Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Numéro d'article 48
Nombre de pages 49
DOI https://doi.org/10.1051/bsgf/2021043
Publié en ligne 20 octobre 2021
  • Advokaat EL, van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, et al. 2014. Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet Sci Lett 401: 183–195. https://doi.org/10.1016/j.epsl.2014.06.012. [CrossRef] [Google Scholar]
  • Afilhado A, Moulin M, Aslanian D, Schnürle P, Klingelhoeffer F, Nouzé H, et al. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) − II. Sardinia’s margin. Bull Soc Géol Fr 186: 331–351. [CrossRef] [Google Scholar]
  • Agard P. 2021. Subduction of oceanic lithosphere in the Alps: selective and archetypal from (slow-spreading) oceans. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2021.103517. [Google Scholar]
  • Airaghi L, Bellahsen N, Dubacq B, Chew D, Rosenberg C, Janots E, et al. 2020. Pre-orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees. J Metamorph Geol 38: 183–204. https://doi.org/10.1111/jmg.12520. [CrossRef] [Google Scholar]
  • Aktug B, Nocquet JM, Cingöz A, Parsons B, Erkan Y, England P, et al. 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior. J Geophys Res 114. https://doi.org/10.1029/2008JB006000. [Google Scholar]
  • Alvarez W. 2010. Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet Sci Lett 296: 434–442. https://doi.org/10.1016/j.epsl.2010.1005.1030. [CrossRef] [Google Scholar]
  • Alves T, Carlos M, Cunha T, Ullnaess M, Myklebust R, Monteiro J, et al. 2009. Diachronous evolution of Late Jurassic–Cretaceous continental rifting in the northeast Atlantic (west Iberian margin). Tectonics 28. https://doi.org/10.1029/2008TC002337. [Google Scholar]
  • Alves TM, Abreu Cunha T. 2009. A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters 484: 168–183. [Google Scholar]
  • Amato A, Alessandrini B, Cimini G, Frepoli A, Selvaggi G. 1993. Active and remanant subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Annali di Geofisica XXXVI: 201–214. [Google Scholar]
  • Andrieu S, Saspiturry N, Lartigau M, Issautier B, Angrand P, Lasseur E. 2021. Large-scale vertical movements in Cenomanian to Santonian carbonate platform in Iberia: indicators of a Coniacian pre-orogenic compressive stress. BSGF - Earth Sciences Bulletin 192: 19. [CrossRef] [EDP Sciences] [Google Scholar]
  • Angiboust S, Agard P, Jolivet L, Beyssac O. 2009. The Zermatt-Saas ophiolite: the largest (60-km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova 21: 171–180. https://doi.org/10.1111/j.1365-3121.2009.00870.x. [CrossRef] [Google Scholar]
  • Angiboust S, Glodny J. 2020. Exhumation of eclogitic ophiolitic nappes in the W. Alps: New age data and implications for crustal wedge dynamics. Lithos 356–357: 105374. https://doi.org/10.101016/j.lithos.102020.105374. [CrossRef] [Google Scholar]
  • Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37: 430–449. https://doi.org/410.1002/2017TC004670. [CrossRef] [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for W-Tethys/N-Atlantic kinematics since the late Permian-Triassic. Solid Earth, European Geosciences Union. https://doi.org/10.5194/se-2020-5124. [Google Scholar]
  • Armijo R, Meyer B, Hubert A, Barka A. 1999. Westward propagation of the north Anatolian into the northern Aegean: timing and kinematics. Geology 27: 267–270. [CrossRef] [Google Scholar]
  • Arthaud F, Matte P. 1977. Determination de la position initiale de la Corse et de la Sardaigne à la fin de l’orogénèse hercynienne grâce aux marqueurs géologiques, magmatiques et paléomagnétiques. Bulletin de la Société géologique de France 19: 833–840. [CrossRef] [Google Scholar]
  • Arthaud F, Séguret M. 1981. Les structures pyrénéennes du Languedoc et du Golfe du Lion (Sud de la France). Bull Soc Géol Fr XXIII: 51–63. [CrossRef] [Google Scholar]
  • Aubouin J. 1959. Contribution à l’étude de la Grèce septentrionale; les confins de l’Epire et de la Thessalie. Ann Géol Pays Hellén 10: 1–483. [Google Scholar]
  • Aubouin J, Brunn JH, Celet P, Dercourt J, Godfriaux I, Mercier J. 1962. Esquisse de la géologie de la Grèce. Bull Soc Géol Fr 2: 583–610. [Google Scholar]
  • Augier R, Agard P, Jolivet L, Monié P, Robin C, Booth-Rea G. 2005a. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filabride complex. J Metam Geol 23: 357–381. https://doi.org/10.1111/j.1525-1314.2005.00581.x. [CrossRef] [Google Scholar]
  • Augier R, Booth-Rea G, Agard P, Martinez-Martinez JM, Jolivet L, Azañon JM. 2005b. Exhumation constraints for the lower Nevado-Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach. Bull Soc Géol Fr 176: 403–416. https://doi.org/10.2113/2176.2115.2403. [CrossRef] [Google Scholar]
  • Augier R, Jolivet L, Do Couto D, Negro F. 2013. From ductile to brittle, late- to post-orogenic evolution of the Betic Cordillera: Structural insights from the northeastern Internal zones. Bull Soc Géol Fr 184: 405–425. [CrossRef] [Google Scholar]
  • Babault J, Teixell A, Arboleya ML, Charroud M. 2008. A Late Cenozoic age for long-wavelength surface uplift of the Atlas Mountains of Morocco. Terra Nova 20: 102–107. https://doi.org/10.1111/j.1365-3121.2008.00794.x. [CrossRef] [Google Scholar]
  • Babault J, Van Den Driessche J, Bonnet S, Castelltort S, Crave A. 2005. Origin of the highly elevated Pyrenean peneplain. Tectonics. https://doi.org/10.1029/2004TC001697. [Google Scholar]
  • Bache F, Olivet JL, Gorini C, Aslanian D, Labails C, Rabineau M. 2010. Evolution of rifted continental margins: The case of the Gulf of Lions (Western Mediterranean Basin). Earth Planet Sci Lett 292: 345–356. [CrossRef] [Google Scholar]
  • Baize S, Cushing EM, Lemeille F, Jomard H. 2013. Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bull Soc Géol Fr 184: 225–259. [CrossRef] [Google Scholar]
  • Barnett-Moore N, Hosseinpour M, Maus S. 2016. Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics 35: 1843–1862. https://doi.org/10.1002/2015TC004019. [Google Scholar]
  • Barrier E, Vrielynck B. 2008. Paleotectonic Maps of the Middle East: Atlas of 14 Maps. Paris: Commission de la Carte Géologique du Monde. [Google Scholar]
  • Barruol G, Granet M. 2002. A Tertiary asthenospheric flow beneath the southern French Massif Central indicated by upper mantle seismic anisotropy and related to the west Mediterranean extension. Earth Planet Sci Lett 202: 31–47. [CrossRef] [Google Scholar]
  • Beaudoin A, Augier R, Jolivet L, Jourdon A, Raimbourg H, Scaillet S, et al. 2017. Deformation behavior of continental crust during subduction and exhumation: Strain distribution over the Tenda massif (Alpine Corsica, France). Tectonophysics 705: 12–32. https://doi.org/10.1016/j.tecto.2017.1003.1023. [CrossRef] [Google Scholar]
  • Beaudoin A, Scaillet S, Mora N, Jolivet L, Augier R. 2020. In situ and step-heating 40Ar/39Ar dating of white mica in low-temperature shear zones (Tenda massif, Alpine Corsica, France). Tectonics 39: e2020TC006246. https://doi.org/10.1029/2020TC006246. [CrossRef] [Google Scholar]
  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J Geophys Res 105: 8121–8145. https://doi.org/10.1029/1999JB900390. [CrossRef] [Google Scholar]
  • Becker TW, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett 310: 453–461. https://doi.org/10.1016/j.epsl.2011.1008.1021. [CrossRef] [Google Scholar]
  • Bellahsen N, Bayet L, Denele Y, Waldner M, Airaghi L, Rosenberg C, et al. 2019. Shortening of the axial zone, pyrenees: Shortening sequence, upper crustal mylonites and crustal strength. Tectonophysics 766: 433–452. https://doi.org/10.1016/j.tecto.2019.1006.1002. [CrossRef] [Google Scholar]
  • Bellahsen N, Faccenna C, Funiciello F, Daniel JM, Jolivet L. 2003. Why did Arabia separate from Africa, insights from 3-D laboratory experiments. Earth Planet Sci Lett 216: 365–381. [CrossRef] [Google Scholar]
  • Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33: 1055–1088. https://doi.org/10.1002/2013TC003453. [CrossRef] [Google Scholar]
  • Bellanger M, Augier R, Bellahsen N, Jolivet L, Monié P, Baudin T, et al. 2015. Shortening of the European Dauphinois margin (Oisans Massif, Western Alps): New insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating. Journal of Geodynamics 83: 37–64. https://doi.org/10.1016/j.jog.2014.1009.1004. [CrossRef] [Google Scholar]
  • Bellanger M, Bellahsen N, Jolivet L, Baudin T, Augier R, Boutoux A. 2014. Basement shear zones development and shortening kinematics in the Ecrins Massif, Western Alps. Tectonics 33. https://doi.org/10.1002/2013TC003294. [Google Scholar]
  • Benaouali-Mebarek N, Frizon de Lamotte D, Roca E, Bracene R, Faure JL, Sassi W, et al. 2006. Post-Cretaceous kinematics of the Atlas and Tell systems in central Algeria: Early foreland folding and subduction-related deformation. C R Geosci 338: 115–125. [CrossRef] [Google Scholar]
  • Bergerat F. 1987. Stress field in the European platform at the time of Africa-Eurasia collision. Tectonics 6: 99–132. [CrossRef] [Google Scholar]
  • Bernard T, Sinclair HD, Gailleton B, Mudd SM, Ford M. 2019. Lithological control on the post-orogenic topography and erosion history of the Pyrenees. Earth and Planetary Science Letters 518: 53–66. https://doi.org/10.1016/j.epsl.2019.1004.1034. [CrossRef] [Google Scholar]
  • Bernard T, Sinclair HD, Naylor M, Christophoul F, Ford M. 2020. Post-orogenic sediment drape in the Northern Pyrenees explained using a b o x model. Basin Res. https://doi.org/10.1111/bre.12457. [Google Scholar]
  • Bertrand M. 1887. Ilot triasique du Beausset (Var). Analogie avec le bassin houiller franco-belge et avec les Alpes de Glaris. Bull Geol Soc Fr 15: 667–702. [Google Scholar]
  • Bessière E. 2019. Évolution géodynamique des zones internes des Cordillères Bétique (Andalousie, Espagne) : apports d’une étude pluridisciplinaire du complexe Alpujarride, OSUC. Orléans: Université d’Orléans, p. 316. [Google Scholar]
  • Bessière E, Jolivet L, Augier R, Scaillet S, Précigout J, Azañon JM, et al. 2021. Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics, the Betics-Rif example. BSGF − Earth Sciences Bulletin 192: 8. https://doi.org/10.1051/bsgf/2021007. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bessis F. 1986. Some remarks on the study of subsidence of sedimentary basins. Applications to the Gulf of Lions margin (Western Mediterranean). Marine and Petroleum Geology 3: 37–63. [CrossRef] [Google Scholar]
  • Bestani L, Espurt N, Lamarche J, Floquet M, Philip J, Bellier O, et al. 2015. Structural style and evolution of the Pyrenean-Provence thrust belt, SE France. Bull Soc Géol Fr 186(4–5): 223–241. [CrossRef] [Google Scholar]
  • Bianco C, Brogi A, Caggianelli A, Giorgetti G, Liotta D, Meccheri M. 2015. HP-LT metamorphism in Elba Island: Implications for the geodynamic evolution of the inner Northern Apennines (Italy). Journal of Geodynamics 91: 13–25. https://doi.org/10.1016/j.jog.2015.1008.1001. [CrossRef] [Google Scholar]
  • Bianco C, Godard G, Halton A, Brogi A, Liotta D, Caggianelli A. 2019. The lawsonite-glaucophane blueschists of Elba Island (Italy). Lithos 348–349: 105198. https://doi.org/10.101016/j.lithos.102019.105198. [CrossRef] [Google Scholar]
  • Bilotte M. 1985. Le Crétacé supérieur des plates-formes est-pyrénéennes. Strata, série 2 5: 1–438. [Google Scholar]
  • Billi A, Faccenna C, Bellier O, Minelli L, Neri G, Piromallo C, et al. 2011. Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bull Soc Géol Fr 182: 279–303. [CrossRef] [Google Scholar]
  • Bird P. 1979. Continental delamination and the Colorado plateau. J Geophys Res 84: 7561–7571. [CrossRef] [Google Scholar]
  • Bird P. 1991. Lateral extrusion of lower crust from under hight topography in the isostatic limit. J Geophys Res 96: 10275–10286. [CrossRef] [Google Scholar]
  • Biteau JJ, Le Marrec A, Le Vot M, Masset JM. 2006. The Aquitaine Basin. Petroleum Geoscience 12: 247–273. [CrossRef] [Google Scholar]
  • Blake MC, Bonneau M, Geyssant J, Kienast JR, Lepvrier C, Maluski H, et al. 1981. A geological reconnaissance of the Cyclacic blueschist belt, Greece. Bull Geol Soc Am 92: 247–254. https://doi.org/10.1130/0016-7606(1981)1192<1247:AGROTC>1132.1130.CO;1132. [CrossRef] [Google Scholar]
  • Bonneau M, Kienast JR. 1982. Subduction, collision et schistes bleus: exemple de l’Egée, Grèce. Bull Soc Géol Fr 7: 785–791. [CrossRef] [Google Scholar]
  • Booth-Rea G, Ranero CR, Martinez-Martinez JM, Grevemeyer I. 2007. Crustal types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean. Geochem Geophys Geosyst 8: Q10005. https://doi.org/10010.11029/12007GC001639. [Google Scholar]
  • Bosch GV, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. 2016. Timing of Eocene-Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. C R Geosci 348: 246–256. [CrossRef] [Google Scholar]
  • Bouillin JP, Durand-Delga M, Olivier P. 1986. Betic, Rifian and Tyrrhenian arcs: distinctive features, genesis and development stage. In: Wezel FC, ed. The origin of Arcs. New York: Elsevier, pp. 281–304. [CrossRef] [Google Scholar]
  • Bourgeois O, Ford M, Diraison M, Le Carlier de Veslud C, Gerbault M, Pik R, et al. 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci (Geol Rundsch) 96: 1003–1031. https://doi.org/10.1007/s00531-00007-00202-00532. [CrossRef] [Google Scholar]
  • Bousquet R, Goffé B, Henry P, Le Pichon X, Chopin C. 1997. Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the Upper Crust and eclogitisation of the lower crust. Tectonophysics 273: 105–128. [CrossRef] [Google Scholar]
  • Bousquet R, Oberhänsli R, Goffé B, Wiederkehr M, Koller F, Schmid SM, et al. 2008. Metamorphism of metasediments at the scale of an orogen: a key to the Tertiary geodynamic evolution of the Alps. In: Siegiesmund S, Fügenschuh B, Froitzheim N, eds. Tectonic Aspects of the Alpine-Dinaride-Carpathian System. London: The Geological Society of London, pp. 393–411. https://doi.org/10.1144/SP1298.11180305-8719/1108/$1115.1100. [Google Scholar]
  • BRGM, Elf, Esso, SNPA. 1974. Géologie du bassin d’aquitaine. BRGM Editions. [Google Scholar]
  • Brogi A, Lazzarotto A, Liotta D, Ranalli G. 2003. Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363: 127–139. [CrossRef] [Google Scholar]
  • Bruguier O, Bosch D, Caby R, Vitale-Brovarone A, Fernandez L, Hammor D, et al. 2017. Age of UHP metamorphism in the Western Mediterranean: Insight from rutile and minute zircon inclusions in a diamond-bearing garnet megacryst (Edough Massif, NE Algeria). Earth Planet Sci Lett 474: 215–225. https://doi.org/10.1016/j.epsl.2017.1006.1043. [CrossRef] [Google Scholar]
  • Buontempo L, Bokelmann GHR, Barruol G, Morales J. 2008. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth Planet Sci Lett 273: 237–250. https://doi.org/10.1016/j.epsl.2008.1006.1024. [CrossRef] [Google Scholar]
  • Burke K, Steinberger B, Torsvik TH, Smethurst MA. 2008. Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary. Earth and Planetary Science Letters 265: 49–60. https://doi.org/10.1016/j.epsl.2007.1009.1042. [CrossRef] [Google Scholar]
  • Burke K, Torsvik TH. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci Lett 227: 531–538. [CrossRef] [Google Scholar]
  • Burov EB. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology 28: 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.1405.1008. [CrossRef] [Google Scholar]
  • Burov E, Gerya T. 2014. Asymmetric three-dimensional topography over mantle plumes. Nature 513: 85–89. https://doi.org/10.1038/nature13703. [CrossRef] [Google Scholar]
  • Burrus J. 1989. Review of geodynamics models for extensional basins; the paradox of stretching in the Gulf of Lions (Northwest Mediterranean). Bull Soc Géol Fr V: 377–393. [CrossRef] [Google Scholar]
  • Calais E, Nocquet JM, Jouanne F, Tardy M. 2002. Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001. Geology 30: 651–654. [CrossRef] [Google Scholar]
  • Calvet M, Gunnell Y, Laumonier B. 2021. Denudation history and palaeogeography of the Pyrenees and their peripheral basins: an 84-million-year geomorphological perspective. Earth-Science Reviews 215(2021): 103436. https://doi.org/10.1016/j.earscirev.2020.103436. [CrossRef] [Google Scholar]
  • Canérot J. 2016. The Iberian Plate: myth or reality? Boletín Geológico y Minero 127: 563–574. [Google Scholar]
  • Canva A, Thinon I, Peyrefitte A, Couëffé R, Maillard A, Jolivet L, et al. 2020. The Catalan magnetic anomaly: significance on crustal structure of the Gulf of Lion passive margin and link to the Catalan Transfer Zone. Marine and Petroleum Geology 113. https://doi.org/10.1016/j.marpetgeo.2019.104174. [CrossRef] [Google Scholar]
  • Capella W, Spakman W, Chertova MV, Krijgsman W. 2019. Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis. Terra Nova: 1–10. https://doi.org/10.1111/ter.12442. [Google Scholar]
  • Capitanio FA. 2014. The dynamics of extrusion tectonics: Insights from numerical modeling. Tectonics 33: 2361–2381. https://doi.org/10.1002/2014TC003688. [CrossRef] [Google Scholar]
  • Capitanio FA, Replumaz A, Riel N. 2015. Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochem Geophys Geosyst 16: 962–982. https://doi.org/10.1002/2014GC005660. [CrossRef] [Google Scholar]
  • Carminati E, Wortel MJR, Meijer PT, Sabadini R. 1998a. The two-stage opening of the western-central mediterranean basins: a forward modeling test to a new evolutionary model. Earth Planet Sci Lett 160: 667–679. [CrossRef] [Google Scholar]
  • Carminati E, Wortel MJR, Spakman W, Sabadini R. 1998b. The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. Earth Planet Sci Lett 160: 651–665. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A, El Kadiri K, Negro F, Frizon de Lamotte D, Soto JI, et al. 2008. The Rif Belt. In: Michard A, et al., eds. Continental Evolution: The Geology of Morocco, Lecture Notes 203 in Earth Sciences. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. [Google Scholar]
  • Chamot-Rooke N, Gaulier JM, Jestin F. 1999. Constraints on Moho depth and crustal thickness in the Liguro-Provençal basin from a 3D gravity inversion: geodynamic implications. In: Durand B, Jolivet L, Horvàth F, Séranne M, eds. Geol Soc Special Publication. London: Geological Society, pp. 37–62. [CrossRef] [Google Scholar]
  • Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, et al. 2016. New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). C R Geosci 348: 312–321. https://doi.org/10.1016/j.crte.2015.1011.1008. [CrossRef] [Google Scholar]
  • Chertova MV, Spakman W, Geenen T, van den Berg AP, van Hinsbergen DJJ. 2014. Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J Geophys Res Solid Earth 119: 5876–5902. https://doi.org/10.1002/2014JB011150. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8: 9591. https://doi.org/10.1038/s41598-41018-27889-x. [CrossRef] [Google Scholar]
  • Chevrot S, Villasenor A, Sylvander M, the PYROPE Working Group. 2014. High resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J Geophys Res 19: 6399–6420. https://doi.org/10.1002/2014JB010953,012014. [CrossRef] [Google Scholar]
  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences. Contrib Mineral Petrol 86: 107–118. [CrossRef] [Google Scholar]
  • Choukroune P. 1989. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [CrossRef] [Google Scholar]
  • Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrenées : sur le fonctionnement de la faille transformante nord-pyrénéenne; comparaison avec les modèles actuels. Bull Soc Géol Fr 7: 689–700. [CrossRef] [Google Scholar]
  • Choukroune P, Roure F, Pinet B, ECORS PYRENEES TEAM. 1990. Main results of the ECORS Pyrenees profile. Tectonophysics 173: 411–423. [CrossRef] [Google Scholar]
  • Christophoul F, Soula JC, Brusset S, Elibana B, Roddaz M, Bessiere G, et al. 2003. Time, place and mode of propagation of foreland basin systems as recorded by the sedimentary fill: examples of the Late Cretaceous and Eocene retro-foreland basins of the north-eastern Pyrenees. Geological Society, London, Special Publications 208: 229–252. [CrossRef] [Google Scholar]
  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2014. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci (Geol Rundsch) 103: 141–163. https://doi.org/10.1007/s00531-00013-00927-z. [CrossRef] [Google Scholar]
  • Clerc C, Jolivet L, Ringenbach JC. 2015a. Ductile extension shear zones on the lower crust of a passive margin. Earth Planet Sci Lett 431: 1–7. https://doi.org/10.1016/j.epsl.2015.1008.1038. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. https://doi.org/10.1002/2013TC003471. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Labaume P, Ringenbach JC, Vauchez A, Nalpas T, et al. 2016. Basement–Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. https://doi.org/10.1016/j.tecto.2016.1007.1022. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol Fr 183: 443–459. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015b. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. https://doi.org/10.5194/se-5196-5643-2015. [CrossRef] [Google Scholar]
  • Clerc C, Ringenbach JC, Jolivet L, Ballard JF. 2017. Rifted margins: ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Research 53: 20–40. https://doi.org/10.1016/j.gr.2017.1004.1030. [Google Scholar]
  • Cloetingh S, Thybo H, Faccenna C. 2009. TOPO-EUROPE: Studying continental topography and Deep Earth—Surface processes in 4D. Tectonophysics 474: 4–32. https://doi.org/10.1016/j.tecto.2009.1004.1015. [CrossRef] [Google Scholar]
  • Cloetingh S, van Wees JD, Ziegler PA, Lenkey L, Beekman F, Tesauro M, et al. 2010. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews 102: 159–206. https://doi.org/10.1016/j.earscirev.2010.1005.1003. [CrossRef] [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. BSGF − Earth Sciences Bulletin 188: 39. https://doi.org/10.1051/bsgf/2017206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Collettini C, Barchi MR. 2002. A low-angle normal fault in the Umbria region (Central Italy): a mechanical model for the related microseismicity. Tectonophysics 359: 97–115. [CrossRef] [Google Scholar]
  • Collettini C, Barchi MR. 2004. A comparison of structural data and seismic images for low-angle normal faults in the Northern Apennines (Central Italy): constraints on activity. In: Alsop GI, Holdsworth RE, McCaffrey KJW, Hands M, eds. Flow processes in faults and shear zones. London: Geological Society, pp. 95–112. [Google Scholar]
  • Collettini C, Holdsworth RE. 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. J Geol Soc Lond 161: 1039–1051. [CrossRef] [Google Scholar]
  • Coltice N, Husson L, Faccenna C, Arnould M. 2019. What drives tectonic plates? Sciences Advances 5: eaax4295. [Google Scholar]
  • Comas MC, Garcia-Duenas V, Jurado MJ. 1992. Neogene tectonic evolution of the Alboran Sea from MCS data. Geol Mar Lett 12: 157–164. [CrossRef] [Google Scholar]
  • Comas MC, Platt JP, Soto JI, Watts AB. 1999. The origin and tectonic history of the Alboran basin: insights from Leg 161 results. In: Zahn R, Comas MC, Klaus A, eds. Proc. ODP, Sci. Results. TX (Ocean Drilling Program), College Station, pp. 555–582. [Google Scholar]
  • Conrad CP, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science 298. [Google Scholar]
  • Cornet FH, Burlet D. 1992. Stress field determination in France by hydraulic test in boreholes. J Geophys Res 97: 11829–11849. [CrossRef] [Google Scholar]
  • Crespo-Blanc A. 1995. Interference pattern of extensional fault systems: a case study of the Miocene rifting of the Alboran basement (North of Sierra Nevada, Betic Chain). J Struct Geol 17: 1559–1569. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Orozco M, Garcia-Duenas V. 1994. Extension versus compression during the Miocene tectonic evolution of the Betic chain. Late folding of normal fault system. Tectonics 13: 78–88. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Comas M, Balanyá JC. 2016. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics 683: 308–324. https://doi.org/10.1016/j.tecto.2016.1005.1045. [CrossRef] [Google Scholar]
  • Curry ME, van der Beek P, Huismans RS, Wolf SG, Muñoz JP. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters 515: 26–37. https://doi.org/10.1016/j.epsl.2019.1003.1009. [CrossRef] [Google Scholar]
  • d’Acremont E, Lafosse M, Rabaute A, Teurquety G, Do Couto D, Ercilla G, et al. 2020. Polyphase tectonic evolution of fore-arc basin related to STEP fault as revealed by seismic reflection data from the Alboran Sea (W-Mediterranean). Tectonics 39: e2019TC005885. https://doi.org/10.1029/2019TC005885. [Google Scholar]
  • D’Agostino N, Chamot-Rooke N, Funiciello R, Jolivet L, Speranza F. 1998. The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (Central Italy). Tectonophysics 292: 229–254. [CrossRef] [Google Scholar]
  • Daril N. 2018. Cartographie de l’exhumation syn-à-post orogénique de la chaîne Pyrénéenne par modélisation 3D de données thermochonologiques. Mémoire de Master 2. Paris: Polytech Sorbonne, Sorbonne Université. [Google Scholar]
  • Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the western Betic flyschs: implications for the geodynamics of South Iberian margin and Alboran Domain. Tectonics 39: e2020TC006093. https://doi.org/10.1029/2020TC006093. [CrossRef] [Google Scholar]
  • de Larouzière FD, Bolze J, Bordet P, Hernadez J, Montenant C, et al. 1988. The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics 152: 41–52. [CrossRef] [Google Scholar]
  • de Lis Mancilla F, Heit B, Morales J, Yuan X, Stich D, Molina-Aguilera A, et al. 2018. A STEP fault in Central Betics, associated with lateral lithospheric tearing at the northern edge of the Gibraltar arc subduction system. Earth and Planetary Science Letters 486: 32–40. https://doi.org/10.1016/j.epsl.2018.1001.1008. [CrossRef] [Google Scholar]
  • De Voogd B, Nicolich R, Olivet JL, Fanucci F, Burrus J, Mauffret A, et al. 1991. First deep seismic reflection transect from the Gulf of Lions to Sardinia (ECORS-CROP profiles in Western Mediterranean). In: Meissner R, Brown L, Durbaum HJ, Fuchs K, Seifert F, eds. Continental lithosphere: deep seismic reflections. Washington D.C.: American Geophysical Union, pp. 265–274. [CrossRef] [Google Scholar]
  • Delacou B, Sue C, Champagnac JD, Burkhard M. 2004. Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis. Geophys J Int 158: 753–774. [CrossRef] [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G. 2008. Progressive deformation of a zone of magma transfer in a transpressional regime: The Variscan Mérens shear zone (Pyrenees, France). Journal of Structural Geology 30: 1138–1149. https://doi.org/10.1016/j.jsg.2008.1105.1006. [CrossRef] [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G, Barbey P. 2007. The Hospitalet gneiss dome (Pyrenees) revisited: lateral flow during Variscan transpression in the middle crust. Terra Nova 19: 445–453. https://doi.org/10.1111/j.1365-3121.2007.00770.x. [CrossRef] [Google Scholar]
  • Denèle Y, Olivier P, Gleizes G, Barbey P. 2009. Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France). Tectonophysics 477: 244–261. https://doi.org/10.1016/j.tecto.2009.1004.1033. [CrossRef] [Google Scholar]
  • Dercourt J, Ricou LE, Vrielinck B. 1993. Atlas Tethys Palaeo environmental Maps. Paris: Gauthier-Villars. [Google Scholar]
  • Dercourt J, Zonenshain LP, Ricou LE, Kuzmin VG, Le Pichon X, Knipper AL, et al. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123: 241–315. [CrossRef] [Google Scholar]
  • Deverchère J, Yelles K, Calais E. 2003. Active deformation along the Algerian Margin (MARADJA cruise): framework of the May 21 2003 Mw-6.8 Boumerdes earthquke. EOS Trans AGU 84: S42E–0216. [Google Scholar]
  • Dewey JF. 1980. Episodicity, sequence, and style at convergent plate boundaries. In: Stangway DW, ed. The continental crust and its mineral deposits. Geol Assoc Canada Spec Pap 20: 553–573. [Google Scholar]
  • Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD. 1989. Kinematics of the Western Mediterranean. In: Coward MP, Dietrich D, Park RG, eds. Alpine Tectonics. Geol Soc Spec Publ Lond 45: 265–283. [CrossRef] [Google Scholar]
  • Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. [CrossRef] [Google Scholar]
  • Diaz J, Gallart J, Carbonell R. 2016. Moho topography beneath the Iberian-Western Mediterranean region mapped from controlled-source and natural seismicity surveys. Tectonophysics 692: 74–85. [CrossRef] [Google Scholar]
  • Diaz J, Vergés J, Chevrot S, Antonio-Vigil A, Ruiza M, Sylvander M, et al. 2018. Mapping the crustal structure beneath the eastern Pyrenees. Tectonophysics 744: 296–309. https://doi.org/10.1016/j.tecto.2018.1007.1011. [CrossRef] [Google Scholar]
  • Dielforder A, Frasca G, Brune S, Ford M. 2019. Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochem Geophys Geosyst 20: 2395–2417. https://doi.org/10.1029/2018GC007840. [Google Scholar]
  • Do Couto D, Gorini C, Jolivet L, Lebret N, Augier R, Gumiaux C, et al. 2016. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.1003.1020. [Google Scholar]
  • Do Couto D, Gumiaux C, Augier R, Lebret N, Folcher N, Jouannic G, et al. 2014. Tectonic inversion of an asymmetric graben: Insights from a combined field and gravity survey in the Sorbas basin. Tectonics 33. https://doi.org/10.1002/2013TC003458. [Google Scholar]
  • Doglioni C, Agostini S, Crespi M, Innocenti F, Manetti P, Riguzzi F, et al. 2002. On the extension in western Anatolia and the Aegean sea. Journal of the Virtual Explorer 7: 167–181. [Google Scholar]
  • Doubrovine P, Steinberger B, Torsvik TH. 2012. Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J Geoph Res 117: B09101. https://doi.org/10.01029/02011JB009072. [CrossRef] [Google Scholar]
  • Driussi O, Briais A, Maillard A. 2015. Evidence for transform motion along the South Balearic margin and Implications for the kinematics of opening of the Algerian basin. Bull Soc Géol Fr 186: 353–370. [CrossRef] [Google Scholar]
  • Duchêne S, Blichert-Toft J, Luais B, Telouk P, Lardeaux JM, Albarède F. 1997a. The Lu-Hf dating of garnets and the ages of the alpine high-pressure metamorphism. Nature 387: 586. [CrossRef] [Google Scholar]
  • Duchêne S, Lardeaux JM, Albarède F. 1997b. Exhumation of eclogites: insights from depth-time analysis. Tectonophysics 280: 125–140. [CrossRef] [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Gumiaux C, Baudin T, Masini E, et al. 2019. The Nappe des Marbres unit of the Basque Cantabrian basin: the tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics 38. https://doi.org/10.1029/2018TC005348. [Google Scholar]
  • Ducoux M, Jolivet L, Masini E, Augier R, Lahfid A, Bernet M, et al. 2021a. Distribution and intensity of High-Temperature Low-Pressure metamorphism across the Pyrenean-Cantabrian belt: unravelling the thermal record of hyperextension rifting. BSGF-Earth Sciences Bulletin 200063. https://doi.org/10.1051/bsgf/2021029. [Google Scholar]
  • Ducoux M, Jolivet L, Cagnard F, Baudin T. 2021b. Basement-cover decoupling during the inversion of a hyperextended basin: Insights from the Eastern Pyrenees. Tectonics 40: e2020TC006512. https://doi.org/006510.001029/002020TC006512. [CrossRef] [Google Scholar]
  • Elsasser WM. 1968. The mechanics of continental drift. Proceedings of the American Philosophical Society 112: 344–353. [Google Scholar]
  • England P, Houseman G. 1989. Extension during continental convergence with application to the Tibetan plateau. J Geophys Res 94: 17561–17579. [CrossRef] [Google Scholar]
  • Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, Chevrot S. 2019. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764(2019): 25–45. https://doi.org/10.1016/j.tecto.2019.1004.1026. [CrossRef] [Google Scholar]
  • Estrada F, Galindo-Zaldıvar J, Vazquez JT, Ercilla G, D’Acremont E, Alonso B, et al. 2017. Tectonic indentation in the central Alboran Sea (westernmost Mediterranean). Terra Nova 30: 24–33. https://doi.org/10.1111/ter.12304. [Google Scholar]
  • Etheve N, Mohn G, Frizon de Lamotte D, Roca E, Tugend J, Gómez-Romeu J. 2018. Extreme Mesozoic crustal thinning in the eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough). Tectonics 37. https://doi.org/10.1002/2017TC004613. [Google Scholar]
  • Evans D, Graham C, Armour A, Bathurst P. 2003. The Millennium Atlas: petroleum geology of the central and northern North Sea. London: The Geological Society of London. [Google Scholar]
  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, et al. 2014. Mantle dynamics in the Mediterranean. Reviews of Geophysics 52: 283–332. https://doi.org/10.1002/2013RG000444. [CrossRef] [Google Scholar]
  • Faccenna C, Becker TW, Conrad CP, Husson L. 2013a. Mountain building and mantle dynamics. Tectonics 32: 80–93. https://doi.org/10.1029/2012TC003176. [CrossRef] [Google Scholar]
  • Faccenna C, Becker TW, Jolivet L, Keskin M. 2013b. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet Sci Lett 375: 254–269. https://doi.org/10.1016/j.epsl.2013.1005.1043. [CrossRef] [Google Scholar]
  • Faccenna C, Becker TW, Lucente FP, Jolivet L, Rossetti F. 2001a. History of subduction and back-arc extension in the Central Mediterranean. Geophys J Int 145: 809–820. [CrossRef] [Google Scholar]
  • Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V. 2006. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters 242: 85–97. [CrossRef] [Google Scholar]
  • Faccenna C, Civetta L, D’Antonio M, Funiciello F, Margheriti L, Piromallo C. 2005. Constraints on mantle circulation around the deforming Calabrian slab. Geophys Res Lett 32: L06311. https://doi.org/10.01029/02004GL021874. [CrossRef] [Google Scholar]
  • Faccenna C, Funiciello F, Giardini D, Lucente P. 2001b. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet Sci Lett 187: 105–116. [CrossRef] [Google Scholar]
  • Faccenna C, Jolivet L, Piromallo C, Morelli A. 2003. Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108: 2099. https://doi.org/10.1029/2001JB001690. [Google Scholar]
  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F. 2004. Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics 23. https://doi.org/10.1029/2002TC001488. [Google Scholar]
  • Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen R, Gautheron C, et al. 2021. Post-orogenic exhumation in the western Pyrenees: evidence for extension driven by pre-orogenic inheritance. Journal of the Geological Society 178: jsg2020-2079. https://doi.org/10.1144/jgs2020-1079. [Google Scholar]
  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth Planet Sci Lett 173: 157–170. [CrossRef] [Google Scholar]
  • Ford M, Vergés J. 2020. Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France. Journal of the Geological Society 178: jgs2019-2157. https://doi.org/2010.1144/jgs2019-2157. [Google Scholar]
  • Ford M, Duchêne S, Gasquet D, Vanderhaeghe O. 2006. Two-phase orogenic convergence in the external and internal SW Alps. J Geol Soc London 163: 815–826. [CrossRef] [Google Scholar]
  • Ford M, Hemelsdaël R, Mancini M, Palyvos N. 2017. Rift migration and lateral propagation: evolution of normal faults and sediment-routing systems of the western Corinth rift (Greece). Geological Society, London, Special Publications 439: 131–168. https://doi.org/10.1144/SP1439.1115. [CrossRef] [Google Scholar]
  • Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. Journal of the Geological Society 173: 419–437. https://doi.org/10.1144/jgs2015-1129. [CrossRef] [Google Scholar]
  • Ford M, Williams EA, Malartre F, Popescu SP. 2007.Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert-type deltas, Gulf of Corinth, Greece. In: Paola C, Nichols GJ, Williams EA, eds. I. A. S. Special Publication 38: 49–90. [Google Scholar]
  • Frasca G, Dielforder A, Ford M, Vergés J. 2017. Cretaceous to Tertiary paleogeographic reconstructions of the Alps-Pyrenees linking zone. In: 19th EGU General Assembly, EGU2017, Vienna, Austria, 7021. [Google Scholar]
  • Forte AM, Quéré S, Moucha R, Simmons NA, Grand SP, Mitrovica JX, et al. 2010. Joint seismic–geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet Sci Lett 295: 329–341. https://doi.org/10.1016/j.epsl.2010.1003.1017. [CrossRef] [Google Scholar]
  • Fournier F, Tassy A, Thinon I, Münch P, Cornée JJ, Borgomano J, et al. 2016. Pre-Pliocene tectonostratigraphic framework of the Provence continental shelf (eastern Gulf of Lion, SE France). Bull Soc Géol Fr 187: 187–216. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics 34: 1009–1029. https://doi.org/10.1002/2014TC003760. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau JC, Blanpied C, Ringenbach JC. 2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 30: TC3002. https://doi.org/10.1029/2010TC002691. [Google Scholar]
  • Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E. 2000. The two main steps of the Atlas building and geodynamics of the West Mediterranean. Tectonics 19: 740–761. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, El Azzouzi M, Charriere A, et al. 2008. The Atlas system. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D, eds. Continental Evolution: The Geology of Morocco. Heidelberg: Springer-Verlag, pp. 133–202. [CrossRef] [Google Scholar]
  • Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K. 2003. Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments. J Geophys Res 108: 2207. https://doi.org/10.1029/2001JB000896. [Google Scholar]
  • Gailler A, Klingelhoefer F, Olivet JL, Aslanian D, The Sardinia scientific party, Technical OBS team. 2009. Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography. Earth and Planetary Science Letters 286: 333–345. https://doi.org/10.1016/j.epsl.2009.1007.1001. [CrossRef] [Google Scholar]
  • Galindo-Zaldıvar J, Gil AJ, Borque MJ, Gonzalez-Lodeiro F, Jabaloy A, Marin-Lechado C, et al. 2003. Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain). Journal of Geodynamics 36: 239–250. [CrossRef] [Google Scholar]
  • Gawthorpe RL, Leeder MR, Kranis H, Skourtsos E, Andrews JE, Henstra GA, et al. 2018. Tectono-sedimentary evolution of the Plio-Pleistocene Corinth rift, Greece. Basin Research 30: 448–479. https://doi.org/10.1111/bre.12260. [CrossRef] [Google Scholar]
  • Gebauer D, Schertl HP, Brix M, Schreyer W. 1997. 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41: 5–24. [CrossRef] [Google Scholar]
  • Ghisetti F, Vezzani L. 2002. Normal faulting, transcrustal permeability and seismogenesis in the Apennines (Italy). Tectonophysics 348. [Google Scholar]
  • Glisovic P, Forte AM, Moucha R. 2012. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux. Geophys J Int 190: 785–815. https://doi.org/10.1111/j.1365-1246X.2012.05549.x. [CrossRef] [Google Scholar]
  • Goffé B, Chopin C. 1986. High-pressure metamorphism in the Western Alps: zoneography of metapelites, chronology and consequences. Schweizerische Mineralogishe und Petrographische Mitteilungen 66: 41–52. [Google Scholar]
  • Goffé B, Michard A, Garcia-Duenas V, Gonzales-Lodeiro F, Monié P, Campos J, et al. 1989. First evidence of high pressure, low temperature metamorphism in the Alpujarride nappes, Betic Cordillera (SE Spain). Eur J Miner 1: 139–142. [CrossRef] [Google Scholar]
  • Goldberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contr Miner Petrol 104: 194–207. [CrossRef] [Google Scholar]
  • Gómez-Pugnaire MT, Rubatto D, Fernández-Soler JM, Jabaloy A, López-Sánchez-Vizcaíno V, González-Lodeiro F, et al. 2012. Late Variscan magmatism in the Nevado-Filábride Complex: U-Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos 146–147: 93–111. https://doi.org/10.1016/j.lithos.2012.1003.1027. [CrossRef] [Google Scholar]
  • Gorini C, Le Marrec A, Mauffret A. 1993. Contribution to the structural and sedimentary history of the Gulf of Lions (western Mediterranean), from the ECORS profiles, industrial seismic pro-files and weIl data. Bull Geol Soc Fr 164: 353–363. [Google Scholar]
  • Gorini C, Mauffret A, Guennoc P, Le Marrec A. 1994. Structure of the Gulf of Lions (Northwestern Mediterranean Sea): a review. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France. Springer-Verlag, pp. 223–243. [CrossRef] [Google Scholar]
  • Govers R, Wortel MJR. 2005. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet Sci Lett 236: 505–523. [CrossRef] [Google Scholar]
  • Granado P, Urgeles R, Sàbat F, Albert-Villanueva E, Roca E, Muñoz JA, et al. 2016. Geodynamical framework and hydrocarbon plays of a salt giant: the NW Mediterranean Basin. Petroleum Geoscience 22: 309–321. https://doi.org/10.1144/petgeo2015-1084. [CrossRef] [Google Scholar]
  • Granot R. 2016. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nature Geoscience 9: 701–706. https://doi.org/10.1038/NGEO2784. [CrossRef] [Google Scholar]
  • Grool AR, Ford M, Vergés J, Huismans RS, Christophoul F, Dielforder A. 2018. Insights into the crustal-scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: A case study of the Eastern Pyrenees. Tectonics 37: 450–476. https://doi.org/10.1002/2017TC004731. [CrossRef] [Google Scholar]
  • Grool AR, Huismans RS, Ford M. 2019. Salt décollement and rift inheritance controls on crustal deformation in orogens. Terra Nova 31: 562–568. https://doi.org/10.1111/ter.12428. [Google Scholar]
  • Grosheny D, Ferry S, Courjault S. 2015. Progradational patterns at the head of single units of base-of-slope, submarine granular flow deposits (“Conglomérats des Gâs”, Coniacian, SE France). Sedimentary Geology 317: 102–115, 0037–0738. https://doi.org/10.1016/j.sedgeo.2014.0010.0007. [CrossRef] [Google Scholar]
  • Gueguen E, Doglioni C, Fernandez M. 1998. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298: 259–269. [CrossRef] [Google Scholar]
  • Guennoc P, Gorini C, Mauffret A. 2000. Histoire géologique du golfe du Lion et cartographie du rift oligo-aquitanien et de la surface messinienne. Géologie de la France 3: 67–97. [Google Scholar]
  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, et al. 2000. Meso-cenozoic geodynamic evolution of the Paris basin, stratigraphic constraints. Geodynamica Acta 13: 189–246. [Google Scholar]
  • Guillaume B, Funiciello F, Faccenna C, Martinod J, Olivetti V. 2010. Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab. Geology 38: 819–822. https://doi.org/10.1130/G31038.31031. [CrossRef] [Google Scholar]
  • Guiraud R, Bosworth W, Thierry J, Delplanque A. 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences 43: 83–143. [CrossRef] [Google Scholar]
  • Gunnell Y, Calvet M, Brichau S, Carter A, Aguilar JP, Zeyen H. 2009. Low long-term erosion rates in high-energy mountain belts: Insights from thermo- and biochronology in the Eastern Pyrenees. Earth Planet Sci Lett 278: 208–218. https://doi.org/10.1016/j.epsl.2008.1012.1004. [CrossRef] [Google Scholar]
  • Gutscher MA, Kopp H, Krastel S, Bohrmann G, Garlan T, Zaragosi S, et al. 2017. Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters 461: 61–72. https://doi.org/10.1016/j.epsl.2016.1012.1020. [CrossRef] [Google Scholar]
  • Gutscher MA, Malod J, Rehault JP, Contrucci I, Klingelhoefer F, Mendes-Victor L, et al. 2002. Evidence for active subduction beneath Gibraltar. Geology 30: 1071–1074. [CrossRef] [Google Scholar]
  • Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102: 121–158. https://doi.org/10.1016/j.earscirev.2010.1006.1002. [CrossRef] [Google Scholar]
  • Heidbach O, Rajabi M, Cui X, Fuchs K, Müller B, Reinecker J, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744: 484–498. [CrossRef] [Google Scholar]
  • Hennuy J. 2003. Sédimentation carbonate et silicoclastique sous contrôle tectonique, le bassin sud-provençal et sa plate-forme carbonatée du Turonien au Coniacien moyen. Évolution séquentielle, diagénétique, paléogéographique. Marseille: Aix-Marseille Univ., Centre Saint-Charles, 252 p. [Google Scholar]
  • Hernandez J, de Larouzière FD, Bolze J, Bordet P. 1987. Le magmatisme néogène bético-rifain et le couloir de décrochement trans-Alboran. Bull Soc Géol Fr 8: 257–267. [CrossRef] [Google Scholar]
  • Huyghe D, Mouthereau F, Ségalen L, Furio M. 2020. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ18o) paleo-altimetry in eastern Pyrenees. Scientific Reports 10: 2267. https://doi.org/10.1038/s41598-41020-58903-w. [CrossRef] [Google Scholar]
  • Issautier B, Saspiturry N, Serrano O. 2020. Role of structural inheritance and salt tectonics in the formation of pseudosymmetric continental rifts on the european margin of the hyperextended Mauléon basin (Early Cretaceous Arzacq and Tartas Basins). Marine and Petroleum Geology 118: 104395. https://doi.org/10.101016/j.marpetgeo.102020.104395. [CrossRef] [Google Scholar]
  • Issautier B, Lasseur E, Serrano O. 2018. Onset of the Convergence between Europe and Iberia: Well correlation and seismic interpretation within the Upper Cretaceous of the Aquitaine Basin. In: 26e Réunion des Sciences de la Terre, Lille. [Google Scholar]
  • Izquierdo-Llavall E, Menant A, Aubourg C, Callot JP, Hoareau G, Camps P, et al. 2020. Pre-orogenic folds and syn-orogenic basement tilts in an inverted hyperextended margin: the northern Pyrenees case study. Tectonics. https://doi.org/10.1029/2019TC005719 (in press). [Google Scholar]
  • Jabaloy A, Galindo-Saldivar J, Gonzales-Lodeiro F. 1993. The Alpujarride-Nevado-Filabride extensional shear zone, Betic Cordillera, SE Spain. J Struct Geol 15: 555–569. [CrossRef] [Google Scholar]
  • Jammes S, Lavier L, Manatschal G. 2010a. Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochem Geophys Geosyst 11: Q10016. https://doi.org/10010.11029/12010GC003218. [Google Scholar]
  • Jammes S, Tiberi C, Manatschal G. 2010b. 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay–Western Pyrenees. Tectonophysics 489: 210–226. https://doi.org/10.1016/j.tecto.2010.1004.1023. [CrossRef] [Google Scholar]
  • Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, Van Den Driessche J, et al. 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador. Terra Nova: 1–7. https://doi.org/10.1111/ter.12252. [Google Scholar]
  • Jolivet L, Augier R, Faccenna C, Negro F, Rimmele G, Agard P, et al. 2008. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull Soc Géol Fr 179: 525–550. [CrossRef] [Google Scholar]
  • Jolivet L, Augier R, Robin C, Suc JP, Rouchy JM. 2006. The geodynamic context of the Messinian salinity crisis. Sedimentary Geology 188–189: 9–33. [CrossRef] [Google Scholar]
  • Jolivet L, Brun JP. 2010. Cenozoic geodynamic evolution of the Aegean region. Int J Earth Sci 99: 109–138. https://doi.org/10.1007/s00531-00008-00366-00534. [CrossRef] [Google Scholar]
  • Jolivet L, Daniel JM, Fournier M. 1991. Geometry and kinematics of ductile extension in alpine Corsica. Earth and Planetary Science Letters 104: 278–291. [CrossRef] [Google Scholar]
  • Jolivet L, Daniel JM, Truffert C, Goffé B. 1994. Exhumation of deep crustal metamorphic rocks and crustal extension in back-arc regions. Lithos 33: 3–30. https://doi.org/10.1016/0024-4937(1094)90051-90055. [CrossRef] [Google Scholar]
  • Jolivet L, Dubois R, Fournier M, Goffé B, Michard A, Jourdan C. 1990. Ductile extension in Alpine Corsica. Geology 18: 1007–1010. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19: 1095–1106. https://doi.org/10.1029/2000TC900018. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Agard P, Frizon de Lamotte D, Menant A, Sternai P, et al. 2016a. Neo-Tethys geodynamics and mantle convection: from extension to compression in Africa and a conceptual model for obduction. Can J Earth Sci 53: 1190–1204. https://doi.org/10.1110.1139/cjes-2015-0118. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Becker TW. 2016b. Mantle flow and deforming continents, the Tethys realm. In: AGU Fall Meeting, San Francisco, pp. T53B-07. [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Burov E, Agard P. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am J Sci 303: 353–409. https://doi.org/10.2475/ajs.2303.2475.2353. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, et al. 1998. Mid-crustal shear zones in post-orogenic extension: the northern Tyrrhenian Sea case. J Geophys Res 103: 12123–12160. https://doi.org/10.11029/12197JB03616. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, et al. 2013. Aegean tectonics: progressive strain localisation, slab tearing and trench retreat. Tectonophysics 597–598: 1–33. https://doi.org/10.1016/j.tecto.2012.1006.1011. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Piromallo C. 2009. From Mantle to crust: stretching the Mediterranean. Earth Planet Sci Lett 285: 198–209. https://doi.org/10.1016/j.epsl.2009.1006.1017. [CrossRef] [Google Scholar]
  • Jolivet L, Famin V, Mehl C, Parra T, Aubourg C, Hébert R, et al. 2004. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. In: Whitney DL, Teyssier C, Siddoway CS, eds. Gneiss domes in orogeny. Boulder, Colorado: Geological Society of America, pp. 185–210. [Google Scholar]
  • Jolivet L, Gorini C, Bache F, Smit J, Leroy S. 2012. Continental Break-up and the dynamics of rifting in backarc basins: the Gulf of Lions margin. In: EGU General Assembly 2012, Vienna, pp. EGU2012–1756. [Google Scholar]
  • Jolivet L, Gorini C, Smit J, Leroy S. 2015a. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics 34. https://doi.org/10.1002/2014TC003570. [Google Scholar]
  • Jolivet L, Menant A, Clerc C, Sternai P, Bellahsen N, Leroy S, et al. 2018. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record. Earth Science Reviews 185: 1187–1209. https://doi.org/10.1016/j.earscirev.2018.1109.1010. [CrossRef] [Google Scholar]
  • Jolivet L, Menant A, Roche V, Le Pourhiet L, Maillard A, Augier R, et al. 2021. Transfer zones in Mediterranean back-arc regions and tear faults. BSGF − Earth Sciences Bulletin 192: 11. https://doi.org/10.1051/bsgf/2021006. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, et al. 2015b. The geological signature of a slab tear below the Aegean. Tectonophysics 659: 166–182. https://doi.org/10.1016/j.tecto.2015.1008.1004. [CrossRef] [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: late-orogenic evolution of Pyrenees and Liguro-Provençal rifting. Tectonophysics 776: 228312. https://doi.org/10.221016/j.tecto.222019.228312. [CrossRef] [Google Scholar]
  • Jolivet M, Labaume P, Monié P, Brunel M, Arnaud N, Campani M. 2007. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26: TC5007. https://doi.org/10.1029/2006TC002080. [Google Scholar]
  • Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.1001.1057. [CrossRef] [Google Scholar]
  • Jourdon A, Mouthereau F, Le Pourhiet L, Callot JP. 2020. Topographic and tectonic evolution of mountain belts controlled by salt thickness and rift architecture. Tectonics 39: e2019TC005903. https://doi.org/10.001029/002019TC005903. [CrossRef] [Google Scholar]
  • Keller JV, Pialli G. 1990. Tectonics of the island of Elba: a reappraisal. Boll Soc Geol It 109: 413–425. [Google Scholar]
  • Kirchner KL, Behr W, Loewy S, Stockli DF. 2015. Early Miocene subduction in the Western Mediterranean: constraints from Rb-Sr multi-mineral isochron geochronology. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1002/2015GC006208. [Google Scholar]
  • Kley J, Voigt T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36: 839–842. https://doi.org/10.1130/G24930A.24931. [CrossRef] [Google Scholar]
  • Koptev A, Beniest A, Gerya T, Ehlers TA, Jolivet L, Leroy S. 2019. Plume-induced breakup of a subducting plate: Microcontinent formation without cessation of the subduction process. Geophysical Research Letters 46. https://doi.org/10.1029/2018GL081295. [Google Scholar]
  • Koptev A, Burov E, Gerya T, Le Pourhiet L, Leroy S, Calais E, et al. 2017. Plume-induced continental rifting and break-up in ultra-slow extension context: Insights from 3D numerical modeling. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.1003.1025. [Google Scholar]
  • Koptev A, Calais E, Burov E, Leroy S, Gerya T. 2015. Dual continental rift systems generated by plume-lithosphere interaction. Nature Geoscience 8: 388–392. https://doi.org/10.1038/NGEO2401. [CrossRef] [Google Scholar]
  • Kornprobst J, Vielzeuf D. 1984. Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations. In: Kornprobst J, ed. Kimberlites and related rocks. Elsevier, pp. 347–359. [Google Scholar]
  • Kuhlemann J, Frisch W, Székely B, Dunkl I, Kázmér M. 2002. Post-collisional sediment budget tectonic versus climatic control. Int J Earth Sci 91: 818–837. [CrossRef] [Google Scholar]
  • Kuhlemann J, Kempf O. 2002. Post-eocene evolution of the north alpine foreland basin and its response to alpine tectonics. Sedimentary Geology 152: 45–78. [CrossRef] [Google Scholar]
  • Labaume P, Meresse F, Jolivet M, Teixell A, Lahfid A. 2016. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt. Tectonics 35: 1280–1313. https://doi.org/10.1002/2016TC004192. [CrossRef] [Google Scholar]
  • Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 785: 22845. https://doi.org/10.1016/j.tecto.2020.228451. [CrossRef] [Google Scholar]
  • Lacombe O, Jolivet L. 2005. Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 24: TC1003. https://doi.org/10.1129/2004TC001673. [Google Scholar]
  • Lafosse M, d’Acremont E, Rabaute A, Estrada F, Jollivet-Castelot M, Vazquez JT, et al. 2020. Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth 11: 741–765. https://doi.org/10.5194/se-5111-5741-2020. [CrossRef] [Google Scholar]
  • Lafosse M, Gorini C, Le Roy P, Alonso B, d’Acremont E, Ercilla G, et al. 2018. Late Pleistocene-Holocene history of a tectonically active segment of the the continental margin (Nekor basin, Western Mediterranean, Morocco). Marine and Petroleum Geology 97: 370–389. https://doi.org/10.1016/j.marpetgeo.2018.1007.1022. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Labaume P, Uzel J, et al. 2019a. Mantle exhumation at magma-poor passive continental margins. Part II: Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). BSGF − Earth Sciences Bulletin 190: 14. https://doi.org/10.1051/bsgf/2019013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019b. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). BSGF − Earth Sciences Bulletin 190: 8. https://doi.org/10.1051/bsgf/2019007. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29. https://doi.org/10.1029/2009TC002588. [Google Scholar]
  • Lanari R, Faccenna C, Fellin MG, Abderrahim E, Nahid A, Medina F, et al. 2020a. Tectonic evolution of the Western High Atlas of Morocco: oblique convergence, reactivation and transpression. Tectonics 39: e2019TC005563. https://doi.org/10.1029/2019TC005563. [Google Scholar]
  • Lanari R, Fellin MG, Faccenna C, Balestrieri ML, Pazzaglia F, Youbi N, et al. 2020b. Exhumation and surface evolution of the Western High-Atlas and surrounding regions as constrained by low-temperature thermochronology. Tectonics 39(3): e2019TC005562. https://doi.org/10.1029/2019TC005562. [Google Scholar]
  • Lasseur E. 2007. La Craie du Bassin de Paris (Cénomanien-Campanien, Crétacé supérieur). Sédimen- tologie de faciès, stratigraphie séquentielle et géométrie 3D. Rennes: Université de Rennes 1. [Google Scholar]
  • Lavecchia G. 1988. The Tyrrhenian-Apennines system: Structural setting and seismotectogenesis. Tectonophysics 147: 263–296. [CrossRef] [Google Scholar]
  • Lavier LL, Ball PJ, Manatschal G, Heumann MJ, MacDonald J, Matt VJ, et al. 2019. Controls on the thermomechanical evolution of hyperextended lithosphere at magma-poor rifted margins: The example of Espirito Santo and the Kwanza basins. Geochemistry, Geophysics, Geosystems 20. https://doi.org/10.1029/2019GC008580. [Google Scholar]
  • Lavier LL, Buck WR, Poliakov ANB. 1999. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27: 1127–1130. [CrossRef] [Google Scholar]
  • Lehujeur M, Chevrot S, Villaseñor A, Masini E, Saspiturry N, Lescoutre R, et al. 2021. Three-dimensional shear velocity structure of the Mauleon and Arzacq basins (Western Pyrenees). BSGF-Earth Sciences Bulletin 210003. https://doi.org/10.1051/bsgf/2021039. [Google Scholar]
  • Le Pichon X. 1982. Land-locked oceanic basins and continental collision, the eastern Mediterranean as a case example. In: Hsue KJ, ed. Mountain building processes. London: Academic Press, pp. 201–211. [Google Scholar]
  • Le Pourhiet L, Huet B, May D, Labrousse L, Jolivet L. 2012. Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochem Geophys Geosyst 13(9): Q09002. https://doi.org/10.01029/02012GC004271. [CrossRef] [Google Scholar]
  • Leprêtre R, Frizon de Lamotte D, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF − Earth Sciences Bulletin 189: 10. https://doi.org/10.1051/bsgf/2018009. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lescoutre R, Manatschal G. 2020. Role of rift-inheritance and segmentation for orogenic evolution: example from the Pyrenean-Cantabrian system. BSGF − Earth Sciences Bulletin 191: 18. https://doi.org/10.1051/bsgf/2020021. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: Results from numerical modeling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems 20: 4567–4587. https://doi.org/10.1029/2019GC008600. [CrossRef] [Google Scholar]
  • Li B, Massonne HJ. 2018. Two Tertiary metamorphic events recognized in high-pressure metapelites of the Nevado-Filábride Complex (Betic Cordillera, S. Spain). J Metam Geol 36: 603–630. [CrossRef] [Google Scholar]
  • Lonergan L, Platt JP. 1995. The Malaguide-Alpujarride boundary: a major extensional contact in the internal zones of the eastern Betic Cordillera, SE Spain. J Struct Geol 17: 1655–1671. [CrossRef] [Google Scholar]
  • Lonergan L, White N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16: 504–522. [CrossRef] [Google Scholar]
  • López Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O. 2001. Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filábride complex, SE Spain. Terra Nova 13: 327–332. [CrossRef] [Google Scholar]
  • Lucente FP, Margheriti L, Piromallo C, Barruol G. 2006. Seismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantle. Earth Plaonet Sci Lett 241: 517–529. [CrossRef] [Google Scholar]
  • Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2018. A new southern North Atlantic isochron map: insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122: 9603–9626. https://doi.org/10.1002/2017JB014769. [CrossRef] [Google Scholar]
  • Maillard A, Jolivet L, Lofi J, Couëffé R, Thinon I. 2020. Transfer Faults and associated volcanic province in the transition zone between the Valencia Basin and the Gulf of Lion: consequences on crustal thinning. Marine and Petroleum Geology 119. https://doi.org/10.1016/j.marpetgeo.2020.104419,104419. [CrossRef] [Google Scholar]
  • Maillard A, Mauffret A. 1999. Crustal structure and riftogenesis of the Valencia Trough (north-western Mediterranean Sea). Basin Res 11: 357–379. [CrossRef] [Google Scholar]
  • Maillard A, Mauffret A. 2013. Structure and present-day compression in the offshore area between Alicante and Ibiza Island (Eastern Iberian Margin). Tectonophysics 591: 116–130. https://doi.org/10.1016/j.tecto.2011.1007.1007. [CrossRef] [Google Scholar]
  • Malinverno A, Ryan W. 1986. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5: 227–245. [CrossRef] [Google Scholar]
  • Maluski H, Bonneau M, Kienast JR. 1987. Dating the metamorphic events in the Cycladic area: 39Ar/40Ar data from metamorphic rocks of the island of Syros (Greece). Bull Géol Soc Fr 8: 833–842. [CrossRef] [Google Scholar]
  • Manatschal G, Chenin P, Lescoutre R, Miró J, Cadenas P, Saspiturry N, et al. 2021. The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective. BSGF − Earth Sciences Bulletin 200015. https://doi.org/10.1051/bsgf/2021042. [Google Scholar]
  • Mantovani E, Babbucci D, Tamburelli C, Viti M. 2009. A review on the driving mechanism of the Tyrrhenian–Apennines system: Implications for the present seismotectonic setting in the Central-Northern Apennines. Tectonophysics 476: 22–40. https://doi.org/10.1016/j.tecto.2008.1010.1032. [CrossRef] [Google Scholar]
  • Mantovani E, Viti M, Babbucci D, Tamburelli C, Cenni N. 2020. Geodynamics of the central-western Mediterranean region: plausible and non-plausible driving forces. Marine and Petroleum Geology 113: 104121. [CrossRef] [Google Scholar]
  • Martínez-García P, Comas M, Lonergan L, Watts AB. 2017. From extension to shortening: Tectonic inversion distributed in time and space in the Alboran sea, western Mediterranean. Tectonics 36: 2777–2805. https://doi.org/10.1002/2017TC004489. [CrossRef] [Google Scholar]
  • Martinez-Martinez JM, Azañon JM. 1997. Mode of extensional tectonics in the southeastern Betics (SE Spain): implications for the tectonic evolution of the peri-Alboran orogenic system. Tectonics 16: 205–225. [CrossRef] [Google Scholar]
  • Mascle A, Jacquart G, Deville E. 1994. The Corbières transverse zone of the Pyrenees-Provence thrust belt (south France)—Tectonic history and petroleum. In: Paper presented at 6th Conference, Eur. Assoc. of Pet. Geosci. and Eng., Vienna. [Google Scholar]
  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci (Geol Rundsch) 103: 1569–1596. https://doi.org/10.1007/s00531-00014-01023-00538. [CrossRef] [Google Scholar]
  • Mauffret A, Frizon de Lamotte D, Lallemant S, Gorini C, Maillard A. 2004. E-W opening of the Algerian basin (Western Mediterranean). Terra Nova 16: 257–264. [CrossRef] [Google Scholar]
  • Mauffret A, Pascal G, Maillard A, Gorini C. 1995. Tectonics and deep structure of the north-western Mediterranean basin. Marine and Petroleum Geology 12: 645–666. [CrossRef] [Google Scholar]
  • Maurel O, Brunel M, Monié P. 2002. Exhumation cénozoïque des massifs du Canigou et de Mont-Louis (Pyrénées orientales, France). C R Geosci 334: 941–948. [CrossRef] [Google Scholar]
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, et al. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105: 5695–5720. [CrossRef] [Google Scholar]
  • McKenzie DP. 1969. Speculations on the conséquences and causes of plate motions. Geophys J R Astron Soc 18: 1–32. [CrossRef] [Google Scholar]
  • Meghraoui M, Cisternas A, Philip H. 1986. Seismotectonics of the lower Cheliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics 5: 809–836. [CrossRef] [Google Scholar]
  • Medaouri M, Déverchère J, Graindorge D, Bracene R, Badjia R, Ouabadic A, et al. 2014. The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system. Journal of Geodynamics 77: 186–205. https://doi.org/10.1016/j.jog.2014.1001.1003. [CrossRef] [Google Scholar]
  • Meghraoui M, Morel JL, Andrieux J, Dahmani M. 1996. Tectonique plio-quaternaire de la chaîne tello-rifaine et de la mer d’Alboran. Une zone complexe de convergence continent-continent. Bull Soc Géol Fr 167: 141–157. [Google Scholar]
  • Meghraoui M, Pondrelli S. 2012. Active faulting and transpression tectonics along the plate boundary in North Africa. Annals of Geophysics 55. https://doi.org/10.4401/ag-4970. [Google Scholar]
  • Meijninger BML, Vissers RLM. 2006. Miocene extensional basin development in the Betic Cordillera, SE Spain revealed through analysis of the Alhama de Murcia and Crevillente Faults. Basin Research 18: 547–571. https://doi.org/10.1111/j.1365-2117.2006.00308.x. [CrossRef] [Google Scholar]
  • Menant A, Aubourg C, Cuyala JB, Hoareau G, Callot JP, Péré E, et al. 2016. Salt tectonics and thermal imprint along an inverted passive margin: the Montcaou anticline, Chaînons Béarnais, North Pyrenean Zone. In: EGU General Assembly 2016, Vienna, pp. EPSC2016–15281. [Google Scholar]
  • Merle O, Michon L. 2001. The formation of the West European Rift: a new model as exemplified by the Massif Central Area. Bull Soc Géol Fr 172: 213–221. [CrossRef] [Google Scholar]
  • Michard A, Chalouan A, Feinberg H, Goffé B, Montigny R. 2002. How does the Alpine belt end between Spain and Morocco? Bull Geol Soc Fr 173: 3–15. [CrossRef] [Google Scholar]
  • Milesi G. 2020. Analyse thermochronologique, géochimique et structurale du système hydrothermal de la faille de la Têt (Pyrénées, France), un nouvel outil d’exploration géothermique. Montpellier: Université de Montpellier, p. 503. [Google Scholar]
  • Miller C, Thöni M. 1997. Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data. Chemical Geology 137: 283–310. [CrossRef] [Google Scholar]
  • Miró J. 2020. Rift-inheritance, segmentation and reactivation of the North Iberian rift system in the Basque - Cantabrian Pyrenees. PhD thesis. Strasbourg: Université de Strasbourg and Universitat Barcelona, 228 p. [Google Scholar]
  • Miró J, Muñoz JA, Manatschal G, Roca E. 2020. The Basque – Cantabrian Pyrenees: report of data analysis. BSGF - Earth Sciences Bulletin 191: 22. https://doi.org/10.1051/bsgf/2020024. [CrossRef] [EDP Sciences] [Google Scholar]
  • Missenard Y, Cadoux A. 2012. Can Moroccan Atlas lithospheric thinning and volcanism be induced by Edge-Driven Convection? Terra Nova 24: 27–33. https://doi.org/10.1111/j.1365-3121.2011.01033.x. [CrossRef] [Google Scholar]
  • Molnar P, Lyon-Caen H. 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol Soc Am Spec Pap 218: 179–207. [Google Scholar]
  • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science 189: 419–426. [CrossRef] [Google Scholar]
  • Monié P, Lodeiro FG, Goffé B, Jabaloy A. 1991. 39Ar/40Ar geochronology of alpine tectonism in the Betic Cordillera (Southern Spain). J Geol Soc Lond 148: 289–297. [CrossRef] [Google Scholar]
  • Monod B, Regard V, Carcone J, Wyns R, Christophoul F. 2016. Postorogenic planar palaeosurfaces of the central Pyrenees: Weathering and neotectonic records. C R Geosci 348: 184–193. https://doi.org/10.1016/j.crte.2015.1009.1005. [CrossRef] [Google Scholar]
  • Morris RG, Sinclair HD, Yelland AJ. 1998. Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Research 10: 69–85. [CrossRef] [Google Scholar]
  • Moucha R, Forte AM. 2011. Changes in African topography driven by mantle convection. Nature Geoscience 4: 707–712. https://doi.org/10.1038/NGEO1235. [CrossRef] [Google Scholar]
  • Moulin M, Klingelhoeffer F, Afilhado A, Aslanian A, Schnurle P, Nouzé H, et al. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) − I. Gulf of Lion’s margin. Bull Soc Géol Fr 186: 309–330. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Mouthereau F, Angrand P, Jourdon A, Ternois S, Fillon C, Calassou S, et al. 2021. Cenozoic mountain building and topographic evolution in Western Europe: impact of billion years lithosphere evolution and plate tectonics. BSGF-Earth Sciences Bulletin 210026. https://doi.org/10.1051/bsgf/2021040. [Google Scholar]
  • Mouthereau F, Watts AB, Burov E, 2013. Structure of orogenic belts controlled by lithosphere age. Nature Geoscience 6. https://doi.org/10.1038/NGEO1902. [Google Scholar]
  • Muñoz JA. 2002. The Pyrenees. In: Gibbons W, Moreno T, eds. The Geology of Spain. The Geological Society of London, pp. 370–385. [Google Scholar]
  • Muñoz JAE. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay K, ed. Thrust Tectonics. London: Chapman and Hall, pp. 235–246. [Google Scholar]
  • Muñoz JA, Beamud E, Fernandez O, Arbués P, Dinarès-Turell J, Poblet J. 2013. The Ainsa Fold and thrust oblique zone of the central Pyrenees: Kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics 32: 1142–1175. https://doi.org/10.1002/tect.20070. [CrossRef] [Google Scholar]
  • Muñoz JA, Mencos J, Roca E, Carrera N, Gratacós O, Ferrer O, et al. 2018. The structure of the South-Central-Pyrenean fold and thrust belt as constrained by subsurface data. Geologica Acta 16: 439–460. https://doi.org/10.1344/GeologicaActa2018.1316.1344.1347. [Google Scholar]
  • Nadin PA, Kusznir NJ, Cheadle MJ. 1997. Early Tertiary plume uplift of the North Sea and Faeroe-Shetland Basins. Earth Planet Sci Lett 148: 109–127. [CrossRef] [Google Scholar]
  • Nielsen SB, Paulsen GE, Hansen DL, Gemmer L, Clausen OR, Jacobsen BH, et al. 2002. Paleocene initiation of Cenozoic uplift in Norway. In: Doré AG, Cartwright JA, Stocker MS, Turner JE, White N, eds. Exhumation of the North Atlantic margin: timing, mechanisms and implications for petroleum exploration. Geological Society, London, Special Publications 196: 45–65. [CrossRef] [Google Scholar]
  • Nirrengarten M, Manatschal G, Tugend J, Kusznir J, Sauter D. 2018. Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics 37: 89–118. https://doi.org/10.1002/2017TC004495. [CrossRef] [Google Scholar]
  • Oberhänsli R, Bousquet R, Engi M, Goffé B, Gosso G, Handy M, et al. 2004. Metamorphic structure of the Alps, edited by the Commission for the Geological Map of the World. Miit Österr Geol Ges 149. [Google Scholar]
  • Ortiz A. 2019. Géométries et bilan érosion-sédimentation d’un rétro-bassin d’avant- pays durant son évolution finie-orogénique et post-orogénique: le cas du système Pyrénées/bassin d’Aquitaine/golfe de Gascogne de 38 à 0 Ma. Rennes: Université de Rennes 1, pp. 310. [Google Scholar]
  • Ortiz A, Guillocheau F, Lasseur E, Briais J, Robin C, Serrano O, et al. 2020. Sediment routing system and sink preservation during the post-orogenic evolution of a retro-foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Marine and Petroleum Geology 112: 104085. https://doi.org/10.101016/j.marpetgeo.102019.104085. [CrossRef] [Google Scholar]
  • Parizot O, Missenard Y, Haurine F, Blaise T, Barbarand J, Benedicto A, et al. 2021. When did the Pyrenean shortening end? Insight from U–Pb geochronology of syn-faulting calcite (Corbières area, France). Terra Nova 00: 1–9. https://doi.org/10.1111/ter.12547. [Google Scholar]
  • Pascal GP, Mauffret A, Patriat P. 1993. The ocean-continent boundary in the Gulf of Lion from analysis of expanding spread profiles and gravity modelling. Geophysical Journal International 113: 701–726. [CrossRef] [Google Scholar]
  • Patacca E, Scandone S. 1989. Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab. In: Boriani A, Bonafede M, Piccardo GB, Vai GB, eds. The lithosphere in Italy. Advances in science research. Rome: Accademia Nazionale dei Lincei, pp. 157–176. [Google Scholar]
  • Patacca E, Sartori R, Scandone P. 1990. Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem Soc Geol It 45: 425–451. [Google Scholar]
  • Pauselli C, Ranalli G. 2017. Effects of lateral variations of crustal rheology on the occurrence of post- orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy). Tectonophysics 721: 45–55. https://doi.org/10.1016/j.tecto.2017.1009.1008. [CrossRef] [Google Scholar]
  • Pauselli C, Barchi MR, Federico C, Magnani MB, MInelli G. 2006. The crustal structure of the Northern Apennines (Central Italy): an insight by the CROP03 seismic line. American Journal of Science 306: 428–450. https://doi.org/10.2475/2406.2006.2402. [CrossRef] [Google Scholar]
  • Pedrera A, Ruiz-Constán A, García-Senz J, Azor A, Marín-Lechado C, Ayala C, et al. 2020. Evolution of the South-Iberian paleomargin: From hyperextension to continental subduction. Journal of Structural Geology 138: 104122. https://doi.org/10.101016/j.jsg.102020.104122. [CrossRef] [Google Scholar]
  • Pellen R, Aslanian D, Rabineau M, Leroux E, Gorini C, Silenziario C, et al. 2016. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea). Terra Nova 28: 245–256. https://doi.org/10.1111/ter.12215. [CrossRef] [Google Scholar]
  • Pérez-Peña JV, Azor A, Azañón JM, Keller EA. 2010. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119: 74–87. https://doi.org/10.1016/j.geomorph.2010.1002.1020. [CrossRef] [Google Scholar]
  • Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F, Georgiev I, et al. 2012. Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow. Geochem Geophys Geosyst 13: Q09013. https://doi.org/10.01029/02012GC004289. [Google Scholar]
  • Petri B, Mohn G, Skrzypek E, Mateeva T, Galster F, Manatschal G. 2017. U–Pb geochronology of the Sondalo gabbroic complex (Central Alps) and its position within the Permian post-Variscan extension. Int J Earth Sci (Geol Rundsch) 106: 2873–2893. https://doi.org/10.1007/s00531-00017-01465-x. [CrossRef] [Google Scholar]
  • Piana Agostinetti N, Faccenna C. 2018. Deep structure of Northern Apennines subduction orogen (Italy) as revealed by a joint interpretation of passive and active seismic data. Geophysical Research Letters 45: 4017–4024. https://doi.org/10.1029/2018GL077640. [CrossRef] [Google Scholar]
  • Platt JP. 1993. Exhumation of high-pressure rocks: a review of concept and processes. Terra Nova 5: 119–133. [CrossRef] [Google Scholar]
  • Platt JP, Vissers RLM. 1989. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17: 540–543. [CrossRef] [Google Scholar]
  • Platt JP, Allerton S, Kirker A, Mandeville C, Mayfield A, Platzman ES, et al. 2003a. The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the external Betic-Rif arc. Tectonics 22: 1017. https://doi.org/10.1029/2001TC001321. [Google Scholar]
  • Platt JP, Anczkiewicz R, Soto JI, Kelley SP, Thirlwall M. 2006. Early Miocene continental subduction and rapid exhumation in the Western Mediterranean. Geology 34: 981–984. https://doi.org/10.1130/G22801A.22801. [CrossRef] [Google Scholar]
  • Platt JP, Behr WM, Johanesen K, Williams JR. 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annu Rev Earth Planet Sci 41: 313–357. https://doi.org/10.1146/annurev-earth-050212-123951. [CrossRef] [Google Scholar]
  • Platt JP, Kelley SP, Carter A, Orozco M. 2005. Timing of tectonic events in the Alpujarride Complex, Betic Cordillera, S. Spain. Journal of the Geological Society, London 162: 1–12. [Google Scholar]
  • Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L. 2003b. Simultaneous extension exhumation across the Alboran Basin: implications for the causes of late orogenic extension. Geology 31: 251–254. [CrossRef] [Google Scholar]
  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, et al. 2014. Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. J Geophys Res Solid Earth 119: 52–70. https://doi.org/10.1002/2013JB010527. [CrossRef] [Google Scholar]
  • Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, et al. 2018. Spatial variations of magmatic crustal accretion duringtheopeningoftheTyrrhenianback-arcfrom wide-angle seismic velocity models and seismic reflection images. Basin Research 30: 124–141. https://doi.org/10.1111/bre.12211. [CrossRef] [Google Scholar]
  • Puigdefabregas C, Souquet P. 1986. Tectosedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129: 173–203. https://doi.org/10.1016/0040-1951(1086)90251-90259. [CrossRef] [Google Scholar]
  • Quintana L, Pulgar JA, Alonso JL. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics 663: 378–398. https://doi.org/10.1016/j.tecto.2015.1008.1046. [CrossRef] [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M. 2019. Tectonothermal evolution of the Cameros basin: Implications for tectonics of North Iberia. Tectonics 38: 440–469. https://doi.org/10.1029/2018TC005294. [CrossRef] [Google Scholar]
  • Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mem Soc Geol Fr XXXVIII: 250. [Google Scholar]
  • Réhault JP, Boillot G, Mauffret A. 1984. The Western Mediterranean basin geological evolution. Marine Geology 5: 447–477. [CrossRef] [Google Scholar]
  • Réhault JP, Honthaas C, Guennoc P, Bellon H, Ruffet G, Cotten J, et al. 2012. Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin: Magmatic diversity and slab evolution in the western Mediterranean Sea. Journal of Geodynamics 58: 73–95. https://doi.org/10.1016/j.jog.2012.1002.1003. [CrossRef] [Google Scholar]
  • Réhault JP, Moussat E, Fabbri A. 1987. Structural evolution of the tyrrhenian back-arc basin. Mar Geol 74: 123–150. [CrossRef] [Google Scholar]
  • Reilinger R, McClusky S, Paradissis D, Ergintav S, Vernant P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488: 22–30. [CrossRef] [Google Scholar]
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, et al. 2006. GPS constraints on continental deformation in the Africa-Arabia- Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111: B05411. https://doi.org/10.01029/02005JB004051. [Google Scholar]
  • Ricard Y, Vigny C. 1989. Mantle dynamics with induced plate tectonics. J Geophys Res 94: 17543–17559. [CrossRef] [Google Scholar]
  • Ricard Y, Vigny C, Froidevaux C. 1989. Mantle heterogeneities, geoid and plate motions. J Geophys Res 94: 13739–13754. [CrossRef] [Google Scholar]
  • Ricou LE. 1994. Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asie. Geodinamica Acta 7: 169–218. [CrossRef] [Google Scholar]
  • Ricou LE, Dercourt J, Geyssant J, Grandjacquet C, Lepvrier C, Biju-Duval B. 1986. Geological constraints on the Alpine evolution of the Mediterranean Tethys. Tectonophysics 123: 83–122. [CrossRef] [Google Scholar]
  • Ring U, Glodny J, Will T, Thomson S. 2010. The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annu Rev Earth Planet Sci 38: 45–76. https://doi.org/10.1146/annurev.earth.050708.170910. [CrossRef] [Google Scholar]
  • Roca E, Guimerà J. 1992. The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203: 203–218. [CrossRef] [Google Scholar]
  • Rohais S, Eschard R, Ford M, Guillocheau F, Moretti I. 2007. Stratigraphic architecture of the Plio-Pleistocene infill of the Corinth Rift, implications for its structural evolution. Tectonophysics 440: 5–28. [CrossRef] [Google Scholar]
  • Rollet N, Déverchère J, Beslier MO, Guennoc P, Réhault JP, Sosson M, et al. 2002. Back–arc extension, tectonic inheritance and volcanism in the Ligurian Sea, western Mediterranean. Tectonics 21: 10.1029. [Google Scholar]
  • Romagny A, Jolivet L, Menant A, Bessière E, Maillard A, Canva A, Thinon I. 2020. Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms. BSGF - Earth Sciences Bulletin 191: 37. https://doi.org/10.1051/bsgf/2020040. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002a. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8: 107–126. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002b. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117–129. [Google Scholar]
  • Rossetti F, Faccenna C, Goffé B, Monié P, Argentieri A, Funiciello R, et al. 2001. Alpine structural and metamorphic signature of the Sila Piccola massif nappe stack (Calabria, Italy): insights for the tectonic evolution of the Calabrian arc. Tectonics 20: 112–133. [CrossRef] [Google Scholar]
  • Rossetti F, Faccenna C, Jolivet L, Funiciello R. 1999a. Structural evolution of the Giglio island, Northern Tyrrhenian Sea (Italy). Mem Soc Geol It 52: 493–512. [Google Scholar]
  • Rossetti F, Faccenna C, Jolivet L, Funiciello R, Goffé B, Tecce F, et al. 1999b. Structural signature and exhumation P-T-t path of the Gorgona blueschist sequence (Tuscan Archipelago, Italy). Ofioliti 26: 175–186. [Google Scholar]
  • Rossetti F, Goffé B, Monié P, Faccenna C, Vignaroli G. 2004. Alpine orogenic P-T-t-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian-Apennine system formation. Tectonics 23. https://doi.org/10.1029/2003TC001560. [Google Scholar]
  • Rougier G, Ford M, Christophoul F, Bader AG. 2016. Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin. C R Geosci 348: 224–235. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, et al. 1989. ECORS deep seismic data and balanced cross sections; geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P, Polino R. 1996. Deep seismic reflection data and new insights on the bulk geometry of mountain ranges. C R Acad Sci Paris 322: 345–359. [Google Scholar]
  • Royden L, Patacca E, Scandone P. 1987. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology 15: 714–717. [CrossRef] [Google Scholar]
  • Royden LH. 1993. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12: 629–638. [CrossRef] [Google Scholar]
  • Royden LH, Burchfiel BC, van der Hilst RD. 2008. The geological evolution of the Tibetan Plateau. Science 321: 1054–1058. https://doi.org/10.1126/science.1155371. [CrossRef] [Google Scholar]
  • Rubatto D, Gebauer D, Compagnoni R. 1997. Dating the UHP/HP metamorphism in the Western Alps (Sesia Lanzo and Zermatt − Saas Fee): evidence for subduction events at the Creaceous-Tertiary boundary and in the middle Eocene. Terra Nova 9: 30–31. [Google Scholar]
  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. 2009. Global Multi-Resolution Topography synthesis. Geochem Geophys Geosyst 10: Q01005. https://doi.org/10.01029/02003GC000614. [Google Scholar]
  • Salas R, Casas A. 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics 228: 33–55. https://doi.org/10.1016/0040-1951(1093)90213-90214. [CrossRef] [Google Scholar]
  • Salas R, Guimerà J, Mas R, Martín-Closas C, Melendez A, Alonso A. 2001. Evolution of the Mesozoic central Iberian rift system and its Cainozoic inversion (Iberian chain). Memoires du Museum National d’Histoire Naturelle 186: 145–186. [Google Scholar]
  • Salimbeni S, Malusà MG, Zhao L, Guillot S, Pondrelli S, Margheriti L, et al. 2018. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics 731–732: 35–47. https://doi.org/10.1016/j.tecto.2018.1003.1002. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, Vera JA. 1992. Stratigraphic record and paleogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research 4: 21–36. [CrossRef] [Google Scholar]
  • Sartori R, Torelli L, Zitellini N, Carrara G, Magaldi M, Mussoni P. 2004. Crustal features along a W-E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics 383: 171–192. [CrossRef] [Google Scholar]
  • Saspiturry N, Cochelin B, Razin P, Leleu S, Lemire B, Bouscary C, et al. 2019. Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray basin and Ursuya dome, Western Pyrenees). Tectonophysics 768: 228180. [CrossRef] [Google Scholar]
  • Saspiturry N, Lahfid A, Baudin T, Guillou-Frottier L, Razin P, Issautier B, et al. 2020. Paleogeothermal gradients across an inverted hyperextended rift system: Example of the Mauléon fossil rift (Western Pyrenees). Tectonics 39: e2020TC006206. https://doi.org/10.001029/002020TC006206. [CrossRef] [Google Scholar]
  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, et al. 2019. Symmetry vs. asymmetry of a hyper-thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology 104: 86–105. https://doi.org/10.1016/j.marpetgeo.2019.1003.1031. [CrossRef] [Google Scholar]
  • Schettino A, Scotese C. 2002. Global kinematic constraints to the tectonic history of the Mediterranean region and surrounding areas during the Jurassic and Cretaceous. In: Rosenbaum G, Lister GS, eds. Reconstruction of the evolution of the Alpine-Himalayan orogen. Journal of the Virtual Explorer: 149–168. [Google Scholar]
  • Schettino A, Turco E. 2006. Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophys J Int 166: 1398–1423. https://doi.org/10.1111/j.1365-1246X.2006.02997.x. [CrossRef] [Google Scholar]
  • Schildgen TF, Yıldırım C, Cosentino D, Strecker MR. 2014. Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Reviews 128: 147–168. https://doi.org/10.1016/j.earscirev.2013.1011.1006. [CrossRef] [Google Scholar]
  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, et al. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101: 139–183. https://doi.org/10.1007/s00015-00008-01247-00013. [CrossRef] [Google Scholar]
  • Schmid SM, Fügenschuh B, Kissling E, Schuster R. 2004. Tectonic map and overall architecture of the alpine orogen. Eclog Geol Helv 97: 93–117. [CrossRef] [Google Scholar]
  • Schmid SM, Kissling E, van Hinsbergen TDJJ, Molli G. 2017. Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system. Swiss J Geosci 110: 581–612. https://doi.org/10.1007/s00015-00016-00237-00010. [CrossRef] [Google Scholar]
  • Schmid SM, Pffifner OA, Schönborg G, Froitzheim N, Kissling E. 1997. Integrated cross-sections and tectonic evolution of the Alps along the Eastern Traverse. In: Pffifner OA, Lehner P, Heitzmann P, Mueller S, Steck A, eds. Deep structures of the Swiss Alps. Basel: Birkhäuser, pp. 289–304. [Google Scholar]
  • Séranne M. 1999. The Gulf of Lions continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand B, Jolivet L, Horvàth F, Séranne M, eds. The Mediterranean basins: Tertiary extension within the Alpine Orogen. London: Geological Society, pp. 15–36. [Google Scholar]
  • Séranne M, Benedicto A, Truffert C, Pascal G, Labaume P. 1995. Structural style and evolution of the Gulf of Lion Oligo-Miocene rif ting: Role of the Pyrenean orogeny. Marine and Petroleum Geology 12: 809–820. [CrossRef] [Google Scholar]
  • Séranne M, Couëffé R, Husson E, Villard J. 2021. The transition from Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France) − A tectonic-sedimentation analysis. BSGF − Earth Sciences Bulletin 192: 27. https://doi.org/10.1051/bsgf/2021017. [CrossRef] [EDP Sciences] [Google Scholar]
  • Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, et al. 2007. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169: 1180–1200. https://doi.org/10.1111/j.1365-1246X.2007.03367.x. [CrossRef] [Google Scholar]
  • Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research: Solid Earth 109: 1–18. https://doi.org/10.1029/2003JB002514. [Google Scholar]
  • Sinclair HD, Gibson M, Naylor M, Morris RG. 2005. Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science 305: 369–406. https://doi.org/10.2475/ajs.2305.2475.2369. [Google Scholar]
  • Soares D, Alves T, Terrinha P. 2012. The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic). Earth and Planetary Science Letters 355–356: 311–326. https://doi.org/10.1016/j.epsl.2012.1008.1036. [CrossRef] [Google Scholar]
  • Soumaya A, Ben Ayed N, Rajabi M, Meghraoui M, Delvaux D, Kadri A, et al. 2018. Active faulting geometry and stress pattern near complex strike-slip systems along the Maghreb region: Constraints on active convergence in the western Mediterranean. Tectonics 37: 3148–3173. https://doi.org/10.1029/2018TC004983. [CrossRef] [Google Scholar]
  • Souriau A, Rigo A, Sylvander M, Benahmed S, Grimaud F. 2014. Seismicity in central-western Pyrenees (France): A consequence of the subsidence of dense exhumed bodies. Tectonophysics 621: 123–131. https://doi.org/10.1016/j.tecto.2014.1002.1008. [Google Scholar]
  • Spakman W, Chertova MV, van den Berg A, van Hinsbergen DJJ. 2018. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nature Geoscience 11: 211–216. https://doi.org/10.1038/s41561-41018-40066-z. [CrossRef] [Google Scholar]
  • Spakman W, Wortel R. 2004. A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA, eds. The TRANSMED Atlas − The Mediterranean region from crust to Mantle. Berlin, Heidelberg: Springer, pp. 31–52. [CrossRef] [Google Scholar]
  • Stampfli GM, Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196: 17–33. [CrossRef] [Google Scholar]
  • Steinberger B, Torsvik TH. 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452: 620–623. [CrossRef] [Google Scholar]
  • Sternai P, Avouac JP, Jolivet L, Faccenna C, Gerya T, Becker TW, et al. 2016. On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: comparison with the eastern Tibetan margin. Journal of Geodynamics 100: 184–197. https://doi.org/10.1016/j.jog.2016.1002.1009. [CrossRef] [Google Scholar]
  • Sternai P, Jolivet L, Menant A, Gerya T. 2014. Subduction and mantle flow driving surface deformation in the Aegean-Anatolian system. Earth Planet Sci Lett 405: 110–118. https://doi.org/10.1016/j.epsl.2014.1008.1023. [CrossRef] [Google Scholar]
  • Sternai P, Sue C, Husson L, Serpelloni E, Becker TW, Willett SD, et al. 2019. Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions. Earth Science Reviews. https://doi.org/10.1016/j.earscirev.2019.1001.1005. [Google Scholar]
  • Stich D, Serpelloni E, de Lis Mancilla F, Morales J. 2006. Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations. Tectonophysics 426: 295–317. [CrossRef] [Google Scholar]
  • Stoddard PR, Abbott D. 1996. Influence of the tectosphere upon plate motion. J Geophys Res 101: 5425–5433. [CrossRef] [Google Scholar]
  • Strzerzynski P, Déverchère J, Cattaneo A, Domzig A, Yelles K, Mercier de Lépinay B, et al. 2010. Tectonic inheritance and Pliocene-Pleistocene inversion of the Algerian margin around Algiers: Insights from multibeam and seismic reflection data. Tectonics 29: TC2008. https://doi.org/10.1029/2009TC002547. [Google Scholar]
  • Strzerzynski P, Dominguez S, Boudiaf A, Déverchère J. 2021. Tectonic inversion and geomorphic evolution of the Algerian margin since Messinian times: Insights from new onshore/offshore analog modeling experiments. Tectonics 40: e2020TC006369. https://doi.org/10.001029/002020TC006369. [CrossRef] [Google Scholar]
  • Sue C, Tricart P. 1999. Late alpine brittle extension above the Frontal Penninic Thrust near Briançon, western Alps. Eclogae Geol Helv 92: 171–181. [Google Scholar]
  • Sue C, Thouvenot F, Fréchet J, Tricart P. 1999. Widespread extension in the core of the western Alps revealed by earthquake analysis. J Geophys Res 104: 25611–25622. [CrossRef] [Google Scholar]
  • Tapponnier P, Molnar P. 1976. Slip line field theory and large-scale continental tectonics. Nature 264: 319–324. [CrossRef] [Google Scholar]
  • Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, et al. 2001. Oblique stepwise Rise and growth of the Tibet plateau. Science 294: 1671–1677. [CrossRef] [Google Scholar]
  • Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth-Science Reviews 187: 314–337. https://doi.org/10.1016/j.earscirev.2018.1010.1008. [CrossRef] [Google Scholar]
  • Taylor B, Weiss J, Goodliffe A, Sachpazi M, Laigle M, Hirn A. 2011. The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys J Int 185: 1189–1219. https://doi.org/10.1111/j.1365-1246X.2011.05014.x. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724–725: 146–170. https://doi.org/10.1016/j.tecto.2018.1001.1009. [Google Scholar]
  • Ternois S, Mouthereau F, Jourdon A. 2021. Decoding low-temperature thermochronology signals in Alpine-type orogens: modelling the role of rift thermal imprint into continental collision. BSGF − Earth Sciences Bulletin 192: 38. https://doi.org/10.1051/bsgf/2021028. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics 38: 1308–1336. https://doi.org/10.1029/2018TC005254. [CrossRef] [Google Scholar]
  • Tugend J, Chamot-Rooke N, Arsenikos S, Blanpied C, Frizon de Lamotte D. 2019. Geology of the Ionian Basin and margins: A key to the East Mediterranean geodynamics. Tectonics 38. https://doi.org/10.1029/2018TC005472. [Google Scholar]
  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay- Pyrenees. Tectonics 33: 1239–1276. https://doi.org/10.1002/2014TC003529. [CrossRef] [Google Scholar]
  • Uyeda S, Kanamori H. 1979. Backarc opening and the mode of subduction. J Geophys Res 84: 1049–1106. [CrossRef] [Google Scholar]
  • Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette JL, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentolo- gical, geochronological and kinematic constraints. Earth-Science Reviews 172: 43–74. https://doi.org/10.1016/j.earscirev.2017.1007.1004. [CrossRef] [Google Scholar]
  • van der Meulen MJ, Meulenkamp JE, Wortel MJR. 1998. Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere. Earth Planet Sci Lett 154: 201–218. [Google Scholar]
  • van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel R. 2005. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33: 325–328. https://doi.org/10.1130/G20878.20871. [CrossRef] [Google Scholar]
  • van Hinsbergen DJJ, Torsvik TH, Schmid SM, Maţenco LC, Maffione M, Vissers RLM, et al. 2019. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research 81: 79–229. https://doi.org/10.1016/j.gr.2019.1007.1009 (in press). [Google Scholar]
  • van Hinsbergen DJJ, Vissers RLM, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393–419. https://doi.org/10.1002/tect.20125. [CrossRef] [Google Scholar]
  • Vaughan APM, Scarrow JH. 2003. Ophiolite obduction pulses as a proxy indicator of superplume events? Earth and Planetary Science Letters 213: 407–416. https://doi.org/10.1016/S0012-1821X(1003)00330-00333. [CrossRef] [Google Scholar]
  • Vergés J, Fernandez M, Martinez A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. In: Rosenbaum G, Lister GS, eds. Reconstruction of the evolution of the Alpine-Himalayan orogen. pp. 57–76. [Google Scholar]
  • Vergés J, Garcia-Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift in: Peri-Tethys Memoir 6: Peri-Tethyan rift/wrench basins and passive margins. In: Ziegler PA, et al., eds Mémoires du Muséum National d’Histoire Naturelle. Paris: Museum National d’Histoire Naturelle, pp. 187–212. [Google Scholar]
  • Vergés J, Millan H, Roca E, Muñoz JA, Marzo M, Den Bezemer T, et al. 1995. Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections. Marine and Petroleum Geology 12: 893–915. [Google Scholar]
  • Vially R, Tremolières P. 1996. Geodynamics of the Gulf of Lions: implications for petroleum exploration. In: Ziegler P, Horvàth F, eds. Peri-Tethys Memoir 2: Structure and propects of alpine basins and forelands. Paris, pp. 129–158. [Google Scholar]
  • Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet Sci Lett 67: 87–96. [CrossRef] [Google Scholar]
  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F. 2008. Orogen-parallel extension and arc bending forced by slab tearing and toroidal flow at the junction between Alps and Apennines. Tectonophysics 450: 34–50. https://doi.org/10.1016/j.tecto.2007.1012.1012. [CrossRef] [Google Scholar]
  • Vignaroli G, Faccenna C, Rossetti F, Jolivet L. 2009. Insights from the apennines metamorphic complexes and their bearing on the kinematics evolution of the orogen. In: van Hinsbergen DJJ, Edwards MA, Govers R, eds. Collision and collapse at the Africa-Arabia-Eurasia subduction zone. London: The Geological Society, pp. 235–256. [Google Scholar]
  • Vissers RLM, Meijer PT. 2012. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth-Science Reviews 110: 93–110. [CrossRef] [Google Scholar]
  • Vissers RLM, Platt JP, Van der Wal D. 1995. Late orogenic extension of the Betic Cordillera and the Alboran domain: a lithospheric view. Tectonics 14: 786–803. [CrossRef] [Google Scholar]
  • Vitale-Brovarone A, Herwartz D. 2013. Timing of HP metamorphism in the Schistes Lustrés of Alpine Corsica: New Lu–Hf garnet and lawsonite ages. Lithos 172–173: 175–191. https://doi.org/10.1016/j.lithos.2013.1003.1009. [CrossRef] [Google Scholar]
  • Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R. 2006. Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z dt Ges Geowiss 157/2: 203–244. [Google Scholar]
  • Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg C, et al. 2019. Central Pyrenees mountain building: constraints from new LT thermochronological data from the Axial Zone. Tectonics 40: e2020TC006614. https://doi.org/006610.001029/002020TC006614. [Google Scholar]
  • Walpersdorf A, Pinget L, Vernant P, Sue C, Deprez A, the RENAG Team. 2018. Does long-term GPS in the Western Alps finally confirm earthquake mechanisms? Tectonics 37: 3721–3737. https://doi.org/10.1029/2018TC005054. [CrossRef] [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44: 475–478. https://doi.org/10.1130/G37812.37811. [CrossRef] [Google Scholar]
  • Wehr H, Chevrot S, Courrioux G, Guillen A. 2018. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics 734–735: 16–32. https://doi.org/10.1016/j.tecto.2018.1003.1017. [CrossRef] [Google Scholar]
  • Weijermars R, Roep TB, Van den Eeckhout B, Postma G, Kleverlaan K. 1985. Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almería, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Geol en Mijnbouw 64: 397–411. [Google Scholar]
  • White R, McKenzie D. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94: 7685–7729. [CrossRef] [Google Scholar]
  • Wicker V, Ford P. 2021. Salt tectonics in the Toulon Belt: inversion of a salt-rich fault zone. BSGF − Earth Sciences Bulletin 200059. https://doi.org/10.1051/bsgf/2021033. [Google Scholar]
  • Wijbrans JR, McDougall I. 1988. Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6: 571–594. https://doi.org/10.1111/j.1525-1314.1988.tb00441.x. [CrossRef] [Google Scholar]
  • Wijbrans JR, van Wees JD, Stephenson RA, Cloethingh SAPL. 1993. Pressure-temperature-time evolution of the high-pressure metamorphic complex of Sifnos, Greece. Geology 21: 443–446. [CrossRef] [Google Scholar]
  • Wortel MJR, Spakman W. 1992. Structure and dynamic of subducted lithosphere in the Mediterranean. Proc Kon Ned Akad v Wetensch 95: 325–347. [Google Scholar]
  • Wortel MJR, Spakman W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290: 1910–1917. [CrossRef] [Google Scholar]
  • Yelles A, Domzig A, Déverchère J, Bracène R, Mercier de Lépinay B, Strzerzynski P, et al. 2009. Plio-Quaternary reactivation of the Neogene margin off NW Algiers, Algeria: The Khayr al Din bank. Tectonophysics 475: 98–116. https://doi.org/10.1016/j.tecto.2008.1011.1030. [CrossRef] [Google Scholar]
  • Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 488: 293–325. https://doi.org/10.1016/j.tecto.2009.1006.1002. [CrossRef] [Google Scholar]
  • Ziegler PA. 1988. Evolution of the Arctic-North Atlantic and the Western Tethys. Am Assoc Petrol Geol Mem 43: 198 p. [Google Scholar]
  • Ziegler PA. 1990. Geological Atlas of Western and Central Europe. Shell Internat. Bath: Petrol Mij Dist Geol Soc Publ House. [Google Scholar]
  • Ziegler P. 1999. Evolution of the Arctic-North Atlantic and the Western Tethys. AAPG Memoir 43: 164–196. [Google Scholar]
  • Ziegler PA, Dèzes P. 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change 58: 237–269. https://doi.org/10.1016/j.gloplacha.2006.1012.1004. [CrossRef] [Google Scholar]
  • Zeyen H, Ayarza P, Fernàndez M, Rimi A. 2005. Lithospheric structure under the western African-European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz. Tectonics 24: TC2001. https://doi.org/10.1029/2004TC001639. [Google Scholar]
  • Zitellini N, Ranero CR, Loreto MF, Ligi M, Pastore M, D’Oriano P, et al. 2019. Recent inversion of the Tyrrhenian Basin. Geology 48: 123–127. https://doi.org/10.1130/G46774.46771. [Google Scholar]
  • Zoback ML. 1992. First- and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97: 11703–11728. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.