Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Numéro d'article 58
Nombre de pages 19
DOI https://doi.org/10.1051/bsgf/2021048
Publié en ligne 19 novembre 2021
  • Alvarez-Marron J, Rubio E, Torné M. 1997. Subduction-related structures in the North Iberian Margin. Journal of Geophysical Research: Solid Earth 102(B10): 22497–22511. [CrossRef] [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. [CrossRef] [Google Scholar]
  • Ardizone J, Mezcua J, Socías I. 1989. Mapa aeromagnético de España peninsular. Instituto Geográfico Nacional. [Google Scholar]
  • Authemayou C, Le Gall B, Caroff M, Bussien Grosjean D. 2019. Wrench-related dome formation and subsequent orogenic syntax bending in a hot orogen (Variscan Ibero-Armorican Arc, the Ouessant Island, France). Tectonics 38(10): 3563–3585. [CrossRef] [Google Scholar]
  • Ayarza P, Martínez Catalán JR, Alvarez-Marrón J, Zeyen H, Juhlin C. 2004. Geophysical constraints on the deep structure of a limited ocean-continent subduction zone at the North Iberian Margin. Tectonics 23(1). https://doi.org/10.1029/2002TC001487. [Google Scholar]
  • Azambre B, Pozzi JP. 1982. Étude du magnétisme des roches éruptives de la région d’Arette (Pyrénées Atlantiques) : préliminaire à l’analyse de l’évolution des contraintes regionales. Bulletin de la Société Géologique de France 7(2): 255–263. [CrossRef] [Google Scholar]
  • Azambre B, Rossy M, Lago M. 1987. Caractéristiques petrologiques des dolerites tholeiitiques d’age triasique (ophites) du domaine pyrénéen. Bulletin de minéralogie 110(4): 379–396. [CrossRef] [Google Scholar]
  • Bacon M, Gray F, Matthews DH. 1969. Crustal structure studies in the Bay of Biscay. Earth Planet. Sci. Lett. 6: 377. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: Models for the tectonic evolution of the suture zones. Comptes Rendus Géoscience 341(2-3): 174–201. [CrossRef] [Google Scholar]
  • Ballèvre M, Catalán JRM, López-Carmona A, Pitra P, Abati J, Fernández RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French–Spanish project. Geological Society, London, Special Publications 405(1): 77–113. [CrossRef] [Google Scholar]
  • Baranov V. 1957. A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies. Geophysics 22: 359–382. https://doi.org/10.1190/1.1438369. [CrossRef] [Google Scholar]
  • Barbier F, Le Pichon X, Duvergé J. 1986. Structure profonde la marge Nord-Gascogne : Implications sur le mécanisme de rifting et de formation de la marge continentale. Bull. Cent. Recherches et Explor. Prod. Elf Aquitaine 10(1): 105–121. [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35: 1843–1862. https://doi.org/10.1002/2015TC004019. [Google Scholar]
  • Barnett-Moore N, Font E, Neres M. 2017. A reply to the comment on “Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints” by Barnett-Moore et al. Tectonics 36. https://doi.org/10.1002/2017TC004760. [Google Scholar]
  • Biteau JJ, Le Marrec A, Le Vot M, Masset JM. 2006. The Aquitaine Basin. Petroleum Geoscience 12(3): 247–273. [CrossRef] [Google Scholar]
  • Boillot G. 1984. Les marges continentales actuelles et fossiles autour de la France. Elsevier Masson. [Google Scholar]
  • Boillot G, Dupeuble PA, Malod J. 1979. Subduction and tectonics on the continental margin off northern Spain. Marine Geology 32(1-2): 53–70. [CrossRef] [Google Scholar]
  • Bois C, Gabriel O, Lefort JP, Rolet J, Brunet F. 1997. Geologic contribution of the Bay of Biscay deep seismic survey: A summary of the main scientific results: A discussion of the open questions. [Google Scholar]
  • BRGM, Société Elf Recherche, Société ESSO de recherche et Exploitation du Pétrole Société Nationale des Pétroles d’Aquitaine. 1974. Géologie du Bassin d’Aquitaine, 29 encl. Orléans : BRGM (in French). [Google Scholar]
  • Cadenas P, Fernández-Viejo G, Pulgar JA, Tugend J, Manatschal G, Minshull TA. 2018. Constraints imposed by rift inheritance on the compressional reactivation of a hyperextended margin: Mapping rift domains in the North Iberian Margin and in the Cantabrian Mountains. Tectonics 37(3): 758–785. [CrossRef] [Google Scholar]
  • Cadenas P, Manatschal G, Fernández-Viejo G. 2019. Structural fingerprints of polyphase extension: Formation and spatial overlap of hyperextended rift basins at the southern Bay of Biscay. In: EGUGA1, 2202. [Google Scholar]
  • Cadenas P, Manatschal G, Fernández-Viejo G. 2020. Unravelling the architecture and evolution of the inverted multi-stage North Iberian-Bay of Biscay rift. Gondwana Research 88: 67–87. [CrossRef] [Google Scholar]
  • Calvet M, Sylvander M, Margerin L, Villaseñor A. 2013. Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis. Tectonophysics 608, 428–439. [CrossRef] [Google Scholar]
  • Cande SC, Kristoffersen Y. 1977. Late Cretaceous magnetic anomalies in the north Atlantic. Earth Planet. Sci. Lett. 35: 215–224. [CrossRef] [Google Scholar]
  • Canérot J. 2017. The pull apart-type Tardets-Mauléon Basin: A key to understand the formation of the Pyrenees. Bulletin Société géologique de France 188(6): 35. [CrossRef] [EDP Sciences] [Google Scholar]
  • Canva A, Thinon I, Peyrefitte A, Couëffé R, Maillard A, Jolivet L, et al. 2020. The Catalan magnetic anomaly: Its significance for the crustal structure of the Gulf of Lion passive margin and relationship to the Catalan Transfer Zone. Marine and Petroleum Geology 113: 104174. [CrossRef] [Google Scholar]
  • Carracedo M, Larrea FJ, Alonso A. 1999. Estructura y organización de las coladas submarinas: características de las lavas almohadilladas de edad cretácica que afloran en la Cordillera Vasco-Cantábrica, Estud. Geológicos 55(5-6): 45–53. [Google Scholar]
  • Casas A, Kearey P, Rivero L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth and Planetary Science Letters 150(1-2): 65–78. [CrossRef] [Google Scholar]
  • Castanares LM, Robles S, Vicente Bravo JC. 1997. Distribution estratigrafica de los episodios volcanicos submarinos del Albiense-Santoniense en la Cuenca Vasca (sector Gernika-Plentzia, Bizkaia). Geogaceta 22: 43–46. [Google Scholar]
  • Castanares LM, Robles S, Gimeno D, Vicente Bravo JC. 2001.The Submarine Volcanic System of the Errigoiti Formation (Albian-Santonian of the Basque-Cantabrian Basin, Northern Spain): Stratigraphic framework, facies, and sequences. J. Sediment. Res. 71: 318–333. https://doi.org/10.1306/080700710318. [CrossRef] [Google Scholar]
  • Casteras M, Souquet P, Paris JP. 1970. Carte géologique de la France à 1/50 000 : Larrau. Bureau de Recherches Géologiques et Minières. [Google Scholar]
  • Chantraine J, Autran A, Cavelier C. 2003. Carte géologique de la France au 1/1 000 000 – 6e édition révisée. Orléans : Bureau de Recherches Géologiques et Minières (BRGM). [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33(7): 1340–1359. [CrossRef] [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bulletin de la Société géologique de France 188(6): 39. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cooper GRJ, Cowan DR. 2005. Differential reduction to the pole. Computer Geoscience 31: 989–999. https://doi.org/10.1016/j.cageo.2005.02.005. [CrossRef] [Google Scholar]
  • Curnelle R. 1983. Evolution structuro-sédimentaire du Trias et de l’Infra-Lias d’Aquitaine. Bulletin des Centres de recherches exploration-production Elf-Aquitaine 7(1): 69–99. [Google Scholar]
  • Cuvillier J, Dupouy-Camet J, Sacal V. 1951. L’anticlinal de Roquefort-des-Landes et les pointements cretaces de Creon-Saint-Julien. Bulletin de la Société Géologique de France S6-I(7): 553–584. https://doi.org/10.2113/gssgfbull.S6-I.7.553. [CrossRef] [Google Scholar]
  • Dampney CNG. 1969. The equivalent source technique. Geophysics 34: 39–53. [CrossRef] [Google Scholar]
  • Debroas E-J, Canérot J, Bilotte M. 2010. Les Brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconnien-cénomanien inférieur (zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Géologie de la France 2: 53–64. [Google Scholar]
  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M. 2017. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain). Stable and clumped isotopic analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochemistry, Geophysics, Geosystems 18: 631–652. [CrossRef] [Google Scholar]
  • Derégnaucourt D, Boillot G. 1982. Structure géologique du golfe de Gascogne. Bulletin BRGM 2: 149–178. [Google Scholar]
  • D’Errico JR. 2006. Understanding gridfit, vol. 55, pp. 70–83. Available from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do. [Google Scholar]
  • Druet M, Muñoz-Martín A, Granja-Bruña JL, Carbó-Gorosabel A, Acosta J, Llanes P, et al. 2018. Crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia): Insights from combined gravity and seismic interpretation. Tectonics 37(5): 1576–1604. [CrossRef] [Google Scholar]
  • Ducoux M, Masini M, Tugend J, Gomez-Romeu J, Calassou S. 2021. Basement-decoupled hyperextension rifting: The tectono-stratigraphic record of the salt-rich Pyrenean necking zone (Arzacq Basin, SW France). GSA Bulletin. https://doi.org/10.1130/B35974.1. [Google Scholar]
  • Duée G, Lagabrielle Y, Coutelle A, Fortané A. 1984, Les lherzolites associées aux Chaînons Béarnais (Pyrénées Occidentales) : mise à l’affleurement anté-dogger et resédimentation albo-cénomanienne. C. R. Acad. Sci. Ser. II 299: 1205–1209. [Google Scholar]
  • Eagles G, Pérez-Díaz L, Scarselli N. 2015. Getting over continent ocean boundaries. Earth-Science Reviews 151: 244–265. [CrossRef] [Google Scholar]
  • Etheve N, Mohn G, Frizon de Lamotte D, Roca E, Tugend J, Gómez-Romeu J. 2018. Extreme Mesozoic crustal thinning in the eastern Iberia Margin: The example of the Columbrets Basin (Valencia Trough). Tectonics 37(2): 636–662. [CrossRef] [Google Scholar]
  • Evans CDR. 1990. United Kingdom offshore regional report: The geology of the Western English Channel and its Western Approaches. London: British Geological Survey, NERC, HMSO, 94 p. [Google Scholar]
  • Fernandez-Viejo G, Gallart J, Pulgar JA, Gallastegui J, Danobeitia JJ, Cordoba D. 1998. Crustal transition between continental and oceanic domains along the North Iberian Margin from wide angle seismic and gravity data. Geophysical Research Letters 25: 4249–4252. [CrossRef] [Google Scholar]
  • Ferrer O, Roca E, Benjumea B, Muñoz JA, Ellouz N, Marconi Team. 2008. The deep seismic reflection MARCONI-3 profile: Role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Marine and Petroleum Geology 25(8): 714–730. [CrossRef] [Google Scholar]
  • Ferrer O, Roca E, Jackson MPA, Muñoz JA. 2009. Effects of Pyrenean contraction on salt structures of the offshore Parentis Basin (Bay of Biscay). Trabajos de geología (29). [Google Scholar]
  • Fortané A, Duée G, Lagabrielle Y, Coutelle A. 1986. Lherzolites and the Western “Chaînons Béarnais” (French Pyrénées): Structural and paleogeographical pattern. Tectonophysics 129: 81–98. [CrossRef] [Google Scholar]
  • Gallastegui J. 2000. Estructura cortical de la cordillera y margen continental cantábricos: perfiles ESCI-N. Trabajos de Geología (22): 3–234. [Google Scholar]
  • Gallastegui J, Pulgar JA, Gallart J. 2002. Initiation of an active margin at the North Iberian continent-ocean transition. Tectonics 21(4): 15–1. [Google Scholar]
  • García-Senz J, Pedrera A, Ayala C, Ruiz-Constán A, Robador A, Rodríguez-Fernández LR. 2020. Inversion of the north Iberian hyperextended margin: the role of exhumed mantle indentation during continental collision. Geological Society, London, Special Publications 490(1): 177–198. [CrossRef] [Google Scholar]
  • Gariel O, Bois C, Curnelle R, Lefort JP, Rolet J. 1997. The ECORS Bay of Biscay deep seismic survey. Geological framework and overall presentation of the work. Mémoires de la Société géologique de France (1833) 171: 7–19. [Google Scholar]
  • Gillard M, Tugend J, Müntener O, Manatschal G, Karner GD, Autin J, et al. 2019. The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth-Science Reviews 196(June): 102882. https://doi.org/10.1016/j.earscirev.2019.102882. [CrossRef] [Google Scholar]
  • Girardeau J, Dubuisson G, Mercier JCC. 1986. Cinématique de mise en place des ophiolites et nappes crystallophiliennes du Limousin, Ouest du Massif Central francais. Bulletin de la Société géologique de France 2(5): 849–860. [CrossRef] [Google Scholar]
  • Gee JS, Kent DV. 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity time scale. [Google Scholar]
  • Geosoft. 2013. Getting Started with montaj GridKnit, Extension for Oasis Montaj v.8.0, Geosoft Corporation. [Google Scholar]
  • Graciansky PC, Poag CW. 1981. Geology history of Goban Spur, northwest europe continental margin. In: Bailey GB, ed. Initial Reports of the Deep Sea Drilling Profect, vol. 80, pp. 1187–1216. Washington: U.S. Government Printing Office. [Google Scholar]
  • Grandjean G. 1992. Études des structures crustales dans une portion de la chaîne et de leur relation avec les bassins sédimentaires : application aux Pyrénées Occidentales au travers du projet ECORS-arzacq-Pyrénées. Doctoral dissertation, PhD thesis, Université de Montpellier III, Montpellier, France. [Google Scholar]
  • Grau G, Montadert L, Delteil R, Winnock E. 1973. Structure of the european continental margin between Portugal and Ireland, from seismic data. Tectonophysics 20: 319–339. [CrossRef] [Google Scholar]
  • Guillocheau F, Brault N, Thomas E, Barbarand J, Bonnet S, Bourquin S, et al. 2003. Histoire géologique du Massif Armoricain depuis 140 Ma (Crétacé-Actuel). Bulletin d’Information des Géologues du Bassin de Paris 40: 13–28. [Google Scholar]
  • Issautier B, Nicolas S, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon Basin (Early Cretaceous Arzacq and Tartas Basins). Marine and Petroleum Geology 104395. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L. 2010a. Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon Basins (Bay of Biscay and western Pyrenees). AAPG Bulletin 94(7): 957–975. [CrossRef] [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010b. 3D architecture of a complex transcurrent rift system: the example of the Bay of Biscay-Western Pyrenees. Tectonophysics 489(1-4): 210–226. [CrossRef] [Google Scholar]
  • Le Borgne E, Le Mouël JL. 1969. La nouvelle carte magnétique de la France. Ann. Inst. Phys. Globe 35: 197–224. [Google Scholar]
  • Le Borgne E, Le Mouël J-L, Le Pichon X. 1971. Aeromagnetic survey of South-Western. Earth and Planetary Science Letters 12: 287–299. https://doi.org/10.1016/0012-821X(71)90213-5. [CrossRef] [Google Scholar]
  • Le Pochat G, Thibault C. 1977. Notice explicative et carte géologique de la France à 1/50 000e. Bull. B.R.G.M. 26. [Google Scholar]
  • Le Roy P, Gracia-Garay C, Guennoc P, Bourillet JF, Reynaud JY, Thinon I, et al. 2011. Cenozoic tectonics of the Western Approaches Channel Basins and its control of local drainage systems. Bulletin de la Société Géologique de France 182(5): 451–463. [CrossRef] [Google Scholar]
  • Le Suave R. 1997. ZEEGASC2 cruise, RV L’Atalante. https://doi.org/10.17600/97010070. [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4). [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France) [Exhumation du manteau au pied des marges passives pauvres en magma. Partie 1. Architecture 3D et évolution métasomatique du domaine fossile à manteau exhumé (lherzolite d’Urdach, Pyrénées NW, France)]. Bulletin de la Société Géologique de France 190(1). [Google Scholar]
  • Larrasoaña JC, Parés JM, Pueyo EL. 2003. Stable Eocene magnetization carried by magnetite and iron sulphides in marine marls (Pamplona-Arguis Formation, southern Pyrenees, northern Spain). Studia geophysica et geodaetica 47(2): 237–254. [CrossRef] [Google Scholar]
  • Laughton AS, Berggren WA, Benson R, Davies TA, Franz U, Musich L, et al. 1972a. Initial reports of the deep sea drilling project 118, vol. 12, pp. 673–751. [Google Scholar]
  • Laughton AS, Berggren WA, Benson R, Davies TA, Franz U, Musich L, et al. 1972b. Initial reports of the deep sea drilling project site 119, vol. 12, pp. 753–901. [Google Scholar]
  • Lefort JP, Bois C, Liewig N, Peucat JJ, Agarwal B. 1997. Contribution of the ECORS Bay of Biscay deep seismic profile to the location of the southern Variscan front beneath the Aquitaine Basin (France). Mémoires de la Société géologique de France (1833) 171: 79–96. [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. BSGF – Earth Sciences Bulletin 191: 18. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lescoutre R, Manatschal G, Muñoz JA. 2021 Nature, origin and evolution of the Pyrenean-Cantabrian junction. Tectonics 40. https://doi.org/10.1029/2020TC006134. [CrossRef] [Google Scholar]
  • Lesur V, Hamoudi M, Choi Y, Dyment J, Thébault E. 2016. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth Planets Space 68. https://doi.org/10.1186/s40623-016-0404-6. [CrossRef] [Google Scholar]
  • Luyendyk APJ. 1997. Processing of airborne magnetic data. AGSO Journal of Australian Geology and Geophysics 17: 31–38. [Google Scholar]
  • Maillet P. 1977. Étude Géochimique de quelques séries spilitiques du massif armoricain : Implications géotectoniques. Doctoral dissertation, Université de Rennes. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences 103(6): 1569–1596. [CrossRef] [Google Scholar]
  • Matte P. 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13(2): 122–128. [CrossRef] [Google Scholar]
  • Matte P, Ribeiro A. 1975. Forme et orientation de l’ellipsoide de déformation dans la virgation hercynienne de Galice. Relations avec le plissement et hypothèses sur la génèse de l’arc Ibero-américain. C. R. Seances Acad. Sci. Paris 280: 2825–2828. [Google Scholar]
  • Mauriaud P. 1987. La tectonique salifère d’Aquitaine. Le bassin d’Aquitaine. Pétrole et techniques (335): 38–41. [Google Scholar]
  • Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, et al. 2009. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems 10: Q08005. https://doi.org/10.1029/2009GC002471. [Google Scholar]
  • Mercier JC, Girardeau J, Prinzhoffer A, Dubuisson G. 1985. Les complexes ophiolitiques du Limousin : structuren pétrologie et géochimie. Doc. Bur. Rech. Géol. Min. 95(3): 35–48. [Google Scholar]
  • Meyer B, Chulliat A, Saltus R. 2017. Derivation and Error Analysis of the Earth Magnetic Anomaly Grid at 2 arc min Resolution Version 3 (EMAG2v3). Geochemistry, Geophysics, Geosystems 18: 4522–4537. https://doi.org/10.1002/2017GC007280. [CrossRef] [Google Scholar]
  • Miller HG, Singh V. 1994. Potential field tilt – A new concept for location of potential field sources. Journal of Applied Geophysics 32: 213–217. [CrossRef] [Google Scholar]
  • Montadert L, Winnock E, Delteil JR, Grau G. 1974. Continental Margins of Galicia-Portugal and Bay of Biscay. In: Burk CA, Drake CL, eds. The Geology of Continental margins, vol. I. Paris: Springer-Verlag, pp. 323–341. [CrossRef] [Google Scholar]
  • Montadert L, Roberts DG, De Charpal O, Guennoc P. 1979. Rifting and subsidence of the northern continental margin of the Bay of Biscay. In: Usher JL, ed. Initial Reports of the Deep Sea Drilling Project, vol. 48, pp. 1025–1060. Washington. [Google Scholar]
  • Montigny R, Allegre C. 1974. In search of lost oceans-eclogite of vendee in old oceanic crust. Comptes rendus hebdomadaires des sciences de l’académie des sciences serie D 279(7): 543–545. [Google Scholar]
  • Montigny R, Azambre B, Rossy M, Thuizat R. 1986. K-Ar study of cretaceous magmatism and metamorphism in the Pyrenees: Age and length of rotation of the Iberian Peninsula. Tectonophysics 129: 257–273. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33(12): 2283–2314. [Google Scholar]
  • Neres M, Terrinha P, Custódio S, Silva SM, Luis J, Miranda JM. 2018. Geophysical evidence for a magmatic intrusion in the ocean-continent transition of the SW Iberia Margin. Tectonophysics 744: 118–133. [CrossRef] [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir NJ, Sauter D. 2017. Nature and origin of the J-magnetic anomaly offshore Iberia-Newfoundland: implications for plate reconstructions. Terra Nova 29(1): 20–28. [CrossRef] [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir N, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems: Kinematic of hyperextended rift systems. Tectonics. https://doi.org/10.1002/2017TC004495. [Google Scholar]
  • Oliveira Jr VC, Barbosa VCF, Uieda L. 2013. Polynomial equivalent layer. Geophysics 78: G1–G13. https://doi.org/10.1190/geo2012-0196.1. [CrossRef] [Google Scholar]
  • Olivet JL. 1996. La cinématique de la plaque ibérique. Bulletin des centres de recherches exploration-production Elf-Aquitaine 20(1): 131–195. [Google Scholar]
  • Paquet F, Menier D, Estournès G, Bourillet JF, Leroy P, Guillocheau F. 2010. Buried fluvial incisions as a record of Middle-Late Miocene eustasy fall on the Armorican Shelf (Bay of Biscay, France). Marine Geology 268(1-4): 137–151. [CrossRef] [Google Scholar]
  • Pautot G. 1992. ZEE GASCOGNE cruise, RV L’Atlante. https://doi.org/10.17600/92000711. [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research: Solid Earth 112(B12). [Google Scholar]
  • Pedreira D, Afonso JC, Pulgar JA, Gallastegui J, Carballo A, Fernandez M, et al. 2015. Geophysical-petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North-Iberian Margin: Geodynamic implications. Lithos 230: 46–68. [CrossRef] [Google Scholar]
  • Platel JP. 1987. Le Crétacé supérieur de la plate-forme septentrionale du Bassin d’Aquitaine: stratigraphie et évolution géodynamique. Doctoral dissertation, Bordeaux 3. [Google Scholar]
  • Platel JP. 1996. Stratigraphie, sédimentologie et évolution géodynamique de la plate-forme carbonatée du Crétacé supérieur du nord du bassin d’Aquitaine. Géologie de la France (4): 33–58. [Google Scholar]
  • Razin P. 1989. Évolution tecto-sédimentaire alpine des Pyrénées Basques à l’Ouest de la transformante de Pamplona(province du Labourd). Doctoral dissertation. [Google Scholar]
  • Roca E, Muñoz J.A, Ferrer O, Ellouz N. 2011. The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30. https://doi.org/10.1029/2010TC002735. [Google Scholar]
  • Rocher M, Lacombe O, Angelier J, Deffontaines B, Verdier F. 2000. Cenozoic folding and faulting in the south Aquitaine Basin (France): Insights from combined structural and paleostress analyses. Journal of Structural Geology 22(5): 627–645. [CrossRef] [Google Scholar]
  • Roest WR, Verhoef J, Pilkington M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57: 116–125. https://doi.org/10.1190/1.1443174. [CrossRef] [Google Scholar]
  • Rolet J. 1997. The concealed basement of Aquitaine. Mémoires de la Société géologique de France (1833) 171: 115–141. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359(1-2): 117–129. [Google Scholar]
  • Rossi P, Cocherie A, Fanning CM, Ternet Y. 2003. Datation U/ Pb sur zircons des dolérites tholéiitiques pyrénéennes (ophites) à la limite Trias-Jurassique et relations avec les tufs volcaniques dits « infra-liasiques » nord-pyrénéens. Comptes Rendus Geoscience 335(15): 1071–1080. [CrossRef] [Google Scholar]
  • Ruiz M, Díaz J, Pedreira D, Gallart J, Pulgar JA. 2017. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles. Tectonophysics 717: 65–82. [CrossRef] [Google Scholar]
  • Santallier D. 1981. Les roches métamorphiques du Bas-Limousin, Massif central (France). Thèse d’Etat, Orléans, 340 p. [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031. [CrossRef] [Google Scholar]
  • Serrano O, Delmas J, Hanot F, Vially R, Herbin JP, Houel B, et al. 2006. Le Bassin d’Aquitaine : valorisation des données sismiques, cartographie structurale et potentiel pétrolier. Ed. BRGM, 2 volumes, 245 p, 142 figures, 17tableaux, 17 annexes. [Google Scholar]
  • Seton M, Whittaker J, Wessel P, Müller RD, DeMets C, Merkouriev S, et al. 2014. Community infrastructure and repository for marine magnetic identifications. Geochemistry, Geophysics, Geosystems 5(4): 1629–1641. [CrossRef] [Google Scholar]
  • Sibuet JC, Collette BJ. 1991. Triple junctions of Bay of Biscay and North Atlantic: New constraints on the kinematic evolution. Geology 19(5): 522–525. [CrossRef] [Google Scholar]
  • Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research: Solid Earth 109(B8). [Google Scholar]
  • Srivastava SP, Roest WR, Kovacs LC, Oakey G, Levesque S, Verhoef J, et al. 1990. Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics 184(3-4): 229–260. [CrossRef] [Google Scholar]
  • Srivastava SP, Sibuet JC, Cande S, Roest WR, Reid ID. 2000. Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian Margins. Earth and Planetary Science Letters 182(1): 61–76. [CrossRef] [Google Scholar]
  • Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, et al. 2015. International Geomagnetic Reference Field: The 12th Generation. Earth Planets Space 67. https://doi.org/10.1186/s40623-015-0228-9. [Google Scholar]
  • Thinon I. 1999. Structure profonde de la marge nord-Gascogne et du Bassin Armoricain. Thèse de doctorat, Brest. [Google Scholar]
  • Thinon I, Fidalgo-González L, Réhault J-P, Olivet J-L. 2001. Déformations pyrénéennes dans le golfe de Gascogne. Comptes Rendus de l’Académie des Sciences − Series IIA − Earth and Planetary Science 332: 561–568. https://doi.org/10.1016/S1251-8050(01)01576-2. [Google Scholar]
  • Thinon I, Réhault JP, Fidalgo-Gonzalez L. 2002 The syn-rift sedimentary cover of the North Biscay Margin (Bay of Biscay): From new reflection seismic data. Bulletin de la Société Géologique de France 173(6): 515–522. [CrossRef] [Google Scholar]
  • Thinon I, Matias L, Réhault JP, Hirn A, Fidalgo-GonzÁlez L, Avedik F. 2003. Deep structure of the Armorican Basin (Bay of Biscay): A review of Norgasis seismic reflection and refraction data. Journal of the Geological Society 160: 99–116. https://doi.org/10.1144/0016-764901-103. [CrossRef] [Google Scholar]
  • Thinon I, Menier D, Guennoc P, Proust J-N. 2009. Carte géologique de la France à 1/250 000 de la marge continentale. Lorient, Bretagne Sud: Éditions BRGM-CNRS. [Google Scholar]
  • Thinon I, Proust JN, Nalpas T, Elongo V, Vérité J. 2018. Structure of the Mesozoic sedimentary cover of the North Aquitaine continental shelf – New results from offshore and onshore observations in the Charente region (France). In: RST Congress Talk. [Google Scholar]
  • Tikhonov AN, Arsenin VY. 1977 Solutions of Ill-Posed Problems. Washington DC: Winston and Sons. [Google Scholar]
  • Triboulet C, Audren C. 1985. Continuous reactions between biotite, garnet, staurolite, kyanite-sillimanite-andalusite and P-T-time-deformation path in micaschists from the estuary of the river Vilaine, South Brittany, France. Journal of Metamorphic Geology 3(1): 91–105. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33: 1239–1276. https://doi.org/10.1002/2014TC003529. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E. 2015a. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay Margins and its Western Pyrenean fossil remnants. Geological Society, London, Special Publications 413: 171–203. https://doi.org/10.1144/SP413.3. [CrossRef] [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ. 2015b. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43(1): 15–18. [CrossRef] [Google Scholar]
  • Verhoef J, Roest WR, Macnab R, Arkani-Hamed J, Members of the Project Team. 1996. Magnetic anomalies of the Arctic and North Atlantic Oceans and adjacent land areas; GSC Open File 3125, Parts a and b (CD-ROM and project report). Dartmouth, NS: Geological Survey of Canada. [Google Scholar]
  • Williams CA. 1975. Sea-floor spreading in the Bay of Biscay and its relationship to the North Atlantic. Earth and Planetary Science Letters 24(3): 440–456. [CrossRef] [Google Scholar]
  • Yang P, Welford JK, Peace AL, Hobbs R. 2020. Investigating the Goban Spur rifted continental margin, offshore Ireland, through integration of new seismic reflection and potential. [Google Scholar]
  • Ziegler PA. 1987. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland – A geodynamic model. Tectonophysics 137(1-4): 389–420. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.