Morris RG. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science 305(5): 369–406. https://doi.org/10.2475/ajs.305.5.369. [CrossRef] [Google Scholar]
- Stockli DF. 2005. Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings. Reviews in Mineralogy and Geochemistry 58(1): 411–448. https://doi.org/10.2138/rmg.2005.58.16. [CrossRef] [Google Scholar]
- Tagami T, Galbraith RF, Yamada R, Laslett GM. 1998. Revised Annealing Kinetics of Fission Tracks in Zircon and Geological Implications. In: van den Haute P, de Corte F, eds. Advances in Fission-Track Geochronology. A selection of papers presented at the International Workshop on Fission-Track Dating, Ghent, Belgium, 1996. Dordrecht: Springer Netherlands, pp. 99–112. https://doi.org/10.1007/978-94-015-9133-1_8. [CrossRef] [Google Scholar]
- Tagami T, Farley KA, Stockli DF. 2003. (U–Th)/He geochronology of single zircon grains of known Tertiary eruption age. Earth and Planetary Science Letters 207(1): 57–67. https://doi.org/10.1016/S0012-821X(02)01144-5. [CrossRef] [Google Scholar]
- Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, Muñoz JA. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth-Science Reviews 187: 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008. [Google Scholar]
- Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience 348(3-4): 257–267. https://doi.org/10.1016/j.crte.2015.10.010. [CrossRef] [Google Scholar]
- Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [CrossRef] [Google Scholar]
- Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019a. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics. https://doi.org/10.1029/2018TC005254. [Google Scholar]
- Ternois S, Pik R, Ford M, Tibari B, Mercadier J, Lebel F, Léger J. 2019b. Unravelling early growth of a collisional orogen using in situ laser ablation double dating on detrital zircon, eastern North Pyrenees, France. In: EGU General Assembly Conference Abstracts, p. 12965. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-12965.pdf, poster available at https://www.researchgate.net/profile/Sebastien-Ternois/publication/348392691_Ternois_et_al_-_EGU2019pdf/data/5ffc8590299bf140888c652a/Ternois-et-al-EGU2019.pdf. [Google Scholar]
- Tugend J, Manatschal G, Kusznir NJ. 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43(1): 15–18. https://doi.org/10.1130/G36072.1. [CrossRef] [Google Scholar]
- Turcotte DL, Schubert G. 2002. Geodynamics, 2nd ed. In: Turcotte DL, Schubert G, eds. Cambridge University Press, p. 472. ISBN-10: 0521661862. ISBN-13: 9780521661867. LCCN: QE501.T832002. https://doi.org/10.2277/0521661862. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters 408: 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees: cooling history of the northern Pyrenees. Tectonics 35(4): 907–933. https://doi.org/10.1002/2015TC004016. [CrossRef] [Google Scholar]
- Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, Mainprice D. 2013. Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees-France). Tectonics 32(2): 95–106. https://doi.org/10.1002/tect.20015. [CrossRef] [Google Scholar]
- Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, Balvay M. 2021. Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone. Tectonics 40(3): e2020TC006614. https://doi.org/10.1029/2020TC006614. [CrossRef] [Google Scholar]
- Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31(11): 945–948. https://doi.org/10.1130/G19702.1. [CrossRef] [Google Scholar]
- Wolfe MR, Stockli DF. 2010. Zircon (U-Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon. Earth and Planetary Science Letters 295(1-2): 69–82. https://doi.org/10.1016/j.epsl.2010.03.025. [CrossRef] [Google Scholar]
- Yamada R, Murakami M, Tagami T. 2007. Statistical modelling of annealing kinetics of fission tracks in zircon; Reassessment of laboratory experiments. Chemical Geology 236(1-2): 75–91. https://doi.org/10.1016/j.chemgeo.2006.09.002. [CrossRef] [Google Scholar]
- Yelland AJ. 1991. Fission track thermotectonics of the Iberian-Eurasian plate collection. Ph.D. Birkbeck University of London, London. Retrieved from http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261137. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.