Open Access
Review
Numéro |
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
|
|
---|---|---|
Numéro d'article | 56 | |
Nombre de pages | 55 | |
DOI | https://doi.org/10.1051/bsgf/2021040 | |
Publié en ligne | 15 novembre 2021 |
- Abdelmalak MM, Planke S, Polteau S, Hartz EH, Faleide JI, Tegner C, et al. 2019. Breakup volcanism and plate tectonics in the NW Atlantic. Tectonophysics 760: 267–296. https://doi.org/10.1016/j.tecto.2018.08.002. [CrossRef] [Google Scholar]
- Advokaat EL, van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, et al. 2014. Eocene rotation of Sardinia, and the paleogeography of the Western Mediterranean Region. Earth Planet. Sci. Lett. 401: 183–195. https://doi.org/10.1016/j.epsl.2014.06.012. [CrossRef] [Google Scholar]
- Afonso JC, Fernàndez M, Ranalli G, Griffin WL, Connolly JAD. 2008. Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications. Geochem. Geophys. Geosyst. 9: n/a–n/a. https://doi.org/10.1029/2007gc001834. [CrossRef] [Google Scholar]
- Afonso JC, Salajegheh F, Szwillus W, Ebbing J, Gaina C. 2019. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophys. J. Int. 217: 1602–1628. https://doi.org/10.1093/gji/ggz094. [CrossRef] [Google Scholar]
- Agostinetti NP, Faccenna C. 2018. Deep structure of Northern Apennines Subduction Orogen (Italy) as revealed by a joint interpretation of passive and active seismic data. Geophysical Research Letters 45: 4017–4024. https://doi.org/10.1029/2018gl077640. [CrossRef] [Google Scholar]
- Allen PA, Bennett SD, Cunningham MJM, Carter A, Gallagher K, Lazzaretti E, et al. 2002. The post-Variscan thermal and denudational history of Ireland. Geol. Soc. Lond. Special Publ. 196: 371–399. https://doi.org/10.1144/gsl.sp.2002.196.01.20. [CrossRef] [Google Scholar]
- Amaru. 2007. Global travel time tomography with 3-D reference models. Geologica Ultraiectina 274: 174. [Google Scholar]
- Angrand P, Mouthereau F. 2021. Evolution of the Alpine orogenic belts in the Western Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate boundary. Revision sent for publication to BSGF Earth Sciences Bulletin 192: 42. https://doi.org/10.1051/bsgf/2021031. [CrossRef] [EDP Sciences] [Google Scholar]
- Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the Late-Permian-Triassic. Solid Earth 11: 1313–1332. https://doi.org/10.5194/se-11-1313-2020. [CrossRef] [Google Scholar]
- Arboleya ML, Teixell A, Charroud M, Julivert M. 2004. A structural transect through the High and Middle Atlas of Morocco. Journal of African Earth Sciences 39: 319–327. https://doi.org/10.1016/j.jafrearsci.2004.07.036. [CrossRef] [Google Scholar]
- Arche A, López-Gómez J. 2005. Sudden changes in fluvial style across the Permian−Triassic boundary in the eastern Iberian Ranges, Spain: Analysis of possible causes. Palaeogeogr Palaeoclim Palaeoecol 229: 104–126. https://doi.org/10.1016/j.palaeo.2005.06.033. [CrossRef] [Google Scholar]
- Argus DF, Gordon RG, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems 12. https://doi.org/10.1029/2011gc003751. [Google Scholar]
- ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, et al. 2010. Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics 29: n/a–n/a. https://doi.org/10.1029/2009tc002482. [CrossRef] [Google Scholar]
- Artemieva IM, Mooney WD. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106: 16387–16414. https://doi.org/10.1029/2000jb900439. [CrossRef] [Google Scholar]
- Artemieva IM, Meissner R. 2012. Crustal thickness controlled by plate tectonics: A review of crust-mantle interaction processes illustrated by European examples. Tectonophysics 1–113. https://doi.org/10.1016/j.tecto.2011.12.037. [Google Scholar]
- Audet P, Bürgmann R. 2011. Dominant role of tectonic inheritance in supercontinent cycles. Nature Geoscience 4: 184–187. https://doi.org/10.1038/ngeo1080. [CrossRef] [Google Scholar]
- Awdankiewicz M, Kryza R, Szczepara N. 2013. Timing of post-collisional volcanism in the eastern part of the Variscan Belt: Constraints from SHRIMP zircon dating of Permian rhyolites in the North-Sudetic Basin (SW Poland). Geol. Mag. 151: 611–628. https://doi.org/10.1017/s0016756813000678. [Google Scholar]
- Babel Working Group. 1993. Deep seismic reflection/refraction interpretation of crustal structure along Babel profiles A and B in the Southern Baltic Sea. Geophysical Journal International 112: 325–343. https://doi.org/10.1111/j.1365-246x.1993.tb01173.x. [CrossRef] [Google Scholar]
- Balestrieri ML, Moratti G, Bigazzi G, Algouti A. 2009. Neogene exhumation of the Marrakech High Atlas (Morocco) recorded by apatite fission-track analysis. Terra Nova 21: 75–82. https://doi.org/10.1111/j.1365-3121.2008.00857.x. [CrossRef] [Google Scholar]
- Ballèvre M, Cataln JRM, Lpez-Carmona A, Pitra P, Abati J, Fernndez RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French–Spanish project. Geol. Soc. Lond. Special Publ. 405: 77–113. https://doi.org/10.1144/sp405.13. [CrossRef] [Google Scholar]
- Banks CJ, Warburton J. 1991. Mid-crustal detachment in the Betic system of southeast Spain. Tectonophysics 191: 275–289. https://doi.org/10.1016/0040-1951(91)90062-w. [CrossRef] [Google Scholar]
- Barbarand J, Lucazeau F, Pagel M, Séranne M. 2001. Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission-track thermochronology. Tectonophysics 335: 275–290. [CrossRef] [Google Scholar]
- Barbarand J, Quesnel F, Pagel M. 2013. Lower Paleogene denudation of Upper Cretaceous cover of the Morvan Massif and southeastern Paris Basin (France) revealed by AFT thermochronology and constrained by stratigraphy and paleosurfaces. Tectonophysics 608: 1310–1327. https://doi.org/10.1016/j.tecto.2013.06.011. [CrossRef] [Google Scholar]
- Barbarand J, Bour I, Pagel M, Quesnel F, Delcambre B, Dupuis C, et al. 2018. Post-Paleozoic evolution of the Northern Ardenne Massif constrained by apatite fission-track thermochronology and geological data. Bulletin de la Société géologique de France 189: 16. https://doi.org/10.1051/bsgf/2018015. [CrossRef] [EDP Sciences] [Google Scholar]
- Barbarand J, Préhaud P, Baudin F, Missenard Y, Matray JM, François T, et al. 2020. Where are the limits of Mesozoic intracontinental sedimentary basins of southern France? Mar. Petrol. Geol. 121: 104589. https://doi.org/10.1016/j.marpetgeo.2020.104589. [CrossRef] [Google Scholar]
- Barbero L, Teixell A, Arboleya M-L, del Río P, Reiners PW, Bougadir B. 2007. Jurassic-to-present thermal history of the central High Atlas (Morocco) assessed by low-temperature thermochronology. Terra Nova 19: 58–64. https://doi.org/10.1111/j.1365-3121.2006.00715.x. [CrossRef] [Google Scholar]
- Barth S, Oberli F, Meier M, Blattner P, Bargossi GM, Battistini GD. 1993. The evolution of a calc-alkaline basic to silicic magma system: Geochemical and Rb-Sr, Sm-Nd, and isotopic evidence from the Late Hercynian Atesina-Cima d’Asta volcano-plutonic complex, Northern Italy. Geochim. Cosmochim. Acta 57: 4285–4300. https://doi.org/10.1016/0016-7037(93)90323-o. [CrossRef] [Google Scholar]
- Barth MG, Rudnick RL, Carlson RW, Horn I, McDonough WF. 2002. Re-Os and U-Pb geochronological constraints on the eclogite–tonalite connection in the Archean Man Shield, West Africa. Precambrian Res 118: 267–283. https://doi.org/10.1016/s0301-9268(02)00111-0. [CrossRef] [Google Scholar]
- Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze H-J, Stiller M, et al. 1999. An integrated study of the NE German Basin. Tectonophysics 314: 285–307. https://doi.org/10.1016/s0040-1951(99)00249-8. [CrossRef] [Google Scholar]
- Bea F, Montero P, Molina JF. 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A model for the generation of Variscan Batholiths in Iberia. J. Geol. 107: 399–419. https://doi.org/10.1086/314356. [CrossRef] [Google Scholar]
- Beauchamp W, Allmendinger RW, Barazangi M, Demnati A, Alji ME, Dahmani M. 1999. Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological-geophysical transect. Tectonics 18: 163–184. https://doi.org/10.1029/1998tc900015. [CrossRef] [Google Scholar]
- Beccaluva L, Bianchini G, Natali C, Siena F. 2020. Plume-related Paranà-Etendeka igneous province: An evolution from plateau to continental rifting and breakup. Lithos 362-363: 105484. https://doi.org/10.1016/j.lithos.2020.105484. [CrossRef] [Google Scholar]
- Becker TW, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett. 310: 453–461. https://doi.org/10.1016/j.epsl.2011.08.021. [CrossRef] [Google Scholar]
- Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33: 1055–1088. https://doi.org/10.1002/2013tc003453. [CrossRef] [Google Scholar]
- Bensalah MK, Youbi N, Mata J, Madeira J, Martins L, Hachimi HE, et al. 2013. The Jurassic–Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications. J. Afr. Earth Sci. 81: 60–81. https://doi.org/10.1016/j.jafrearsci.2013.01.004. [CrossRef] [Google Scholar]
- Berger J, Féménias O, Mercier J-CC, Demaiffe D. 2006. A Variscan slow-spreading ridge (MOR-LHOT) in Limousin (French Massif Central): Magmatic evolution and tectonic setting inferred from mineral chemistry. Miner. Mag. 70: 175–185. https://doi.org/10.1180/0026461067020322. [CrossRef] [Google Scholar]
- Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier J-CC, et al. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid–rock interactions. Lithos 118: 365–382. https://doi.org/10.1016/j.lithos.2010.05.013. [CrossRef] [Google Scholar]
- Bessière E, Jolivet L, Augier R, Scaillet S, Précigout J, Azañon J-M, et al. 2021. Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics: The Betic-Rif Cordillera example. BSGF – Earth Sci. Bull. 192: 8. https://doi.org/10.1051/bsgf/2021007. [Google Scholar]
- Beyer EE, Brueckner HK, Griffin WL, O’Reilly SY, Graham S. 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32: 609–612. https://doi.org/10.1130/g20366.1. [CrossRef] [Google Scholar]
- Beyer EE, Griffin WL, O’Reilly SY. 2006. Transformation of Archaean lithospheric mantle by refertilization: Evidence from exposed peridotites in the Western Gneiss Region, Norway. J. Petrol. 47: 1611–1636. https://doi.org/10.1093/petrology/egl022. [CrossRef] [Google Scholar]
- Bezada MJ, Humphreys ED, Toomey DR, Harnafi M, Dávila JM, Gallart J. 2013. Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging. Earth and Planetary Science Letters 368: 51–60. https://doi.org/10.1016/j.epsl.2013.02.024. [CrossRef] [Google Scholar]
- Bijwaard H, Spakman W, Engdahl ER. 1998. Closing the gap between regional and global travel time tomography. J. Geophys. Res. Solid Earth 103: 30055–30078. https://doi.org/10.1029/98jb02467. [CrossRef] [Google Scholar]
- Bingen B, Viola G, Möller C, Auwera JV, Laurent A, Yi K. 2020. The Sveconorwegian orogeny. Gondwana Res. 90: 273–313. https://doi.org/10.1016/j.gr.2020.10.014. [Google Scholar]
- Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN, et al. 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research 160: 23–45. https://doi.org/10.1016/j.precamres.2007.04.024. [CrossRef] [Google Scholar]
- Bois C, Party ES. 1990. Major geodynamic processes studied from the ECORS deep seismic profiles in France and adjacent areas. Tectonophysics 173: 397–410. https://doi.org/10.1016/0040-1951(90)90233-x. [CrossRef] [Google Scholar]
- Bosch D, Maury RC, Azzouzi ME, Bollinger C, Bellon H, Verdoux P. 2014. Lithospheric origin for Neogene–Quaternary Middle Atlas lavas (Morocco): Clues from trace elements and Sr–Nd–Pb–Hf isotopes. Lithos 205: 247–265. https://doi.org/10.1016/j.lithos.2014.07.009. [CrossRef] [Google Scholar]
- Bosch GV, Teixell A, Jolivet M, Labaume P, Stockli D, Domènech M, et al. 2016. Timing of Eocene-Miocene Thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology. C. R. Geosci. 348: 246–256. https://doi.org/10.1016/j.crte.2016.01.001. [CrossRef] [Google Scholar]
- Botor D, Anczkiewicz AA, Dunkl I, Golonka J, Paszkowski M, Mazur S. 2018. Tectonothermal history of the Holy Cross Mountains (Poland) in the light of low-temperature thermochronology. Terra Nova 30: 270–278. https://doi.org/10.1111/ter.12336. [CrossRef] [Google Scholar]
- Botor D, Anczkiewicz AA, Mazur S, Siwecki T. 2019. Post-Variscan thermal history of the Intra-Sudetic Basin (Sudetes, Bohemian Massif) based on apatite fission track analysis. Int. J. Earth Sci. 108: 2561–2576. https://doi.org/10.1007/s00531-019-01777-9. [CrossRef] [Google Scholar]
- Bouabdellah M, Hoernle K, Kchit A, Duggen S, Hauff F, Klügel A, et al. 2010. Petrogenesis of the Eocene Tamazert Continental Carbonatites (Central High Atlas, Morocco): Implications for a common source for the Tamazert and Canary and Cape Verde Island Carbonatites. J. Petrol. 51: 1655–1686. https://doi.org/10.1093/petrology/egq033. [CrossRef] [Google Scholar]
- Bourquin S, Bercovici A, López-Gómez J, Diez JB, Broutin J, Ronchi A, et al. 2011. The Permian-Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: Palaeogeographic maps and geodynamic implications. Palaeogeogr Palaeoclim Palaeoecol 299: 265–280. https://doi.org/10.1016/j.palaeo.2010.11.007. [CrossRef] [Google Scholar]
- Braga JC, Martı́n JM, Quesada C. 2003. Patterns and average rates of Late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50: 3–26. https://doi.org/10.1016/s0169-555x(02)00205-2. [CrossRef] [Google Scholar]
- Brueckner HK, Carswell DA, Griffin WL. 2002. Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth Planet. Sci. Lett. 203: 805–816. https://doi.org/10.1016/s0012-821x(02)00919-6. [CrossRef] [Google Scholar]
- Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D. 2003. Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post-collisional extension: A case study from the French Massif Central. Chem. Geol. 201: 319–336. https://doi.org/10.1016/j.chemgeo.2003.08.005. [CrossRef] [Google Scholar]
- Brune S, Williams SE, Butterworth NP, Müller RD. 2016. Abrupt plate accelerations shape rifted continental margins. Nature 536: 201–204. https://doi.org/10.1038/nature18319. [CrossRef] [Google Scholar]
- Burke K, Steinberger B, Torsvik TH, Smethurst MA. 2008. Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core-mantle boundary. Earth Planet. Sci. Lett. 265: 49–60. https://doi.org/10.1016/j.epsl.2007.09.042. [CrossRef] [Google Scholar]
- Burkhard M, Caritg S, Helg U, Robert-Charrue C, Soulaimani A. 2006. Tectonics of the Anti-Atlas of Morocco. C. R. Geosci. 338: 11–24. https://doi.org/10.1016/j.crte.2005.11.012. [CrossRef] [Google Scholar]
- Burov EB, Diament M. 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res. Solid Earth 100: 3905–3927. https://doi.org/10.1029/94jb02770. [CrossRef] [Google Scholar]
- Burov EB, Watts AB. 2006. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today 16: 4. https://doi.org/10.1130/1052-5173(2006)016<4:tltsoc>2.0.co;2. [CrossRef] [Google Scholar]
- Bussy F, Hernandez J, Raumer JV. 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Earth Environ. Sci. Trans. Royal Soc. 91: 221–233. https://doi.org/10.1017/s0263593300007392. [Google Scholar]
- Calais E, Camelbeeck T, Stein S, Liu M, Craig TJ. 2016. A new paradigm for large earthquakes in stable continental plate interiors: Large earthquakes in SCRS. Geophys. Res. Lett. 43: 10621–10637. https://doi.org/10.1002/2016gl070815. [CrossRef] [Google Scholar]
- Calvert A, Sandvol E, Seber D, Barazangi M, Roecker S, Mourabit T, et al. 2000. Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography. Journal of Geophysical Research: Solid Earth 105: 10871–10898. https://doi.org/10.1029/2000jb900024. [CrossRef] [Google Scholar]
- Campanyà J, Ledo J, Queralt P, Marcuello A, Liesa M, Muñoz JA. 2011. Lithospheric characterization of the Central Pyrenees based on new magnetotelluric data. Terra Nova 23: 213–219. https://doi.org/10.1111/j.1365-3121.2011.01001.x. [CrossRef] [Google Scholar]
- Cande SC, Stegman DR. 2012. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475: 47–52. https://doi.org/10.1038/nature10174. [Google Scholar]
- Candan O, Akal C, Koralay OE, Okay AI, Oberhänsli R, Prelević D, et al. 2016. Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey – Evidence for southward subduction of Paleotethys. Tectonophysics 683: 349–366. https://doi.org/10.1016/j.tecto.2016.06.030. [CrossRef] [Google Scholar]
- Carbonell R, Simancas F, Juhlin C, Pous J, Pérez-Estaún A, Gonzalez-Lodeiro F, et al. 2004. Geophysical evidence of a mantle derived intrusion in SW Iberia: Evidence for a mafic intrusion complex. Geophys. Res. Lett. 31: n/a–n/a. https://doi.org/10.1029/2004gl019684. [CrossRef] [Google Scholar]
- Cardello GL, Mancktelow NS. 2014. Cretaceous syn-sedimentary faulting in the Wildhorn Nappe (SW Switzerland). Swiss J. Geosci. 107: 223–250. https://doi.org/10.1007/s00015-014-0166-8. [CrossRef] [Google Scholar]
- Carlson RW, Pearson DG, James DE. 2005. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics 43: 1. https://doi.org/10.1029/2004rg000156. [CrossRef] [Google Scholar]
- Carola E, Muñoz JA, Roca E. 2015. The transition from thick-skinned to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: The Burgalesa Platform and surroundings. International Journal of Earth Sciences 104: 2215–2239. https://doi.org/10.1007/s00531-015-1177-z. [CrossRef] [Google Scholar]
- Casado BO, Gebauer D, Schäfer HJ, Ibarguchi JIG, Peucat JJ. 2001. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 332: 359–385. https://doi.org/10.1016/s0040-1951(00)00210-9. [CrossRef] [Google Scholar]
- Cassinis G, Perotti CR, Ronchi A. 2011. Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations. Int. J. Earth Sci. 101: 129–157. https://doi.org/10.1007/s00531-011-0642-6. [Google Scholar]
- Cavazza W, Roure F, Ziegler PA. 2004. The TRANSMED Atlas. The Mediterranean Region from crust to mantle, geological and geophysical framework of the Mediterranean and the surrounding areas, pp. 1–29. https://doi.org/10.1007/978-3-642-18919-7_1. [Google Scholar]
- Cawood PA, Pisarevsky SA. 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Res. 292: 386–397. https://doi.org/10.1016/j.precamres.2017.01.031. [CrossRef] [Google Scholar]
- Cawood PA, McCausland PJA, Dunning GR. 2001. Opening Iapetus: Constraints from the Laurentian margin in Newfoundland. GSA Bulletin 113: 443–453. https://doi.org/10.1130/0016-7606(2001)113<0443:oicftl>2.0.co;2. [CrossRef] [Google Scholar]
- Cebriá JM, López-Ruiz J, Doblas M, Martins LT, Munha J. 2003. Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain): Implications on the origin of the Central Atlantic Magmatic Province. J. Petrol. 4: 547–568. https://doi.org/10.1093/petrology/44.3.547. [CrossRef] [Google Scholar]
- Cederbom C, Larson SÅ, Tullborg E-L, Stiberg J-P. 2000. Fission track thermochronology applied to Phanerozoic thermotectonic events in Central and Southern Sweden. Tectonophysics 316: 153–167. https://doi.org/10.1016/s0040-1951(99)00230-9. [CrossRef] [Google Scholar]
- Čermák V, Bodri L. 1986. Two-dimensional temperature modelling along five East-European geotraverses. J. Geodyn. 5: 133–163. https://doi.org/10.1016/0264-3707(86)90003-7. [CrossRef] [Google Scholar]
- Chantraine J, Egal E, Thiéblemont D, Goff EL, Guerrot C, Ballèvre M, et al. 2001. The Cadomian active margin (North Armorican Massif, France): A segment of the North Atlantic Panafrican Belt. Tectonophysics 331: 1–18. https://doi.org/10.1016/s0040-1951(00)00233-x. [CrossRef] [Google Scholar]
- Chelle-Michou C, Laurent O, Moyen J-F, Block S, Paquette J-L, Couzinié S, et al. 2017. Pre-Cadomian to Late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Res. 46: 170–190. https://doi.org/10.1016/j.gr.2017.02.010. [CrossRef] [Google Scholar]
- Chenin P, Picazo S, Jammes S, Manatschal G, Müntener O, Karner G. 2018. Potential role of lithospheric mantle composition in the Wilson cycle: A North Atlantic perspective. Geol. Soc. Lond. Special Publ. 470: 157–172. https://doi.org/10.1144/sp470.10. [Google Scholar]
- Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8: 9591. https://doi.org/10.1038/s41598-018-27889-x. [CrossRef] [Google Scholar]
- Chew DM, Strachan RA. 2014. The Laurentian Caledonides of Scotland and Ireland. Geol. Soc. Lond. Special Publ. 390: 45–91. https://doi.org/10.1144/sp390.16. [CrossRef] [Google Scholar]
- Chiarabba C, Giacomuzzi G, Bianchi I, Agostinetti NP, Park J. 2014. From underplating to delamination-retreat in the northern Apennines. Earth and Planetary Science Letters 403: 108–116. https://doi.org/10.1016/j.epsl.2014.06.041. [CrossRef] [Google Scholar]
- Cloetingh S, Ziegler PA. 2007. Treatise on geophysics. In: Schubert G, ed. Treatise on Geophysics. Elsevier, pp. 485–611. https://doi.org/10.1016/b978-044452748-6.00109-7. [Google Scholar]
- Cogné N, Doepke D, Chew D, Stuart FM, Mark C. 2016. Measuring plume-related exhumation of the British Isles in Early Cenozoic times. Earth Planet. Sci. Lett. 456: 1–15. https://doi.org/10.1016/j.epsl.2016.09.053. [CrossRef] [Google Scholar]
- Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35: 391. https://doi.org/10.1130/g23240a.1. [CrossRef] [Google Scholar]
- Coltice N, Bertrand H, Rey P, Jourdan F, Phillips BR, Ricard Y. 2009. Global warming of the mantle beneath continents back to the Archaean. Gondwana Res. 15: 254–266. https://doi.org/10.1016/j.gr.2008.10.001. [CrossRef] [Google Scholar]
- Conway-Jones BW, Roberts GG, Fichtner A, Hoggard M. 2019. Neogene Epeirogeny of Iberia. Geochem. Geophys. Geosyst. 20: 1138–1163. https://doi.org/10.1029/2018gc007899. [CrossRef] [Google Scholar]
- Cook CA, Holdsworth RE, Styles MT, Pearce JA. 2000. Pre-emplacement structural history recorded by mantle peridotites: An example from the Lizard Complex, SW England. J. Geol. Soc. Lond. 157: 1049–1064. https://doi.org/10.1144/jgs.157.5.1049. [CrossRef] [Google Scholar]
- Corfu F, Andersen TB, Gasser D. 2014. The Scandinavian Caledonides: Main features, conceptual advances and critical questions. Geol. Soc. Lond. Special Publ. 390: 9–43. https://doi.org/10.1144/sp390.25. [CrossRef] [Google Scholar]
- Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen J-F, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan Belt (Massif Central, France): Implications for the crustal evolution of the North Gondwana margin. In: Mantle Dynamics and Crust-Mantle Interactions in Collisional Orogens Topical Session at the Geological Society of America Annual Meeting, 2007, 286-287: 16–34. https://doi.org/10.1016/j.lithos.2017.06.001. [Google Scholar]
- Curry ME, van der Beek P, Huismans RS, Wolf SG, Muñoz J-A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet. Sci. Lett. 515: 26–37. https://doi.org/10.1016/j.epsl.2019.03.009. [CrossRef] [Google Scholar]
- Danišík M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ, et al. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach. Chem. Geol. 278: 58–69. https://doi.org/10.1016/j.chemgeo.2010.08.022. [CrossRef] [Google Scholar]
- Danišík M, Štěpančíková P, Evans NJ. 2012. Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, Central Europe). Tectonics 31. https://doi.org/10.1029/2011tc003012. [Google Scholar]
- Das P, Lin AT-S, Chen M-PP, Miramontes E, Liu C-S, Huang N-W, et al. 2021. Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore Southern Taiwan. Tectonophysics 807: 228813. https://doi.org/10.1016/j.tecto.2021.228813. [CrossRef] [Google Scholar]
- Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the western Betic flysch: Implications for the geodynamics of South Iberian margin and Alboran Domain. Tectonics 39. https://doi.org/10.1029/2020tc006093. [CrossRef] [Google Scholar]
- Debon F, Zimmermann JL. 1993. Mafic dykes from some plutons of the western Pyrenean Axial Zone (France, Spain): Markers of the transition from Late-Hercynian to Early-Alpine events. Schweizerische mineralogische und petrographische Mitteilunge 73. https://doi.org/10.5169/seals-55585. [Google Scholar]
- Dekorp Basin Research Group. 1999. Deep crustal structure of the Northeast German basin: New DEKORP-BASIN ’96 deep-profiling results. Geology 27: 55–58. https://doi.org/10.1130/0091-7613(1999)027<0055:dcsotn>2.3.co;2. [Google Scholar]
- DeMets C, Gordon RG, Argus DF. 2010. Geologically current plate motions. Geophysical Journal International 181: 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x. [CrossRef] [Google Scholar]
- Denèle Y, Olivier P, Gleizes G, Barbey P. 2007. The Hospitalet gneiss dome (Pyrenees) revisited: Lateral flow during Variscan transpression in the middle crust. Terra Nova 19: 445–453. https://doi.org/10.1111/j.1365-3121.2007.00770.x. [CrossRef] [Google Scholar]
- Dewey JF, Pitman WC, Ryan WBF, Bonnin J. 1973. Plate tectonics and the evolution of the Alpine System. GSA Bulletin 84: 3137–3180. https://doi.org/10.1130/0016-7606(1973)84<3137:ptateo>2.0.co;2. [CrossRef] [Google Scholar]
- Dèzes P, Schmid SM, Ziegler PA. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389: 1–33. https://doi.org/10.1016/j.tecto.2004.06.011. [CrossRef] [Google Scholar]
- Dias G, Leterrier J. 1994. The genesis of felsic-mafic plutonic associations: A Sr and Nd isotopic study of the Hercynian Braga Granitoid Massif (Northern Portugal). Lithos 32: 207–223. https://doi.org/10.1016/0024-4937(94)90040-x. [CrossRef] [Google Scholar]
- Dielforder A, Frasca G, Brune S, Ford M. 2019. Formation of the Iberian-European convergent plate boundary fault and its effect on intraplate deformation in Central Europe. Geochem Geophys Geosyst 20: 2395–2417. https://doi.org/10.1029/2018gc007840. [Google Scholar]
- Dieni I, Massari F, Médus J. 2008. Age, depositional environment and stratigraphic value of the Cuccuru ’e Flores Conglomerate: Insight into the Palaeogene to Early Miocene geodynamic evolution of Sardinia. Bulletin de la Société géologique de France 179: 51–72. https://doi.org/10.2113/gssgfbull.179.1.51. [CrossRef] [Google Scholar]
- Dijkstra AH, Drury MR, Vissers RLM, Newman J. 2002. On the role of melt-rock reaction in mantle shear zone formation in the Othris Peridotite Massif (Greece). J. Struct. Geol. 24: 1431–1450. https://doi.org/10.1016/s0191-8141(01)00142-0. [CrossRef] [Google Scholar]
- Dijkstra AH, Dale CW, Oberthür T, Nowell GM, Pearson DG. 2016. Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global Late Mesoproterozoic mantle depletion event. Earth Planet. Sci. Lett. 452: 115–122. https://doi.org/10.1016/j.epsl.2016.07.047. [CrossRef] [Google Scholar]
- D’Lemos RS, Inglis JD, Samson SD. 2006. A newly discovered orogenic event in Morocco: Neoproterozic ages for supposed Eburnean basement of the Bou Azzer inlier, Anti-Atlas Mountains. Precambrian Res. 147: 65–78. https://doi.org/10.1016/j.precamres.2006.02.003. [CrossRef] [Google Scholar]
- Do Couto D, Gumiaux C, Augier R, Lebret N, Folcher N, Jouannic G, et al. 2014. Tectonic inversion of an asymmetric graben: Insights from a combined field and gravity survey in the Sorbas basin. Tectonics 33: 1360–1385. https://doi.org/10.1002/2013tc003458. [CrossRef] [Google Scholar]
- Do Couto D, Gorini C, Jolivet L, Lebret N, Augier R, Gumiaux C, et al. 2016. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics 677-678: 280–311. https://doi.org/10.1016/j.tecto.2016.03.020. [CrossRef] [Google Scholar]
- Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic Oceans. Gondwana Res. 36: 275–295. https://doi.org/10.1016/j.gr.2015.08.003. [CrossRef] [Google Scholar]
- Domeier M, Font E, Youbi N, Davies J, Nemkin S, der Voo RV, et al. 2020. On the Early Permian shape of Pangea from paleomagnetism at its core. Gondwana Res. 90: 171–198. https://doi.org/10.1016/j.gr.2020.11.005. [Google Scholar]
- Dostal J, Keppie JD, Hamilton MA, Aarab EM, Lefort JP, Murphy JB. 2005. Crustal xenoliths in Triassic lamprophyre dykes in western Morocco: tectonic implications for the Rheic Ocean suture. Geol. Mag. 142: 159–172. https://doi.org/10.1017/s0016756805000440. [CrossRef] [Google Scholar]
- Dostal J, Murphy JB, Shellnutt JG. 2019. Secular isotopic variation in lithospheric mantle through the Variscan orogen: Neoproterozoic to Cenozoic magmatism in continental Europe. Geology 47: 637–640. https://doi.org/10.1130/g46067.1. [CrossRef] [Google Scholar]
- Dresmann H, Keulen N, Timar-Geng Z, Fügenschuh B, Wetzel A, Stünitz H. 2008. The south-western Black Forest and the Upper Rhine Graben Main Border Fault: thermal history and hydrothermal fluid flow. Int. J. Earth Sci. 99: 285–297. https://doi.org/10.1007/s00531-008-0391-3. [Google Scholar]
- Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C. 2011. Provenance of Neoproterozoic and Early Paleozoic siliciclastic rocks of the Teplá-Barrandian Unit (Bohemian Massif): Evidence from U-Pb detrital zircon ages. Gondwana Res. 19: 213–231. https://doi.org/10.1016/j.gr.2010.05.003. [CrossRef] [Google Scholar]
- Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics 38: 3881–3915. https://doi.org/10.1029/2018tc005348. [CrossRef] [Google Scholar]
- Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP. 2003. Deep roots of the Messinian salinity crisis. Nature 422: 602–606. https://doi.org/10.1038/nature01553. [CrossRef] [Google Scholar]
- Duggen S, Hoernle K, van den Bogaard P, Harris C. 2004. Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian salinity crisis. Earth and Planetary Science Letters 218: 91–108. https://doi.org/10.1016/s0012-821x(03)00632-0. [CrossRef] [Google Scholar]
- Duggen S, Hoernle KA, Hauff F, Klügel A, Bouabdellah M, Thirlwall MF. 2009. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 37: 283–286. https://doi.org/10.1130/g25426a.1. [CrossRef] [Google Scholar]
- Dusséaux C, Gébelin A, Ruffet G, Mulch A. 2021. Late Carboniferous paleoelevation of the Variscan Belt of Western Europe. Earth Planet. Sci. Lett. 569: 117064. https://doi.org/10.1016/j.epsl.2021.117064. [Google Scholar]
- El-Sharkawy A, Meier T, Lebedev S, Behrmann JH, Hamada M, Cristiano L, et al. 2020. The slab puzzle of the Alpine-Mediterranean Region: Insights from a new, high-resolution, shear wave velocity model of the Upper Mantle. Geochem. Geophys. Geosyst. 21. https://doi.org/10.1029/2020gc008993. [CrossRef] [Google Scholar]
- Ennih N, Liégeois J-P. 2001. The Moroccan Anti-Atlas: The West African craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Res. 112: 289–302. https://doi.org/10.1016/s0301-9268(01)00195-4. [CrossRef] [Google Scholar]
- Ennih N, Liégeois J-P. 2008. The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas Belt. Geological Society, London, Special Publications 297: 1–17. https://doi.org/10.1144/sp297.1. [CrossRef] [Google Scholar]
- Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019. Crustal-scale balanced cross-section and restorations of the Central Pyrenean Belt (Nestes-Cinca transect): Highlighting the structural control of Variscan Belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764: 25–45. https://doi.org/10.1016/j.tecto.2019.04.026. [CrossRef] [Google Scholar]
- Essaifi A, Samson S, Goodenough K. 2014. Geochemical and Sr-Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco). Geol. Mag. 151: 666–691. https://doi.org/10.1017/s0016756813000654. [CrossRef] [Google Scholar]
- Esteban JJ, Aranguren A, Cuevas J, Hilario A, Tubía JM, Larionov A, et al. 2015. Is there a time lag between the metamorphism and emplacement of plutons in the Axial Zone of the Pyrenees? Geol. Mag. 152: 935–941. https://doi.org/10.1017/s001675681500014x. [CrossRef] [Google Scholar]
- Eynatten H. von, Dunkl I, Brix M, Hoffmann V-E, Raab M, Thomson SN, et al. 2019. Late Cretaceous exhumation and uplift of the Harz Mountains, Germany: A multi-method thermochronological approach. Int. J. Earth Sci. 108: 2097–2111. https://doi.org/10.1007/s00531-019-01751-5. [CrossRef] [Google Scholar]
- Fabries J, Lorand JP, Bodinier JL, Dupuy C. 1991. Evolution of the Upper Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. Journal of Petrology Special Volume 55–76. https://doi.org/10.1093/petrology/special_volume.2.55. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW. 2010. Shaping mobile belts by small-scale convection. Nature 465: 602–5. https://doi.org/10.1038/nature09064. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW. 2020. Topographic expressions of mantle dynamics in the Mediterranean. Earth-Sci. Rev. 103327. https://doi.org/10.1016/j.earscirev.2020.103327. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Lucente FP, Jolivet L, Rossetti F. 2001. History of subduction and back-arc extension in the Central Mediterranean. Geophys. J. Int. 145: 809–820. https://doi.org/10.1046/j.0956-540x.2001.01435.x. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Lallemand S, Lagabrielle Y, Funiciello F, Piromallo C. 2010. Subduction-triggered magmatic pulses: A new class of plumes? Earth Planet. Sci. Lett. 299: 54–68. https://doi.org/10.1016/j.epsl.2010.08.012. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Conrad CP, Husson L. 2013a. Mountain building and mantle dynamics: Mountain building and mantle dynamics. Tectonics 32: 80–93. https://doi.org/10.1029/2012tc003176. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Jolivet L, Keskin M. 2013b. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 375: 254–269. https://doi.org/10.1016/j.epsl.2013.05.043. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, et al. 2014. Mantle dynamics in the Mediterranean. Rev. Geophys. 52: 283–332. https://doi.org/10.1002/2013rg000444. [CrossRef] [Google Scholar]
- Fauquette S, Suc J-P, Popescu S-M, Guillocheau F, Violette S, Jost A, et al. 2020. Pliocene uplift of the Massif Central (France) constrained by the palaeoelevation quantified from the pollen record of sediments preserved along the Cantal Stratovolcano (Murat area). J. Geol. Soc. Lond. jgs2020-010. https://doi.org/10.1144/jgs2020-010. [Google Scholar]
- Faure M. 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14: 132–153. https://doi.org/10.1029/94tc02021. [CrossRef] [Google Scholar]
- Féménias O, Coussaert N, Bingen B, Whitehouse M, Mercier J-CC, Demaiffe D. 2003. A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic-ultramafic layered xenoliths from Beaunit (French Massif Central). Chem. Geol. 199: 293–315. https://doi.org/10.1016/s0009-2541(03)00124-4. [CrossRef] [Google Scholar]
- Fernández-Suárez J, Dunning GR, Jenner GA, Gutiérrez-alonso G. 2000. Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. J. Geol. Soc. Lond. 157: 565–576. https://doi.org/10.1144/jgs.157.3.565. [CrossRef] [Google Scholar]
- Fillon C, van der Beek P. 2012. Post-orogenic evolution of the southern Pyrenees: Constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res. 24: 418–436. https://doi.org/10.1111/j.1365-2117.2011.00533.x. [CrossRef] [Google Scholar]
- Fillon C, Gautheron C, van der Beek P. 2013. Oligocene–Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. Journal of the Geological Society 170: 67–77. https://doi.org/10.1144/jgs2012-051. [CrossRef] [Google Scholar]
- Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, et al. 2021. Post-orogenic exhumation in the western Pyrenees: Evidence for extension driven by pre-orogenic inheritance. J. Geol. Soc. Lond. 178: jgs2020-079. https://doi.org/10.1144/jgs2020-079. [CrossRef] [Google Scholar]
- Flinch JF, Soto JI. 2017. Chapter 19: Allochthonous Triassic and salt tectonic processes in the Betic-Rif Orogenic Arc. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier CY, pp. 417–446. https://doi.org/1016/B978-0-12-809417-4.00020-3. [CrossRef] [Google Scholar]
- Flinch JF, Bally AW, Wu S. 1996. Emplacement of a passive-margin evaporitic allochthon in the Betic Cordillera of Spain. Geology 24: 67. https://doi.org/10.1130/0091-7613(1996)024<0067:eoapme>2.3.co;2. [CrossRef] [Google Scholar]
- Fortey RA, Cocks LRM. 2003. Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth-Sci. Rev. 61: 245–307. https://doi.org/10.1016/s0012-8252(02)00115-0. [CrossRef] [Google Scholar]
- François T, Barbarand J, Wyns R. 2020. Lower Cretaceous inversion of the European Variscan basement: record from the Vendée and Limousin (France). Int. J. Earth Sci. https://doi.org/10.1007/s00531-020-01875-z. [Google Scholar]
- Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan Oceans revisited. Gondwana Res. 48: 257–284. https://doi.org/10.1016/j.gr.2017.03.005. [CrossRef] [Google Scholar]
- Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, Azzouzi ME, Maury RC, et al. 2008. Continental evolution: The geology of Morocco, structure, stratigraphy, and tectonics of the Africa-Atlantic-Mediterranean Triple Junction. Lect. Notes Earth Sci. 133–202. https://doi.org/10.1007/978-3-540-77076-3_4. [CrossRef] [Google Scholar]
- Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, et al. 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 475: 9–28. https://doi.org/10.1016/j.tecto.2008.10.024. [CrossRef] [Google Scholar]
- Froitzheim N, Stets J, Wurster P. 1988. Lecture Notes in Earth Sciences 219–244. https://doi.org/10.1007/bfb0011595. [CrossRef] [Google Scholar]
- Fügenschuh B, Schmid SM. 2005. Age and significance of core complex formation in a very curved orogen: Evidence from fission track studies in the South Carpathians (Romania). Tectonophysics 404: 33–53. https://doi.org/10.1016/j.tecto.2005.03.019. [CrossRef] [Google Scholar]
- Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth (1978–2012) 117: n/a–n/a. https://doi.org/10.1029/2011jb008825. [Google Scholar]
- Gallagher K, Charvin K, Nielsen S, Sambridge M, Stephenson J. 2009. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Marine and Petroleum Geology 26: 525–535. https://doi.org/10.1016/j.marpetgeo.2009.01.003. [CrossRef] [Google Scholar]
- Ganne J, Feng X, Rey P, Andrade VD. 2016. Statistical petrology reveals a link between supercontinents cycle and mantle global climate. Am. Miner. 101: 2768–2773. https://doi.org/10.2138/am-2016-5868. [CrossRef] [Google Scholar]
- Garcia-Castellanos D, Larrasoaña JC. 2015. Quantifying the post-tectonic topographic evolution of closed basins: The Ebro Basin (northeast Iberia). Geology 43: 663–666. https://doi.org/10.1130/g36673.1. [CrossRef] [Google Scholar]
- Garrido CJ, Bodinier J-L. 1999. Diversity of mafic rocks in the Ronda Peridotite: Evidence for Pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology 40: 729–754. https://doi.org/10.1093/petroj/40.5.729. [CrossRef] [Google Scholar]
- Garrido CJ, Gueydan F, Booth-Rea G, Precigout J, Hidas K, Padrón-Navarta JA, et al. 2011. Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology 39: 927–930. https://doi.org/10.1130/g31760.1. [CrossRef] [Google Scholar]
- Gasquet D, Ennih N, Liégeois J-P, Soulaimani A, Michard A. 2008. Continental evolution: The geology of Morocco, structure, stratigraphy, and tectonics of the Africa-Atlantic-Mediterranean Triple Junction. Lect. Notes Earth Sci. 33–64. https://doi.org/10.1007/978-3-540-77076-3_2. [CrossRef] [Google Scholar]
- Geach MR, Viveen W, Mather AE, Telfer MW, Fletcher WJ, Stokes M, et al. 2015. An integrated field and numerical modelling study of controls on Late Quaternary fluvial landscape development (Tabernas, southeast Spain). Earth Surf. Process. 40: 1907–1926. https://doi.org/10.1002/esp.3768. [CrossRef] [Google Scholar]
- Geissler WH, Sodoudi F, Kind R. 2010. Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys. J. Int. 181: 604–634. https://doi.org/10.1111/j.1365-246x.2010.04548.x. [Google Scholar]
- Ghosh A, Holt WE, Wen L. 2013. Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res. Solid Earth 118: 346–368. https://doi.org/10.1029/2012jb009516. [CrossRef] [Google Scholar]
- Giaconia F, Booth-Rea G, Martinez-Martinez JM, Azañón JM, Storti F, Artoni A. 2014. Heterogeneous extension and the role of transfer faults in the development of the southeastern Betic Basins (SE Spain). Tectonics 33: 2467–2489. https://doi.org/10.1002/2014tc003681. [CrossRef] [Google Scholar]
- Giamboni M, Ustaszewski K, Schmid SM, Schumacher ME, Wetzel A. 2004. Plio-Pleistocene transpressional reactivation of Paleozoic and Paleogene structures in the Rhine-Bresse transform zone (Northern Switzerland and Eastern France). Int. J. Earth Sci. 93: 207–223. https://doi.org/10.1007/s00531-003-0375-2. [CrossRef] [Google Scholar]
- Giletycz S, Loget N, Chang C-P, Mouthereau F. 2015. Transient fluvial landscape and preservation of low-relief terrains in an emerging orogen: Example from Hengchun Peninsula, Taiwan. Geomorphology 231: 169–181. https://doi.org/10.1016/j.geomorph.2014.11.026. [CrossRef] [Google Scholar]
- Gimeno-Vives O, Mohn G, Bosse V, Haissen F, Zaghloul MN, Atouabat A, et al. 2019. The Mesozoic Margin of the Maghrebian Tethys in the Rift Belt (Morocco): Evidence for Polyphase Rifting and related magmatic activity. Tectonics 38: 2894–2918. https://doi.org/10.1029/2019tc005508. [CrossRef] [Google Scholar]
- Gimeno-Vives O, Mohn G, Bosse V, Haissen F, Zaghloul MN, Atouabat A, et al. 2020. Reply to comment by Michard, et al. on “The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and related magmatic activity”. Tectonics 39. https://doi.org/10.1029/2020tc006165. [CrossRef] [Google Scholar]
- Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P and S waves tomography. J. Geophys. Res. Solid Earth 105: 11153–11169. https://doi.org/10.1029/1999jb900300. [CrossRef] [Google Scholar]
- González-Jiménez JM, Villaseca C, Griffin WL, Belousova E, Konc Z, Ancochea E, et al. 2013. The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence. Geology 41: 547–550. https://doi.org/10.1130/g34003.1. [CrossRef] [Google Scholar]
- Goodenough KM, Millar I, Strachan RA, Krabbendam M, Evans JA. 2011. Timing of regional deformation and development of the Moine Thrust Zone in the Scottish Caledonides: Constraints from the U–Pb geochronology of alkaline intrusions. J. Geol. Soc. Lond. 168: 99–114. https://doi.org/10.1144/0016-76492010-020. [CrossRef] [Google Scholar]
- Gordon RG. 1998. The plate tectonic approximation: Plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annual Review of Earth and Planetary Sciences 26: 615–642. https://doi.org/10.1146/annurev.earth.26.1.615. [CrossRef] [Google Scholar]
- Graciansky PC de, Lemoine M. 1988. Early Cretaceous extensional tectonics in the southwestern French Alps: A consequence of North-Atlantic rifting during Tethyan spreading. Bulletin de la Société géologique de France IV: 733–737. https://doi.org/10.2113/gssgfbull.iv.5.733. [CrossRef] [Google Scholar]
- Granet M, Wilson M, Achauer U. 1995. Imaging a mantle plume beneath the French Massif Central. Earth Planet. Sci. Lett. 136: 281–296. https://doi.org/10.1016/0012-821x(95)00174-b. [CrossRef] [Google Scholar]
- Green PF. 1989. Thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis. J. Geol. Soc. Lond. 146: 755–773. https://doi.org/10.1144/gsjgs.146.5.0755. [CrossRef] [Google Scholar]
- Gretter N, Ronchi A, López-Gómez J, Arche A, La Horra RD, Barrenechea J, et al. 2015. The Late Palaeozoic-Early Mesozoic from the Catalan Pyrenees (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan palaeogeography. Earth-Sci. Rev. 150: 679–708. https://doi.org/10.1016/j.earscirev.2015.09.001. [CrossRef] [Google Scholar]
- Griffin WL, O’Reilly SY. 2007. Chapter 8.2: The earliest subcontinental lithospheric mantle. Developments in Precambrian Geology 15: 1013–1035. https://doi.org/10.1016/s0166-2635(07)15082-9. [CrossRef] [Google Scholar]
- Gröger HR, Fügenschuh B, Tischler M, Schmid SM, Foeken JPT. 2008. Tertiary cooling and exhumation history in the Maramures area (internal Eastern Carpathians, Northern Romania): Thermochronology and structural data. Geol. Soc. Lond. Special Publ. 298: 169–195. https://doi.org/10.1144/sp298.9. [CrossRef] [Google Scholar]
- Guimera J, Alvaro M. 1990. Structure et évolution de la compression alpine dans la Chaîne Iberique et la chaîne côtière catalane (Espagne). Bulletin de la Société géologique de France VI: 339–348. https://doi.org/10.2113/gssgfbull.vi.2.339. [CrossRef] [Google Scholar]
- Guiraud R, Bosworth W, Thierry J, Delplanque A. 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43: 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017. [CrossRef] [Google Scholar]
- Gunnell Y, Calvet M, Brichau S, Carter A, Aguilar JP, Zeyen H. 2009. Low long-term erosion rates in high-energy mountain belts: Insights from thermo- and biochronology in the Eastern Pyrenees. Earth and Planetary Science Letters 278: 208–218. https://doi.org/10.1016/j.epsl.2008.12.004. [CrossRef] [Google Scholar]
- Gutierrez-Alonso G, Murphy JB, Fernandez-Suárez J, Weil AB, Franco MP, Gonzalo JC. 2011. Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology 39: 155–158. https://doi.org/10.1130/g31468.1. [CrossRef] [Google Scholar]
- Hacker BR, Gans PB. 2005. Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides. GSA Bulletin 117: 117–134. https://doi.org/10.1130/b25549.1. [CrossRef] [Google Scholar]
- Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews 102: 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002. [CrossRef] [Google Scholar]
- Handy MR, Ustaszewski K, Kissling E. 2015. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. 104: 1–26. https://doi.org/10.1007/s00531-014-1060-3. [CrossRef] [Google Scholar]
- Harmand C, Cantagrel JM. 1984. Le volcanisme alcalin tertiaire et quaternaire du moyen atlas (Maroc) : chronologie K/Ar et cadre géodynamique. J. Afr. Earth Sci. 2: 51–55. https://doi.org/10.1016/0899-5362(84)90019-8. [Google Scholar]
- Harvey J, Gannoun A, Burton KW, Schiano P, Rogers NW, Alard O. 2010. Unravelling the effects of melt depletion and secondary infiltration on mantle Re–Os isotopes beneath the French Massif Central. Geochim. Cosmochim. Acta 74: 293–320. https://doi.org/10.1016/j.gca.2009.09.031. [CrossRef] [Google Scholar]
- Heeremans M, Larsen BT, Stel H. 1996. Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting. Tectonophysics 266: 55–79. https://doi.org/10.1016/s0040-1951(96)00183-7. [CrossRef] [Google Scholar]
- Heidbach O, Rajabi M, Cui X, Fuchs K, Müller B, Reinecker J, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744: 484–498. https://doi.org/10.1016/j.tecto.2018.07.007. [CrossRef] [Google Scholar]
- Heinrichs T, Giese P, Bankwitz P, Bankwitz E. 1994. DEKORP 3/MVE-90(West) – Preliminary geological interpretation of a deep near-vertical reflection profile between the Rhenish and the Bohemian Massifs, Germany. Z. G. Wiss 22(6): 771–801. [Google Scholar]
- Heit B, Mancilla F de L, Yuan X, Morales J, Stich D, Martín R, et al. 2017. Tearing of the mantle lithosphere along the intermediate-depth seismicity zone beneath the Gibraltar Arc: The onset of lithospheric delamination. Geophys. Res. Lett. 44: 4027–4035. https://doi.org/10.1002/2017gl073358. [CrossRef] [Google Scholar]
- Helg U, Burkhard M, Caritg S, Robert-Charrue C. 2004. Folding and inversion tectonics in the Anti-Atlas of Morocco. Tectonics 23, TC4006. https://doi.org/10.1029/2003tc001576. [Google Scholar]
- Henry P, Azambre B, Montigny R, Rossy M, Stevenson RK. 1998. Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new 40Ar-39Ar and Sm-Nd ages on pyroxenites and peridotites (Pyrenees, France). Tectonophysics 296: 103–123. https://doi.org/10.1016/s0040-1951(98)00139-5. [CrossRef] [Google Scholar]
- Herman F, Seward D, Valla PG, Carter A, Kohn B, Willett SD, et al. 2014. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504: 423–426. https://doi.org/10.1038/nature12877. [Google Scholar]
- Hermann J, Rubatto D. 2003. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust: Relating zircon and monazite to garnet growth. J. Metamorph. Geol. 21: 833–852. https://doi.org/10.1046/j.1525-1314.2003.00484.x. [CrossRef] [Google Scholar]
- Heuer B, Geissler WH, Kind R, Kämpf H. 2006. Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophysical Research Letters 33. https://doi.org/10.1029/2005gl025158. [CrossRef] [Google Scholar]
- Hinsken S, Ustaszewski K, Wetzel A. 2007. Graben width controlling syn-rift sedimentation: The Palaeogene southern Upper Rhine Graben as an example. Int. J. Earth Sci. 96: 979–1002. https://doi.org/10.1007/s00531-006-0162-y. [CrossRef] [Google Scholar]
- Hodel F, Triantafyllou A, Berger J, Macouin M, Baele J-M, Mattielli N, et al. 2020. The Moroccan Anti-Atlas ophiolites: Timing and melting processes in an intra-oceanic arc-back-arc environment. Gondwana Res. 86: 182–202. https://doi.org/10.1016/j.gr.2020.05.014. [CrossRef] [Google Scholar]
- Hoepffner C, Houari MR, Bouabdelli M. 2006. Tectonics of the North African Variscides (Morocco, western Algeria): An outline. C. R. Geosci. 338: 25–40. https://doi.org/10.1016/j.crte.2005.11.003. [CrossRef] [Google Scholar]
- Hoggard MJ, Czarnota K, Richards FD, Huston DL, Jacques AL, Ghelichktan S. 2020. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13: 504–510. https://doi.org/10.1038/s41561-020-0593-2. [CrossRef] [Google Scholar]
- Houari M-R, Hoepffner C. 2003. Late Carboniferous dextral wrench-dominated transpression along the North African craton margin (Eastern High-Atlas, Morocco). J. Afr. Earth Sci. 37: 11–24. https://doi.org/10.1016/s0899-5362(03)00085-x. [CrossRef] [Google Scholar]
- Huyghe D, Mouthereau F, Emmanuel L. 2012. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees. Earth and Planetary Science Letters 345-348: 131–141. https://doi.org/10.1016/j.epsl.2012.06.035. [CrossRef] [Google Scholar]
- Huyghe D, Mouthereau F, Ségalen L, Furió M. 2020. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ18O) paleo-altimetry in Eastern Pyrenees. Sci. Rep.-UK 10: 2267. https://doi.org/10.1038/s41598-020-58903-w. [Google Scholar]
- Inglis JD, MacLean JS, Samson SD, D’Lemos RS, Admou H, Hefferan K. 2004. A precise U–Pb zircon age for the Bleïda granodiorite, Anti-Atlas, Morocco: implications for the timing of deformation and terrane assembly in the eastern Anti-Atlas. J. Afr. Earth Sci. 39: 277–283. https://doi.org/10.1016/j.jafrearsci.2004.07.041. [CrossRef] [Google Scholar]
- Izquierdo-Llavall E, Menant A, Aubourg C, Callot J, Hoareau G, Camps P, et al. 2020. Preorogenic Folds and Syn-Orogenic Basement Tilts in an Inverted Hyperextended Margin: The Northern Pyrenees Case Study. Tectonics 39. https://doi.org/10.1029/2019tc005719. [CrossRef] [Google Scholar]
- Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, Driessche JV den, et al. 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador. Terra Nova 29: 91–97. https://doi.org/10.1111/ter.12252. [CrossRef] [Google Scholar]
- Jaupart C, Labrosse S, Lucazeau F, Mareschal J-C. 2015. Treatise on geophysics (2nd ed.), pp. 223–270. https://doi:10.1016/b978-0-444-53802-4.00126-3. [CrossRef] [Google Scholar]
- Jolivet L. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am. J. Sci. 303: 353–409. https://doi.org/10.2475/ajs.303.5.353. [CrossRef] [Google Scholar]
- Jolivet L, Faccenna C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19: 1095–1106. https://doi.org/10.1029/2000tc900018. [CrossRef] [Google Scholar]
- Jolivet L, Augier R, Faccenna C, Negro F, Rimmele G, Agard P, et al. 2008. Subduction, convergence and the mode of backarc extension in the Mediterranean Region. Bulletin de la Société géologique de France 179: 525–550. https://doi.org/10.2113/gssgfbull.179.6.525. [CrossRef] [Google Scholar]
- Jolivet L, Faccenna C, Agard P, Frizon de Lamotte D, Menant A, Sternai P, et al. 2016. Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction. Can. J. Earth Sci. 53: 1190–1204. https://doi.org/10.1139/cjes-2015-0118. [CrossRef] [Google Scholar]
- Jolivet L, Baudin T, Bitri A, Calassou S, Ford M, Issautier B, et al. 2021. Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions. BSGF Earth Sci. Bull. 192: 48. https://doi.org/10.1051/bsgf/2021043. [Google Scholar]
- Jordan TH. 1978. Composition and development of the continental tectosphere. Nature 274: 544–548. https://doi.org/10.1038/274544a0. [CrossRef] [Google Scholar]
- Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, et al. 2005. Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33: 745–748. https://doi.org/10.1130/g21632.1. [CrossRef] [Google Scholar]
- Jourdon A, Pourhiet LL, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. https://doi.org/10.1016/j.epsl.2019.01.057. [CrossRef] [Google Scholar]
- Jourdon A, Mouthereau F, Pourhiet LL, Callot J. 2020a. Topographic and tectonic evolution of mountain belts controlled by salt thickness and rift architecture. Tectonics 39. https://doi.org/10.1029/2019tc005903. [CrossRef] [Google Scholar]
- Jourdon A, Pourhiet LL, Mouthereau F, May D. 2020b. Modes of Propagation of Continental Breakup and Associated Oblique Rift Structures. J. Geophys. Res. Solid Earth 125. https://doi.org/10.1029/2020jb019906. [CrossRef] [Google Scholar]
- Juez-Larré J, Andriessen PAM. 2006. Tectonothermal evolution of the northeastern margin of Iberia since the break-up of Pangea to present, revealed by low-temperature fission-track and (U-Th)/He thermochronology: A case history of the Catalan Coastal Ranges. Earth and Planetary Science Letters 243: 159–180. https://doi.org/10.1016/j.epsl.2005.12.026. [CrossRef] [Google Scholar]
- Kaczmarek M-A, Müntener O. 2008. Juxtaposition of melt impregnation and high-temperature shear zones in the Upper Mantle: Field and petrological constraints from the Lanzo Peridotite (Northern Italy). J. Petrol. 49: 2187–2220. https://doi.org/10.1093/petrology/egn065. [CrossRef] [Google Scholar]
- Kaczmarek M-A, Müntener O, Rubatto D. 2007. Trace element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contrib. Miner. Petrol. 155: 295–312. https://doi.org/10.1007/s00410-007-0243-3. [Google Scholar]
- Kaislaniemi L, van Hunen J. 2014. Dynamics of lithospheric thinning and mantle melting by edge-driven convection: Application to Moroccan Atlas mountains. Geochemistry, Geophysics, Geosystems 15: n/a–n/a. https://doi.org/10.1002/2014gc005414. [Google Scholar]
- Keller J, Kramel M, Henjes-Kunst F. 2002. 40Ar/39Ar single crystal laser dating of early volcanism in the Upper Rhine Graben and tectonic implications. Schweiz Miner. Petrogr. Mitt. 82: 1–10. [Google Scholar]
- Ketcham RA. 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry 58: 275–314. https://doi.org/10.2138/rmg.2005.58.11. [CrossRef] [Google Scholar]
- Kilzi MA, Grégoire M, Bosse V, Benoît M, Driouch Y, de Saint Blanquat M, et al. 2016. Geochemistry and zircon U–Pb geochronology of the ultramafic and mafic rocks emplaced within the anatectic series of the Variscan Pyrenees: The example of the Gavarnie–Heas dome (France). C. R. Geosci. 348: 107–115. https://doi.org/10.1016/j.crte.2015.06.014. [CrossRef] [Google Scholar]
- King SD, Anderson DL. 1998. Edge-driven convection. Earth Planet. Sci. Lett. 160: 289–296. https://doi.org/10.1016/s0012-821x(98)00089-2. [CrossRef] [Google Scholar]
- Kley J, Voigt T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36: 839–842. https://doi.org/10.1130/g24930a.1. [CrossRef] [Google Scholar]
- Kohn BP, Lorencak M, Gleadow AJW, Kohlmann F, Raza A, Osadetz KG, et al. 2009. A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. Geol. Soc. Lond. Special Publ. 324: 193–216. https://doi.org/10.1144/sp324.15. [CrossRef] [Google Scholar]
- Koulali A, Ouazar D, Tahayt A, King RW, Vernant P, Reilinger RE, et al. 2011. New GPS constraints on active deformation along the Africa-Iberia plate boundary. Earth Planet. Sci. Lett. 308: 211–217. https://doi.org/10.1016/j.epsl.2011.05.048. [CrossRef] [Google Scholar]
- Kreemer C, Blewitt G, Davis PM. 2020. Geodetic evidence for a buoyant mantle plume beneath the Eifel volcanic area, NW Europe. Geophys. J. Int. 222: 1316–1332. https://doi.org/10.1093/gji/ggaa227. [CrossRef] [Google Scholar]
- Kroner U, Romer RL. 2013. Two plates – Many subduction zones: The Variscan orogeny reconsidered. Gondwana Research 24: 298–329. https://doi.org/10.1016/j.gr.2013.03.001. [CrossRef] [Google Scholar]
- Kukkonen IT, Peltonen P. 1999. Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere-asthenosphere relations. Tectonophysics 304: 301–315. https://doi.org/10.1016/s0040-1951(99)00031-1. [CrossRef] [Google Scholar]
- Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ, Lapen TJ. 2007. Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem. Geol. 242: 137–154. https://doi.org/10.1016/j.chemgeo.2007.03.006. [CrossRef] [Google Scholar]
- Labails C, Olivet J-L, Aslanian D, Roest WR. 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297: 355–368. https://doi.org/10.1016/j.epsl.2010.06.024. [CrossRef] [Google Scholar]
- Lachenbruch AH, Morgan P. 1990. Continental extension, magmatism and elevation: Formal relations and rules of thumb. Tectonophysics 174: 39–62. https://doi.org/10.1016/0040-1951(90)90383-J. [CrossRef] [Google Scholar]
- Lacombe O, Mouthereau F. 2002. Basement-involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees). Tectonics 21: 12-1-12-22. https://doi.org/10.1029/2001tc901018. [CrossRef] [Google Scholar]
- Lago M, Arranz E, Pocoví A, Gale C, Gil-Imaz A. 2004a. Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from Late Variscan transtension to Early Alpine extension. Geological Society, London, Special Publications 223: 439–464. [CrossRef] [Google Scholar]
- Lago M, Arranz E, Pocoví A, Gale C, Gil-Imaz A. 2004b. Permian magmatism and basin dynamics in the southern Pyrenees: A record of the transition from Late Variscan transtension to Early Alpine extension. Geological Society, London, Special Publications 223: 439–464. https://doi.org/10.1144/gsl.sp.2004.223.01.19. [CrossRef] [Google Scholar]
- Lahtinen R, Korja A, Nironen M. 2005. Chapter 11: Paleoproterozoic tectonic evolution. Developments in Precambrian Geology 14: 481–531. https://doi.org/10.1016/s0166-2635(05)80012-x. [CrossRef] [Google Scholar]
- Lapen TJ, Medaris LG, Johnson CM, Beard BL. 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: Evidence from combined Sm–Nd and Lu–Hf isotope analyses of the Sandvik ultramafic body, Norway. Contrib. Miner. Petrol. 150: 131–145. https://doi.org/10.1007/s00410-005-0021-z. [CrossRef] [Google Scholar]
- Lapen TJ, Medaris LG, Beard BL, Johnson CM. 2009. The Sandvik peridotite, Gurskøy, Norway: Three billion years of mantle evolution in the Baltica lithosphere. Lithos 109: 145–154. https://doi.org/10.1016/j.lithos.2008.08.007. [CrossRef] [Google Scholar]
- Lardeaux J-M. 2014. Deciphering orogeny: A metamorphic perspective Examples from European Alpine and Variscan Belts. Bulletin de la Société géologique de France 185: 281–310. https://doi.org/10.2113/gssgfbull.185.5.281. [CrossRef] [Google Scholar]
- Larrey M. 2020. Processus d’amincissement et fluides carbonatés en contexte post-orogénique : exemple de la marge Nord Alboran dans l’Est des Cordillères Bétiques (région d’Almería). PhD Thesis, Toulouse, France, 287 pp. [Google Scholar]
- Larrey M, Mouthereau F, Masini E, Huyghe D, Gaucher EC, Virgone A, et al. 2020. Quaternary tectonic and climate changes at the origin of travertine and calcrete in the eastern Betics (Almería region, SE Spain). J. Geol. Soc. Lond. jgs2020-025. https://doi.org/10.1144/jgs2020-025. [Google Scholar]
- Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0 – A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr. 15, Abstract EGU2013-2658. [Google Scholar]
- Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen J-F, Villaros A, et al. 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. Int. J. Earth Sci. 106: 421–451. https://doi.org/10.1007/s00531-016-1434-9. [CrossRef] [Google Scholar]
- Le Breton E, Handy MR, Molli G, Ustaszewski K. 2017. Post-20 Ma motion of the Adriatic plate – New constraints from surrounding orogens and implications for crust-mantle decoupling. Tectonics n/a–n/a. https://doi.org/10.1002/2016tc004443. [Google Scholar]
- Le Pichon XL. 1968. Sea-floor spreading and continental drift. J. Geophys. Res. 73: 3661–3697. https://doi.org/10.1029/jb073i012p03661. [CrossRef] [Google Scholar]
- Lee C-T, Yin Q, Rudnick RL, Jacobsen SB. 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411: 69–73. https://doi.org/10.1038/35075048. [CrossRef] [Google Scholar]
- Lee C-TA, Luffi P, Chin EJ. 2011. Building and destroying continental Mantle. Annual Review of Earth and Planetary Sciences 39: 59–90. https://doi.org/10.1146/annurev-earth-040610-133505. [CrossRef] [Google Scholar]
- Lefranc J Ph, Guiraud R. 1990. The continental intercalaire of northwestern Sahara and its equivalents in the neighbouring regions. J. Afr. Earth Sci. Middle East 10: 27–77. https://doi.org/10.1016/0899-5362(90)90047-i. [CrossRef] [Google Scholar]
- Legendre CP, Meier T, Lebedev S, Friederich W, Viereck-Götte L. 2012. A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms: S-velocity model of the European upper mantle. Geophys. J. Int. 191: 282–304. https://doi.org/10.1111/j.1365-246x.2012.05613.x. [CrossRef] [Google Scholar]
- Leprêtre R, Barbarand J, Missenard Y, Leparmentier F, Frizon de Lamotte D. 2014. Vertical movements along the northern border of the West African Craton: The Reguibat Shield and adjacent basins. Geol. Mag. 151: 885–898. https://doi.org/10.1017/s0016756813000939. [CrossRef] [Google Scholar]
- Leprêtre R, Missenard Y, Barbarand J, Gautheron C, Saddiqi O, Jamme RP. 2015. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco. Journal of Geophysical Research: Solid Earth 120: 4645–4666. https://doi.org/10.1002/2014jb011549. [CrossRef] [Google Scholar]
- Leprêtre R, Barbarand J, Missenard Y, Gautheron C, Pinna-Jamme R, Saddiqi O. 2017. Mesozoic evolution of NW Africa: Implications for the Central Atlantic Ocean dynamics. J. Geol. Soc. Lond. 174: 817–835. https://doi.org/10.1144/jgs2016-100. [CrossRef] [Google Scholar]
- Leprêtre R, Frizon de Lamotte D, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. Bulletin de la Société géologique de France 189: 10. https://doi.org/10.1051/bsgf/2018009. [CrossRef] [EDP Sciences] [Google Scholar]
- Leprêtre R, Missenard Y, Barbarand J, Gautheron C, Jouvie I, Saddiqi O. 2018. Polyphased Inversions of an Intracontinental Rift: Case study of the Marrakech High Atlas, Morocco. Tectonics 37: 818–841. https://doi.org/10.1002/2017tc004693. [CrossRef] [Google Scholar]
- Leroy S, Gente P, Fournier M, d’Acremont E, Patriat P, Beslier M-O, et al. 2004. From rifting to spreading in the eastern Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin. Terra Nova 16: 185–192. https://doi.org/10.1111/j.1365-3121.2004.00550.x. [CrossRef] [Google Scholar]
- Lettéron A, Hamon Y, Fournier F, Séranne M, Pellenard P, Joseph P. 2018. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications. Sediment. Geol. 367: 20–47. https://doi.org/10.1016/j.sedgeo.2017.12.023. [CrossRef] [Google Scholar]
- Li ZX, Bogdanova SV, Collins AS, Davidson A, Waele BD, Ernst RE, et al. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160: 179–210. https://doi.org/10.1016/j.precamres.2007.04.021. [CrossRef] [Google Scholar]
- Liégeois J-P, Abdelsalam MG, Ennih N, Ouabadi A. 2013. Metacraton: Nature, genesis and behavior. Gondwana Res. 23: 220–237. https://doi.org/10.1016/j.gr.2012.02.016. [CrossRef] [Google Scholar]
- Linnemann U, Nance RD, Kraft P, Zulauf G, Gerdes A, Drost K, et al. 2007. The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. https://doi.org/10.1130/2007.2423(03). [CrossRef] [Google Scholar]
- Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M. 2012. The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: A review with new zircon ages, geochemistry, Sm-Nd isotopes, stratigraphy and palaeogeography. Earth-Sci. Rev. 112: 126–154. https://doi.org/10.1016/j.earscirev.2012.02.007. [CrossRef] [Google Scholar]
- Lustrino M, Morra V, Fedele L, Franciosi L. 2009. Beginning of the Apennine subduction system in central western Mediterranean: Constraints from Cenozoic “orogenic” magmatic activity of Sardinia, Italy: Beginning of apennine subduction. Tectonics 28: n/a–n/a. https://doi.org/10.1029/2008tc002419. [CrossRef] [Google Scholar]
- Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new southern North Atlantic isochron map: Insights into the drift of the Iberian Plate since the Late Cretaceous. J. Geophys. Res. Solid Earth 122: 9603–9626. https://doi.org/10.1002/2017jb014769. [CrossRef] [Google Scholar]
- Malarkey J, Wittig N, Pearson DG, Davidson JP. 2011. Characterising modal metasomatic processes in young continental lithospheric mantle: A microsampling isotopic and trace element study on xenoliths from the Middle Atlas Mountains, Morocco. Contrib. Miner. Petrol. 162: 289–302. https://doi.org/10.1007/s00410-010-0597-9. [CrossRef] [Google Scholar]
- Malusà MG, Polino R, Feroni AC, Ellero A, Ottria G, Baidder L, et al. 2007. Post-Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova 19: 481–489. https://doi.org/10.1111/j.1365-3121.2007.00775.x. [CrossRef] [Google Scholar]
- Malusà MG, Danišík M, Kuhlemann J. 2016. Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Research 31: 135–149. https://doi.org/10.1016/j.gr.2014.12.011. [CrossRef] [Google Scholar]
- Mancilla F de L, Booth-Rea G, Stich D, Pérez-Peña JV, Morales J, Azañón JM, et al. 2015a. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics. https://doi.org/10.1016/j.tecto.2015.06.028. [Google Scholar]
- Mancilla F de L, Stich D, Morales J, Martin R, Diaz J, Pazos A, et al. 2015b. Crustal thickness and images of the lithospheric discontinuities in the Gibraltar arc and surrounding areas. Geophysical Journal International 203: 1804–1820. https://doi.org/10.1093/gji/ggv390. [Google Scholar]
- Marchand E, Séranne M, Bruguier O, Vinches M. 2021. LA-ICP-MS dating of detrital zircon grains from the Cretaceous allochthonous bauxites of Languedoc (south of France): Provenance and geodynamic consequences. Basin Res. 33: 270–290. https://doi.org/10.1111/bre.12465. [CrossRef] [Google Scholar]
- Marchesi C, Griffin WL, Garrido CJ, Bodinier J-L, O’Reilly SY, Pearson NJ. 2010. Persistence of mantle lithospheric Re-Os signature during asthenospherization of the subcontinental lithospheric mantle: Insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain). Contributions to Mineralogy and Petrology 159: 315–330. https://doi.org/10.1007/s00410-009-0429-y. [CrossRef] [Google Scholar]
- Martin LAJ, Rubatto D, Brovarone AV, Hermann J. 2011. Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos 125: 620–640. https://doi.org/10.1016/j.lithos.2011.03.015. [CrossRef] [Google Scholar]
- Martínez Catalán JR, Arenas R, García FD, Cuadra PG, Gómez-Barreiro J, Abati J, et al. 2007. 4-D framework of continental crust. Geol. Soc. Am. Mem. 403–423. https://doi.org/10.1130/2007.1200(21). [Google Scholar]
- Martínez-García P, Comas M, Lonergan L, Watts AB. 2017. From extension to shortening: Tectonic inversion distributed in time and space in the Alboran Sea, Western Mediterranean: Tectonic inversion in the Alboran Sea. Tectonics 36: 2777–2805. https://doi.org/10.1002/2017tc004489. [CrossRef] [Google Scholar]
- Martínez-Garzón P, Heidbach O, Bohnhoff M. 2019. Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics 774: 228286. https://doi.org/10.1016/j.tecto.2019.228286. [Google Scholar]
- Marzoli A, Melluso L, Morra V, Renne PR, Sgrosso I, D’Antonio M, et al. 1999a. Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza Basin (Western Angola), and relationships with the Paranà-Etendeka continental flood basalt province. J. Geodyn. 28: 341–356. https://doi.org/10.1016/s0264-3707(99)00014-9. [CrossRef] [Google Scholar]
- Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, Min AD. 1999b. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Geophys. J. Int. 284: 616–618. [Google Scholar]
- Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Verati C, et al. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32: 973–976. https://doi.org/10.1130/g20652.1. [CrossRef] [Google Scholar]
- Marzoli A, Bertrand H, Youbi N, Callegaro S, Merle R, Reisberg L, et al. 2019. The Central Atlantic Magmatic Province (CAMP) in Morocco. J. Petrol. 60: 945–996. https://doi.org/10.1093/petrology/egz021. [CrossRef] [Google Scholar]
- Mattauer M, Proust F, Tapponnier P. 1972. Major strike-slip fault of Late Hercynian Age in Morocco. Nature 237: 160–162. https://doi.org/10.1038/237160b0. [CrossRef] [Google Scholar]
- Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 13: 122–128. https://doi.org/10.1046/j.1365-3121.2001.00327.x. [CrossRef] [Google Scholar]
- Maurel O, Respaut JP, Monié P, Arnaud N, Brunel M. 2004. U-Pb emplacement and Ar-40/Ar-39 cooling ages of the Eastern Mont-Louis Granite Massif (Eastern Pyrenees, France). Comptes Rendus Geoscience 336: 1091–1098. https://doi.org/10.1016/j.crte.2004.04.005. [CrossRef] [Google Scholar]
- Mazur S, Scheck-Wenderoth M, Krzywiec P. 2005. Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish Basins. Int. J. Earth Sci. 94: 782–798. https://doi.org/10.1007/s00531-005-0016-z. [CrossRef] [Google Scholar]
- McCann T, Pascal C, Timmerman MJ, Krzywiec P, López-Gómez J, Wetzel L, et al. 2006. Post-Variscan (end Carboniferous-Early Permian) Basin evolution in Western and Central Europe. Geol. Soc. Lond. Mem. 32: 355–388. https://doi.org/10.1144/gsl.mem.2006.032.01.22. [CrossRef] [Google Scholar]
- McCarthy A, Müntener O. 2015. Ancient depletion and mantle heterogeneity: Revisiting the Permian-Jurassic paradox of Alpine peridotites. Geology 43: 255–258. https://doi.org/10.1130/g36340.1. [CrossRef] [Google Scholar]
- McCarthy A, Tugend J, Mohn G, Candioti L, Chelle-Michou C, Arculus R, et al. 2020. A case of Ampferer-type subduction and consequences for the Alps and the Pyrenees. Am. J. Sci. 320: 313–372. https://doi.org/10.2475/04.2020.01. [CrossRef] [Google Scholar]
- McCulloch AA. 1993. Apatite fission track results from Ireland and the Porcupine Basin and their significance for the evolution of the North Atlantic. Mar. Petrol. Geol. 10: 572–590. https://doi.org/10.1016/0264-8172(93)90060-6. [CrossRef] [Google Scholar]
- McHone JG. 2000. Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophysics 316: 287–296. https://doi.org/10.1016/s0040-1951(99)00260-7. [CrossRef] [Google Scholar]
- McQuarrie N, Stock JM, Verdel C, Wernicke BP. 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters 30. https://doi.org/10.1029/2003gl017992. [CrossRef] [Google Scholar]
- Meer DG van der, van Hinsbergen DJJ, Spakman W. 2018. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723: 309–448. https://doi.org/10.1016/j.tecto.2017.10.004. [CrossRef] [Google Scholar]
- Meier T, Soomro RA, Viereck L, Lebedev S, Behrmann JH, Weidle C, et al. 2016. Mesozoic and Cenozoic evolution of the Central European lithosphere. Tectonophysics 692: 58–73. https://doi.org/10.1016/j.tecto.2016.09.016. [CrossRef] [Google Scholar]
- Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan Belt. Gondwana Res. 17: 13–25. https://doi.org/10.1016/j.gr.2009.05.007. [CrossRef] [Google Scholar]
- Ménard G, Molnar P. 2004. Collapse of a Hercynian Tibetan Plateau into a Late Palaeozoic European Basin and Range province. Nature 334: 235–237. https://doi.org/10.1038/334235a0. [Google Scholar]
- Mesalles L, Mouthereau F, Bernet M, Chang C-P, Lin AT-S, Fillon C, et al. 2014. From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology 42: 907–910. https://doi.org/10.1130/g35854.1. [CrossRef] [Google Scholar]
- Michalski I, Soom M. 1990. The Alpine thermo-tectonic evolution of the Aar and Gotthard Massifs, Central Switzerland: Fission track ages on zircon and apatite and K-Ar mica ages. Schweizerische mineralogische und petrographische Mitteilungen 373–387. https://doi.org/10.5169/seals-53628. [Google Scholar]
- Michard A, Soulaimani A, Hoepffner C, Ouanaimi H, Baidder L, Rjimati EC, et al. 2010. The south-western branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 492: 1–24. https://doi.org/10.1016/j.tecto.2010.05.021. [CrossRef] [Google Scholar]
- Michard A, Saddiqi O, Chalouan A, Chabou MC, Lach P, Rossi P, et al. 2020. Comment on “The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity” by Gimeno-Vives et al. Tectonics 39. https://doi.org/10.1029/2019tc006004. [CrossRef] [Google Scholar]
- Michard-Vitrac A, Albarede F, Dupuis C, Taylor HP. 1980. The genesis of Variscan (Hercynian) plutonic rocks: Inferences from Sr, Pb, and O studies on the Maladeta igneous complex, central Pyrenees (Spain). Contrib. Miner. Petrol. 72: 57–72. https://doi.org/10.1007/bf00375568. [CrossRef] [Google Scholar]
- Michel LA, Tabor NJ, Montañez IP, Schmitz MD, Davydov VI. 2015. Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeogr Palaeoclim Palaeoecol 430: 118–131. https://doi.org/10.1016/j.palaeo.2015.03.020. [CrossRef] [Google Scholar]
- Michon L, Merle O. 2001. The evolution of the Massif Central Rift; spatio-temporal distribution of the volcanism. Bulletin de la Société géologique de France 172: 201–211. https://doi.org/10.2113/172.2.201. [CrossRef] [Google Scholar]
- Missenard Y, Cadoux A. 2012. Can Moroccan Atlas lithospheric thinning and volcanism be induced by Edge-Driven Convection? Terra Nova 24: 27–33. https://doi.org/10.1111/j.1365-3121.2011.01033.x. [CrossRef] [Google Scholar]
- Missenard Y, Zeyen H, Frizon de Lamotte D, Leturmy P, Petit C, Sébrier M, et al. 2006. Crustal versus asthenospheric origin of relief of the Atlas Mountains of Morocco. Journal of Geophysical Research 111: B03401. https://doi.org/10.1029/2005jb003708. [Google Scholar]
- Molina-Aguilera A, Mancilla F de L, Morales J, Stich D, Yuan X, Heit B. 2019. Connection between the Jurassic oceanic lithosphere of the Gulf of Cádiz and the Alboran slab imaged by Sp receiver functions. Geology 47: 227–230. https://doi.org/10.1130/g45654.1. [CrossRef] [Google Scholar]
- Molinari I, Morelli A. 2011. EPcrust: A reference crustal model for the European Plate. Geophysical Journal International 185: 352–364. https://doi.org/10.1111/j.1365-246x.2011.04940.x. [CrossRef] [Google Scholar]
- Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature 335: 131–137. https://doi.org/10.1038/335131a0. [CrossRef] [Google Scholar]
- Monié P, Chopin C. 1991. 40Ar/39Ar dating in coesite-bearing and associated units of the Dora Maira Massif, Western Alps. Eur. J. Miner. 3: 239–262. https://doi.org/10.1127/ejm/3/2/0239. [CrossRef] [Google Scholar]
- Mondy LS, Rey PF, Duclaux G, Moresi L. 2017 The role of asthenospheric flow during rift propagation and breakup. Geology 46: 103–106. https://doi.org/10.1130/g39674.1. [Google Scholar]
- Moore NB, Hassan R, Müller RD, Williams SE, Flament N. 2017. Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous. Tectonics 36: 929–944. https://doi.org/10.1002/2016tc004280. [CrossRef] [Google Scholar]
- Morgan WJ. 1968. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73: 1959–1982. https://doi.org/10.1029/jb073i006p01959. [CrossRef] [Google Scholar]
- Mosar J, Lewis G, Torsvik TH. 2002. North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian–Greenland Sea. J. Geol. Soc. Lond. 159: 503–515. https://doi.org/10.1144/0016-764901-135. [CrossRef] [Google Scholar]
- Moucha R, Forte AM. 2011. Changes in African topography driven by mantle convection. Nat. Geosci. 4: 707–712. https://doi.org/10.1038/ngeo1235. [CrossRef] [Google Scholar]
- Mouthereau F, Lacombe O, Vergés J. 2012. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532-535: 27–60. https://doi.org/10.1016/j.tecto.2012.01.022. [CrossRef] [Google Scholar]
- Mouthereau F, Watts AB, Burov E. 2013. Structure of orogenic belts controlled by lithosphere age. Nat. Geosci. 6: 785–789. https://doi.org/10.1038/ngeo1902. [CrossRef] [Google Scholar]
- Mouthereau F, Filleaudeau P-Y, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. https://doi.org/10.1002/2014tc003663. [CrossRef] [Google Scholar]
- Müller RD, Zahirovic S, Williams SE, Cannon J, Seton M, Bower DJ, et al. 2019. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38: 1884–1907. https://doi.org/10.1029/2018tc005462. [CrossRef] [Google Scholar]
- Müntener O, Piccardo GB. 2003. Melt migration in ophiolitic peridotites: the message from Alpine-Apennine peridotites and implications for embryonic ocean basins. Geological Society, London, Special Publications 218: 69–89. https://doi.org/10.1144/gsl.sp.2003.218.01.05. [CrossRef] [Google Scholar]
- Müntener O, Hermann J, Trommsdorff V. 2000. Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). Journal of Petrology 41: 175–200. [CrossRef] [Google Scholar]
- Murphy JB, Dostal J. 2007. Continental mafic magmatism of different ages in the same terrane: Constraints on the evolution of an enriched mantle source. Geology 35: 335–338. https://doi.org/10.1130/g23072a.1. [CrossRef] [Google Scholar]
- Murphy JB, Strachan RA, Nance RD, Parker KD, Fowler MB. 2000. Proto-Avalonia: A 1.2–1.0 Ga tectonothermal event and constraints for the evolution of Rodinia. Geology 28: 1071. https://doi.org/10.1130/0091-7613(2000)28<1071:pagtea>2.0.co;2. [CrossRef] [Google Scholar]
- Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suárez J, Keppie JD, Quesada C, et al. 2006. Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture? Geology 34: 325–328. https://doi.org/10.1130/g22068.1. [CrossRef] [Google Scholar]
- Murphy JB, Gutiérrez-Alonso G, Fernández-Suárez J, Braid JA. 2008. Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana. Tectonophysics 461: 166–180. https://doi.org/10.1016/j.tecto.2008.03.013. [CrossRef] [Google Scholar]
- Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, et al. 2009. Rheic Ocean mafic complexes: Overview and synthesis. Geol. Soc. Lond. Special Publ. 327: 343–369. https://doi.org/10.1144/sp327.15. [CrossRef] [Google Scholar]
- Najih A, Montero P, Verati C, Chabou MC, Fekkak A, Baidder L, et al. 2019. Initial Pangean rifting north of the West African Craton: Insights from Late Permian U-Pb and 40Ar/39Ar dating of alkaline magmatism from the Eastern Anti-Atlas (Morocco). J. Geodyn. 132: 101670. https://doi.org/10.1016/j.jog.2019.101670. [CrossRef] [Google Scholar]
- Nance RD, Murphy JB, Keppie JD. 2002. A Cordilleran model for the evolution of Avalonia. Tectonophysics 352: 11–31. https://doi.org/10.1016/s0040-1951(02)00187-7. [CrossRef] [Google Scholar]
- Neumann E-R, Dunworth EA, Sundvoll BA, Tollefsrud JI. 2002. B1 basaltic lavas in Vestfold-Jeløya area, central Oslo rift: Derivation from initial melts formed by progressive partial melting of an enriched mantle source. Lithos 61: 21–53. https://doi.org/10.1016/s0024-4937(02)00068-3. [CrossRef] [Google Scholar]
- Neumann E-R, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, et al. 2004. Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: A review. Geol. Soc. Lond. Special Publ. 223: 11–40. https://doi.org/10.1144/gsl.sp.2004.223.01.02. [CrossRef] [Google Scholar]
- Nocquet J-M. 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 579: 220–242. https://doi.org/10.1016/j.tecto.2012.03.037. [CrossRef] [Google Scholar]
- Olivetti V, Godard V, Bellier O, Team ASTER. 2016. Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles. Earth Planet. Sci. Lett. 444: 179–191. https://doi.org/10.1016/j.epsl.2016.03.049. [CrossRef] [Google Scholar]
- Olivetti V, Balestrieri ML, Godard V, Bellier O, Gautheron C, Valla PG, et al. 2020. Cretaceous and Late Cenozoic uplift of a Variscan Massif: The case of the French Massif Central studied through low-temperature thermochronometry. Lithosphere. https://doi.org/10.1130/l1142.1. [Google Scholar]
- Olyphant JR, Johnson RA, Hughes AN. 2017. Evolution of the Southern Guinea Plateau: Implications on Guinea-Demerara Plateau formation using insights from seismic, subsidence, and gravity data. Tectonophysics 717: 358–371. https://doi.org/10.1016/j.tecto.2017.08.036. [CrossRef] [Google Scholar]
- Oncken O, Winterfeld C. von, Dittmar U. 1999. Accretion of a rifted passive margin: The Late Paleozoic Rhenohercynian Fold and Thrust Belt (Middle European Variscides). Tectonics 18: 75–91. https://doi.org/10.1029/98tc02763. [CrossRef] [Google Scholar]
- Orejana D, Villaseca C, Billström K, Paterson BA. 2008. Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contrib. Miner. Petrol. 156: 477–500. https://doi.org/10.1007/s00410-008-0297-x. [CrossRef] [Google Scholar]
- Orejana D, Villaseca C, Pérez-Soba C, López-García JA, Billström K. 2009. The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the sub-continental lithospheric mantle? Lithos 110: 262–276. https://doi.org/10.1016/j.lithos.2009.01.003. [CrossRef] [Google Scholar]
- Orejana D, Villaseca C, Kristoffersen M. 2020. Geochemistry and geochronology of mafic rocks from the Spanish Central System: Constraints on the mantle evolution beneath Central Spain. Geosci. Front. 11: 1651–1667. https://doi.org/10.1016/j.gsf.2020.01.002. [CrossRef] [Google Scholar]
- Ouabid M, Garrido CJ, Ouali H, Harvey J, Hidas K, Marchesi C, et al. 2020. Late Cadomian rifting of the NW Gondwana margin and the reworking of Precambrian crust – Evidence from bimodal magmatism in the Early Paleozoic Moroccan Meseta. Int. Geol. Rev. 1–24. https://doi.org/10.1080/00206814.2020.1818301. [Google Scholar]
- Oukassou M, Saddiqi O, Barbarand J, Sebti S, Baidder L, Michard A. 2013. Post-Variscan exhumation of the Central Anti-Atlas (Morocco) constrained by zircon and apatite fission-track thermochronology. Terra Nova 25: 151–159. https://doi.org/10.1111/ter.12019. [CrossRef] [Google Scholar]
- Palano M, González PJ, Fernández J. 2015. The diffuse plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters 430: 439–447. https://doi.org/10.1016/j.epsl.2015.08.040. [CrossRef] [Google Scholar]
- Palomeras I, Villaseñor A, Thurner S, Levander A, Gallart J, Harnafi M. 2017. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise. Geochemistry, Geophysics, Geosystems 18: 1824–1840. https://doi.org/10.1002/2016gc006657. [CrossRef] [Google Scholar]
- Paquette J-L, Ménot R-P, Pin C, Orsini J-B. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chem. Geol. 198: 1–20. https://doi.org/10.1016/s0009-2541(02)00401-1. [CrossRef] [Google Scholar]
- Pasyanos ME, Masters TG, Laske G, Ma Z. 2014. LIT HO1. 0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth 119: 2153–2173. https://doi.org/10.1002/2013jb010626. [CrossRef] [Google Scholar]
- Peace AL, Phethean JJJ, Franke D, Foulger GR, Schiffer C, Welford JK, et al. 2019. A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism. Earth Science Reviews 102902. https://doi.org/10.1016/j.earscirev.2019.102902. [Google Scholar]
- Pearson DG, Nowell GM. 2004. Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Sources. J. Petrol. 45: 439–455. https://doi.org/10.1093/petrology/egg102. [CrossRef] [Google Scholar]
- Pedrera A, García-Senz J, Peropadre C, Robador A, López-Mir B, Díaz-Alvarado J, Rodríguez-Fernández LR. 2020a. The Getxo crustal-scale cross-section: Testing tectonic models in the Bay of Biscay-Pyrenean rift system. Earth-Sci. Rev. 212: 103429. https://doi.org/10.1016/j.earscirev.2020.103429. [Google Scholar]
- Pedrera A, Ruiz-Constán A, García-Senz J, Azor A, Marín-Lechado C, Ayala C, et al. 2020b. Evolution of the South-Iberian paleomargin: From hyperextension to continental subduction. J. Struct. Geol. 138: 104122. https://doi.org/10.1016/j.jsg.2020.104122. [CrossRef] [Google Scholar]
- Peltonen P, Brügmann G. 2006. Origin of layered continental mantle (Karelian craton, Finland): Geochemical and Re-Os isotope constraints. Lithos 89: 405–423. https://doi.org/10.1016/j.lithos.2005.12.013. [CrossRef] [Google Scholar]
- Pérez-Gussinyé M, Lowry AR, Watts AB, Velicogna I. 2004. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield. Journal of Geophysical Research 109: B10409. https://doi.org/10.1029/2003jb002788. [Google Scholar]
- Petit C, Le Pourhiet L, Scalabrino B, Corsini M, Bonnin M, Romagny A. 2015. Crustal structure and gravity anomalies beneath the Rif, northern Morocco: Implications for the current tectonics of the Alboran Region. Geophys. J. Int. 202: 640–652. https://doi.org/10.1093/gji/ggv169. [CrossRef] [Google Scholar]
- Petri B, Mohn G, Štípská P, Schulmann K, Manatschal G. 2016. The Sondalo gabbro contact aureole (Campo Unit, Eastern Alps): Implications for mid-crustal mafic magma emplacement. Contrib. Miner. Petrol. 171: 52. https://doi.org/10.1007/s00410-016-1263-7. [CrossRef] [Google Scholar]
- Peyaud J-B, Barbarand J, Carter A, Pagel M. 2005. Mid-Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction. Int. J. Earth Sci. 94: 462–474. https://doi.org/10.1007/s00531-005-0486-z. [CrossRef] [Google Scholar]
- Picazo S, Müntener O, Manatschal G, Bauville A, Karner G, Johnson C. 2016. Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos 266: 233–263. https://doi.org/10.1016/j.lithos.2016.08.029. [CrossRef] [Google Scholar]
- Piccardo GB, Müntener O, Zanetti A, Pettke T. 2004. Ophiolitic peridotites of the Alpine-Apennine System: Mantle processes and geodynamic relevance. Int. Geol. Rev. 46: 1119–1159. https://doi.org/10.2747/0020-6814.46.12.1119. [CrossRef] [Google Scholar]
- Piromallo C, Morelli A. 2003. P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res. Solid Earth 1978–2012 108: 2065. https://doi.org/10.1029/2002jb001757. [Google Scholar]
- Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L. 2003. Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology 31: 251–254. https://doi.org/10.1130/0091-7613(2003)031<0251:seeata>2.0.co;2. [CrossRef] [Google Scholar]
- Potrel A, Peucat JJ, Fanning CM. 1998. Archean crustal evolution of the West African Craton: Example of the Amsaga Area (Reguibat Rise). U–Pb and Sm–Nd evidence for crustal growth and recycling. Precambrian Res. 90: 107–117. https://doi.org/10.1016/s0301-9268(98)00044-8. [CrossRef] [Google Scholar]
- Poudjom Djomani YH, O’Reilly SY, Griffin WL, Morgan P. 2001. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184: 605–621. https://doi.org/10.1016/s0012-821x(00)00362-9. [CrossRef] [Google Scholar]
- Priestley K, McKenzie D. 2013. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 381: 78–91. https://10.1016/j.epsl.2013.08.022. [CrossRef] [Google Scholar]
- Precigout J, Gueydan F, Gapais D, Garrido CJ, Essaifi A. 2007. Strain localisation in the subcontinental mantle – A ductile alternative to the brittle mantle. Tectonophysics 445: 318–336. https://doi.org/10.1016/j.tecto.2007.09.002. [CrossRef] [Google Scholar]
- Raffone N, Chazot G, Pin C, Vannucci R, Zanetti A. 2009. Metasomatism in the Lithospheric Mantle beneath Middle Atlas (Morocco) and the Origin of Fe- and Mg-rich Wehrlites. J. Petrol. 50: 197–249. https://doi.org/10.1093/petrology/egn069. [CrossRef] [Google Scholar]
- Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L. 1995. Petrology, Mineral and Isotope Geochemistry of the External Liguride Peridotites (Northern Apennines, Italy). J. Petrol. 36: 81–105. https://doi.org/10.1093/petrology/36.1.81. [CrossRef] [Google Scholar]
- Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L. 1996. Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy). Contrib. Miner. Petrol. 123: 61–76. https://doi.org/10.1007/s004100050143. [CrossRef] [Google Scholar]
- Rampone E, Hofmann AW, Raczek I. 2009. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite. Earth Planet. Sci. Lett. 288: 601–610. https://doi.org/10.1016/j.epsl.2009.10.024. [CrossRef] [Google Scholar]
- Rat P. 1988. The Basque-Cantabrian Basin between the Iberian and European Plates some facts but still many problems. Revista de la Sociedad Geológica de España 1: 327–348. [Google Scholar]
- Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M, et al. 2019. Tectonothermal evolution of the Cameros Basin: Implications for tectonics of North Iberia. Tectonics 40: 327. https://doi.org/10.1029/2018tc005294. [Google Scholar]
- Raumer JF von, Finger F, Veselá P, Stampfli GM. 2013. Durbachites-Vaugnerites – A geodynamic marker in the central European Variscan orogen. Terra Nova 26: 85–95. https://doi.org/10.1111/ter.12071. [Google Scholar]
- Reilinger R, McClusky S. 2011. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International 186: 971–979. https://doi.org/10.1111/j.1365-246x.2011.05133.x. [CrossRef] [Google Scholar]
- Reisberg L, Lorand J-P. 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376: 159–162. https://doi.org/10.1038/376159a0. [CrossRef] [Google Scholar]
- Reisberg L, Zindler A, Jagoutz E. 1989. Further Sr and Nd isotopic results from peridotites of the Ronda Ultramafic Complex. Earth Planet. Sci. Lett. 96: 161–180. https://doi.org/10.1016/0012-821x(89)90130-1. [CrossRef] [Google Scholar]
- Río PD, Barbero L, Stuart FM. 2009. Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology. Geol. Soc. Lond. Special Publ. 324: 153–166. https://doi.org/10.1144/sp324.12. [CrossRef] [Google Scholar]
- Ritter JRR, Jordan M, Christensen UR, Achauer U. 2001. A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sc Lett 186: 7–14. https://doi.org/10.1016/s0012-821x(01)00226-6. [CrossRef] [Google Scholar]
- Roberts D. 2003. The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics 365: 283–299. https://doi.org/10.1016/s0040-1951(03)00026-x. [CrossRef] [Google Scholar]
- Roca E, Ferrer O, Rowan MG, Muñoz JA, Butillé M, Giles KA, et al. 2020. Salt tectonics and controls on halokinetic-sequence development of an exposed deepwater diapir: The Bakio Diapir, Basque-Cantabrian Basin, Pyrenees. Mar. Petrol. Geol. 123: 104770. https://doi.org/10.1016/j.marpetgeo.2020.104770. [Google Scholar]
- Rodriguez M, Arnould M, Coltice N, Soret M. 2021. Long-term evolution of a plume-induced subduction in the Neotethys realm. Earth Planet. Sci. Lett. 561. 116798. https://doi.org/10.1016/j.epsl.2021.116798. [CrossRef] [Google Scholar]
- Rodríguez-Méndez L, Cuevas J, Tubía JM. 2016. Post-Variscan Basin evolution in the Central Pyrenees: Insights from the Stephanian-Permian Anayet Basin. C. R. Geosci. 348: 333–341. https://doi.org/10.1016/j.crte.2015.11.006. [CrossRef] [Google Scholar]
- Romagny A, Münch P, Cornée JJ, Corsini M, Azdimousa A, Melinte-Dobrinescu MC, et al. 2014. Late Miocene to present-day exhumation and uplift of the Internal Zone of the Rif chain: Insights from low temperature thermochronometry and basin analysis. Journal of Geodynamics 77: 39–55. https://doi.org/10.1016/j.jog.2014.01.006. [CrossRef] [Google Scholar]
- Romagny A, Jolivet L, Menant A, Bessière E, Maillard A, Canva A, et al. 2020. Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms. BSGF – Earth Sci Bulletin 191: 37. https://doi.org/10.1051/bsgf/2020040. [CrossRef] [EDP Sciences] [Google Scholar]
- Romer RL, Förster H-J, Breitkreuz C. 2001. Intracontinental extensional magmatism with a subduction fingerprint: The Late Carboniferous Halle Volcanic Complex (Germany). Contrib. Miner. Petrol. 141: 201–221. https://doi.org/10.1007/s004100000231. [CrossRef] [Google Scholar]
- Roscher M, Schneider JW. 2006. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of Central Europe in a regional and global context. Geol. Soc. Lond. Special Publ. 265: 95–136. https://doi.org/10.1144/gsl.sp.2006.265.01.05. [CrossRef] [Google Scholar]
- Rossetti F, Lucci F, Theye T, Bouybaouenne M, Gerdes A, Opitz J, et al. 2020. Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean Region. Gondwana Res. 83: 157–182. https://doi.org/10.1016/j.gr.2020.01.020. [CrossRef] [Google Scholar]
- Roure F, Casero P, Addoum B. 2012. Alpine inversion of the North African margin and delamination of its continental lithosphere. Tectonics 31: n/a–n/a. https://doi.org/10.1029/2011tc002989. [CrossRef] [Google Scholar]
- Roux VL, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, et al. 2007. The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth and Planetary Science Letters 259: 599–612. https://doi.org/10.1016/j.epsl.2007.05.026. [CrossRef] [Google Scholar]
- Royden L, Faccenna C. 2018. Subduction Orogeny and the Late Cenozoic evolution of the Mediterranean Arcs. Annual Review of Earth and Planetary Sciences 46: 261–289. https://doi.org/10.1146/annurev-earth-060115-012419. [CrossRef] [Google Scholar]
- Ruiz GMH, Sebti S, Negro F, Saddiqi O, Frizon de Lamotte D, Stockli D, et al. 2011. From central Atlantic continental rift to Neogene uplift – Western Anti-Atlas (Morocco): From central Atlantic continental rift to Neogene uplift. Terra Nova 23: 35–41. https://doi.org/10.1111/j.1365-3121.2010.00980.x. [CrossRef] [Google Scholar]
- Rutanen H, Andersson UB, Väisänen M, Johansson Å, Fröjdö S, Lahaye Y, et al. 2011. 1.8 Ga magmatism in southern Finland: strongly enriched mantle and juvenile crustal sources in a post-collisional setting. Int. Geol. Rev. 53: 1622–1683. https://doi.org/10.1080/00206814.2010.496241. [CrossRef] [Google Scholar]
- Samson SD, D’Lemos RS. 1998. U-Pb geochronology and Sm-Nd isotopic composition of Proterozoic gneisses,Channel Islands, UK. J. Geol. Soc. Lond. 155: 609–618. https://doi.org/10.1144/gsjgs.155.4.0609. [CrossRef] [Google Scholar]
- Samson SD, Inglis JD, D’Lemos RS, Admou H, Blichert-Toft J, Hefferan K. 2004. Geochronological, geochemical, and Nd–Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Res. 135: 133–147. https://doi.org/10.1016/j.precamres.2004.08.003. [CrossRef] [Google Scholar]
- Sánchez-Rodrı́guez L, Gebauer D. 2000. Mesozoic formation of pyroxenites and gabbros in the Ronda area (Southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe dating of zircon. Tectonophysics 316: 19–44. https://doi.org/10.1016/s0040-1951(99)00256-5. [CrossRef] [Google Scholar]
- Schaeffer AJ, Lebedev S. 2013. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 194: ggt095-449. https://doi.org/10.1093/gji/ggt095. [Google Scholar]
- Schaltegger U, Brack P. 2007. Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. Int. J. Earth Sci. 96: 1131–1151. https://doi.org/10.1007/s00531-006-0165-8. [CrossRef] [Google Scholar]
- Schmincke H-U. 2007. Mantle plumes: A multidisciplinary approach, pp. 241–322. https://doi.org/10.1007/978-3-540-68046-8_8. [CrossRef] [Google Scholar]
- Schuster R, Stüwe K. 2008. Permian metamorphic event in the Alps. Geology 36: 603. https://doi.org/10.1130/g24703a.1. [CrossRef] [Google Scholar]
- Seber D, Barazangi M, Ibenbrahim A, Demnati A. 1996. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif–Betic mountains. Nature 379: 785–790. https://doi.org/10.1038/379785a0. [CrossRef] [Google Scholar]
- Seghedi A. 2012. Palaeozoic Formations from Dobrogea and Pre-Dobrogea – An overview. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-1101-20. [Google Scholar]
- Sehrt M, Glasmacher UA, Stockli DF, Jabour H, Kluth O. 2017. Meso-/Cenozoic long-term landscape evolution at the southern Moroccan passive continental margin, Tarfaya Basin, recorded by low-temperature thermochronology. Tectonophysics 717: 499–518. https://doi.org/10.1016/j.tecto.2017.08.028. [CrossRef] [Google Scholar]
- Sehrt M, Glasmacher UA, Stockli DF, Jabour H, Kluth O. 2018. The southern Moroccan passive continental margin: An example of differentiated long-term landscape evolution in Gondwana. Gondwana Res. 53: 129–144. https://doi.org/10.1016/j.gr.2017.03.013. [CrossRef] [Google Scholar]
- Serpelloni E, Faccenna C, Spada G, Dong D, Williams SDP. 2013. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J Geophys Res Solid Earth 118: 6003–6024. https://doi.org/10.1002/2013jb010102. [CrossRef] [Google Scholar]
- Séverine C, Martin B, Romain D, Urs H, Lionel K, Christian S. 2004. Fold interference patterns in the Late Palaeozoic Anti-Atlas Belt of Morocco. Terra Nova 16: 27–37. https://doi.org/10.1111/j.1365-3121.2003.00525.x. [CrossRef] [Google Scholar]
- Simancas JF, Carbonell R, González-Lodeiro F, Perez-Estaun A, Juhlin C, Ayarza P, et al. 2003. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22: n/a–n/a. https://doi.org/10.1029/2002tc001479. [CrossRef] [Google Scholar]
- Sobczyk A, Sobel ER, Georgieva V. 2020. Meso–Cenozoic cooling and exhumation history of the Orlica-Śnieżnik Dome (Sudetes, NE Bohemian Massif, Central Europe): Insights from apatite fission-track thermochronometry. Terra Nova 32: 122–133. https://doi.org/10.1111/ter.12449. [CrossRef] [Google Scholar]
- Soder CG, Romer RL. 2018. Post-collisional potassic-ultrapotassic magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction. J. Petrol. 59: 1007–1034. https://doi.org/10.1093/petrology/egy053. [CrossRef] [Google Scholar]
- Söderlund U, Möller C, Andersson J, Johansson L, Whitehouse M. 2002. Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precambrian Res. 113: 193–225. https://doi.org/10.1016/s0301-9268(01)00206-6. [CrossRef] [Google Scholar]
- Söderlund U, Isachsen CE, Bylund G, Heaman LM, Patchett PJ, Vervoort JD, et al. 2005. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib. Miner. Petrol. 150: 174. https://doi.org/10.1007/s00410-005-0011-1. [CrossRef] [Google Scholar]
- Soomro RA, Weidle C, Cristiano L, Lebedev S, Meier T, Group PW. 2015. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements. Geophys. J. Int. 204: 517–534. https://doi.org/10.1093/gji/ggv462. [Google Scholar]
- Spakman W. 1990. Tomographic images of the upper mantle below central Europe and the Mediterranean. Terra Nova 2: 542–553. https://doi.org/10.1111/j.1365-3121.1990.tb00119.x. [CrossRef] [Google Scholar]
- Spakman W, Wortel R. 2004. The TRANSMED Atlas. The Mediterranean Region from crust to mantle, pp. 31–52. https://doi.org/10.1007/978-3-642-18919-7_2. [CrossRef] [Google Scholar]
- Spakman W, Chertova MV, van den Berg A, van Hinsbergen DJJ. 2018. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nat. Geosci. 11. https://doi.org/10.1038/s41561-018-0066-z. [Google Scholar]
- Steinberger B, Becker TW. 2016. A comparison of lithospheric thickness models. Tectonophysics 746: 325–338. https://doi.org/10.1016/j.tecto.2016.08.001. [Google Scholar]
- Suc J-P, Fauquette S. 2012. The use of pollen floras as a tool to estimate palaeoaltitude of mountains: The eastern Pyrenees in the Late Neogene, a case study. Palaeogeogr. Palaeoclim. Palaeoecol. 321-322: 41–54. https://doi.org/10.1016/j.palaeo.2012.01.014. [CrossRef] [Google Scholar]
- Svenningsen OM. 2001. Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res. 110: 241–254. https://doi.org/10.1016/s0301-9268(01)00189-9. [CrossRef] [Google Scholar]
- Tavani S, Bertok C, Granado P, Piana F, Salas R, Vigna B, et al. 2018. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth Science Reviews 187: 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008. [CrossRef] [Google Scholar]
- Tegner C, Andersen TB, Kjøll HJ, Brown EL, Hagen-Peter G, Corfu F, et al. 2019a. A Mantle Plume Origin for the Scandinavian Dyke Complex: A “Piercing Point” for 615 Ma Plate Reconstruction of Baltica? Geochem. Geophys. Geosyst. 20: 1075–1094. https://doi.org/10.1029/2018gc007941. [CrossRef] [Google Scholar]
- Tegner C, Michelis SAT, McDonald I, Brown EL, Youbi N, Callegaro S, et al. 2019b. Mantle dynamics of the Central Atlantic Magmatic Province (CAMP): Constraints from Platinum Group, Gold and lithophile elements in flood basalts of Morocco. J. Petrol. 60: 1621–1652. https://doi.org/10.1093/petrology/egz041. [CrossRef] [Google Scholar]
- Teixell A, Arboleya M-L, Julivert M, Charroud M. 2003. Tectonic shortening and topography in the Central High Atlas (Morocco): Tectonic shortening in Morocco. Tectonics 22: n/a–n/a. https://doi.org/10.1029/2002tc001460. [Google Scholar]
- Ternois S, Mouthereau F, Jourdon A. 2021. Decoding low-temperature thermochronology signals in mountain belts: modelling the role of rift thermal imprint into continental collision. BSGF Earth Sci. Bull. 192: 38. https://doi.org/10.1051/bsgf/2021028. [CrossRef] [EDP Sciences] [Google Scholar]
- Thiry M, Quesnel F, Yans J, Wyns R, Vergari A, Theveniaut H, et al. 2006. Continental France and Belgium during the Early Cretaceous: Paleoweatherings and paleolandforms. Bulletin de la Société géologique de France 177: 155–175. https://doi.org/10.2113/gssgfbull.177.3.155. [CrossRef] [Google Scholar]
- Thomas RJ, Chevallier LP, Gresse PG, Harmer RE, Eglington BM, Armstrong RA, et al. 2002. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Res. 118: 1–57. https://doi.org/10.1016/s0301-9268(02)00075-x. [CrossRef] [Google Scholar]
- Thomas RJ, Fekkak A, Ennih N, Errami E, Loughlin SC, Gresse PG, et al. 2004. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci. 39: 217–226. https://doi.org/10.1016/j.jafrearsci.2004.07.046. [CrossRef] [Google Scholar]
- Thomson SN, Zeh A. 2000. Fission-track thermochronology of the Ruhla Crystalline Complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324: 17–35. https://doi.org/10.1016/s0040-1951(00)00113-x. [CrossRef] [Google Scholar]
- Thurner S, Palomeras I, Levander A, Carbonell R, Lee C-T. 2014. Ongoing lithospheric removal in the western Mediterranean: Evidence from Ps receiver functions and thermobarometry of Neogene basalts (PICASSO project). Geochemistry, Geophysics, Geosystems 15: 1113–1127. https://doi.org/10.1002/2013gc005124. [CrossRef] [Google Scholar]
- Tilhac R, Ceuleneer G, Griffin WL, O’Reilly SY, Pearson NJ, Benoit M, et al. 2016. Primitive arc magmatism and delamination: Petrology and geochemistry of pyroxenites from the Cabo Ortegal Complex, Spain. J. Petrol. 57: 1921–1954. https://doi.org/10.1093/petrology/egw064. [CrossRef] [Google Scholar]
- Tilhac R, Grégoire M, O’Reilly SY, Griffin WL, Henry H, Ceuleneer G. 2017. Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain. Earth Planet. Sci. Lett. 474: 490–502. https://doi.org/10.1016/j.epsl.2017.07.017. [CrossRef] [Google Scholar]
- Timar-Geng Z, Fügenschuh B, Wetzel A, Dresmann H. 2005. Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int. J. Earth Sci. 95: 685–702. https://doi.org/10.1007/s00531-005-0059-1. [Google Scholar]
- Timmerman MJ. 2004. Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. Geol. Soc. Lond. Special Publ. 223: 41–74. https://doi.org/10.1144/gsl.sp.2004.223.01.03. [CrossRef] [Google Scholar]
- Torsvik TH, Rehnström EF. 2003. The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics 362: 67–82. https://doi.org/10.1016/s0040-1951(02)00631-5. [CrossRef] [Google Scholar]
- Torsvik TH, Smethurst MA, Meert JG, Voo RV der, McKerrow WS, Brasier MD, et al. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic – A tale of Baltica and Laurentia. Earth Science Reviews 40: 229–258. https://doi.org/http://dx.doi.org/10.1016/0012-8252(96)00008-6. [CrossRef] [Google Scholar]
- Torsvik TH, Tucker RD, Ashwal LD, Carter LM, Jamtveit B, Vidyadharan KT, et al. 2000. Late Cretaceous India-Madagascar fit and timing of break-up related magmatism. Terra Nova 12: 220–224. https://doi.org/10.1046/j.1365-3121.2000.00300.x. [CrossRef] [Google Scholar]
- Torsvik TH, Smethurst MA, Burke K, Steinberger B. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167: 1447–1460. https://doi.org/10.1111/j.1365-246x.2006.03158.x. [CrossRef] [Google Scholar]
- Torsvik TH, Voo RV der, Doubrovine PV, Burke K, Steinberger B, Ashwal LD, et al. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences of the United States of America 111: 8735–8740. https://doi.org/10.1073/pnas.1318135111. [CrossRef] [Google Scholar]
- Triantafyllou A, Berger J, Baele J-M, Bruguier O, Diot H, Ennih N, et al. 2018. Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Res. 304: 39–63. https://doi.org/10.1016/j.precamres.2017.10.022. [CrossRef] [Google Scholar]
- Triantafyllou A, Berger J, Baele J-M, Mattielli N, Ducea MN, Sterckx S, et al. 2020. Episodic magmatism during the growth of a Neoproterozoic oceanic arc (Anti-Atlas, Morocco). Precambrian Res. 339: 105610. https://doi.org/10.1016/j.precamres.2020.105610. [CrossRef] [Google Scholar]
- Turland M, Marteau P, Jouval J, Monciardini C. 1994. Discovery of an Early Oligocene marine interval in the Palaeogene lacustrine to fluviatile series of the Le Puy-en-Velay Basin. Géologie de la France 4: 63–66. [Google Scholar]
- Ulrych J, Dostal J, Hegner E, Balogh K, Ackerman L. 2008. Late Cretaceous to Paleocene melilitic rocks of the Ohře/Eger Rift in northern Bohemia, Czech Republic: Insights into the initial stages of continental rifting. Lithos 101: 141–161. https://doi.org/10.1016/j.lithos.2007.07.012. [CrossRef] [Google Scholar]
- Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, et al. 2011. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123: 133–144. https://doi.org/10.1016/j.lithos.2010.12.008. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth Planet Sc Lett 408: 296–306. https://doi.org/10.1016/j.epsl.2014.10.014. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, et al. 2016. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees: cooling history of the northern Pyrenees. Tectonics 35: 907–933. https://doi.org/10.1002/2015tc004016. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Huyghe D, Paquette J-L, Christophoul F, et al. 2017. Rift-to-collision sediment routing in the Pyrenees: A synthesis from sedimentological, geochronological and kinematic constraints. Earth-sci Rev 172: 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004. [CrossRef] [Google Scholar]
- Vanderhaeghe O, Laurent O, Gardien V, Moyen JF, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. BSGF – Earth Sci Bulletin 191: 25. https://doi.org/10.1051/bsgf/2020013. [CrossRef] [EDP Sciences] [Google Scholar]
- van Hinsbergen DJJ, Steinberger B, Doubrovine PV, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res Solid Earth 1978–2012 116: B06101. https://doi.org/10.1029/2010jb008051. [Google Scholar]
- van Hinsbergen DJJ, Lippert PC, Li S, Huang W, Advokaat EL, Spakman W. 2019a. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760: 69–94. https://doi.org/10.1016/j.tecto.2018.04.006. [CrossRef] [Google Scholar]
- van Hinsbergen DJJ, Torsvik TH, Schmid SM, Maţenco LC, Maffione M, Vissers RLM, et al. 2019b. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res 81: 79–229. https://doi.org/10.1016/j.gr.2019.07.009. [Google Scholar]
- Varas-Reus MI, Garrido CJ, Marchesi C, Bodinier J-L, Frets E, Bosch D, et al. 2017. Refertilization Processes in the Subcontinental Lithospheric Mantle: the Record of the Beni Bousera Orogenic Peridotite (Rif Belt, Northern Morocco). J. Petrol. 57: 2251–2270. https://doi.org/10.1093/petrology/egx003. [Google Scholar]
- Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib. Miner. Petrol. 134: 380–404. https://doi.org/10.1007/s004100050492. [CrossRef] [Google Scholar]
- Vázquez M, Jabaloy A, Barbero L, Stuart FM. 2011. Deciphering tectonic- and erosion-driven exhumation of the Nevado-Filábride Complex (Betic Cordillera, Southern Spain) by low temperature thermochronology: Deciphering tectonic- and erosion-driven exhumation. Terra Nova 23: 257–263. https://doi.org/10.1111/j.1365-3121.2011.01007.x. [CrossRef] [Google Scholar]
- Ventura B, Lisker F, Kopp J. 2009. Thermal and denudation history of the Lusatian Block (NE Bohemian Massif, Germany) as indicated by apatite fission-track data. Geol. Soc. Lond. Special Publ. 324: 181–192. https://doi.org/10.1144/sp324.14. [CrossRef] [Google Scholar]
- Villaseca C, Belousova EA, Barfod DN, González-Jiménez JM. 2018. Dating metasomatic events in the lithospheric mantle beneath the Calatrava volcanic field (central Spain). Lithosphere US 11: 192–208. https://doi.org/10.1130/l1030.1. [Google Scholar]
- Villasenor A, Chevrot S, Harnafi M, Gallart J, Pazos A, Serrano I, et al. 2015. Subduction and volcanism in the Iberia–North Africa collision zone from tomographic images of the upper mantle. Tectonophysics. https://doi.org/10.1016/j.tecto.2015.08.042. [Google Scholar]
- Voigt T, Wiese F, Eynatten H von, Franzke H-J, Gaupp R. 2006. Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany)[Faziesentwicklung syntektonischer Sedimente der Oberkreide im Subherzynen Kreidebecken und benachbarten Gebieten]. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften 157: 203–243. https://doi.org/10.1127/1860-1804/2006/0157-0203. [CrossRef] [Google Scholar]
- Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I, et al. 1990. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347: 731–736. https://doi.org/10.1038/347731a0. [CrossRef] [Google Scholar]
- Wal DV der, Vissers RLM. 1993. Uplift and emplacement of upper mantle rocks in the western Mediterranean. Geology 21: 1119–1122. https://doi.org/10.1130/0091-7613(1993)021<1119:uaeoum>2.3.co;2. [Google Scholar]
- Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, et al. 2021. Central Pyrenees Mountain Building: Constraints from new LT thermochronological data from the Axial Zone. Tectonics 40. https://doi.org/10.1029/2020tc006614. [CrossRef] [Google Scholar]
- Wang X, Holt WE, Ghosh A. 2015. Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models. J Geophys Res Solid Earth 120: 8633–655. https://doi.org/10.1002/2015jb012188. [CrossRef] [Google Scholar]
- Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44: 475–478. https://doi.org/10.1130/g37812.1. [CrossRef] [Google Scholar]
- Wang X, Holt WE, Ghosh A. 2019. Joint modeling of lithosphere and mantle dynamics: Sensitivity to viscosities within the lithosphere, asthenosphere, transition zone, and D layers. Phys. Earth Planet. Int. 293: 106263. https://doi.org/10.1016/j.pepi.2019.05.006. [CrossRef] [Google Scholar]
- Weijermars R, Roep TB, Eeckhout B van den, Postma G, Kleverlaan K. 2007. Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almeria, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Netherlands Journal of Geosciences / Geologie en Mijnbouw. Igitur. [Google Scholar]
- Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA. 2011. Sediment routing system evolution within a diachronously uplifting orogen: insights from detrital zircon thermochronological analyses from the south-central pyrenees. American Journal of Science 311: 442–482. https://doi.org/10.2475/05.2011.03. [CrossRef] [Google Scholar]
- Wilson JT. 1966. Did Atlantic close and then re-open. Nature 211: 676. https://doi.org/10.1038/211676a0. [CrossRef] [Google Scholar]
- Wilson M. 1997. Thermal evolution of the Central Atlantic passive margins: Continental break-up above a Mesozoic super-plume. Journal of the Geological Society 154: 491–495. [CrossRef] [Google Scholar]
- Wilson M, Downes H. 1992. Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208: 173–182. https://doi.org/10.1016/0040-1951(92)90343-5. [CrossRef] [Google Scholar]
- Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT. 2004. Permo-Carboniferous magmatism and rifting in Europe: Introduction. Geol. Soc. Lond. Special Publ. 223: 1–10. https://doi.org/10.1144/gsl.sp.2004.223.01.01. [CrossRef] [Google Scholar]
- Wittig N, Baker JA, Downes H. 2006. Dating the mantle roots of young continental crust. Geology 34: 237–240. https://doi.org/10.1130/g22135.1. [CrossRef] [Google Scholar]
- Wittig N, Pearson DG, Baker JA, Duggen S, Hoernle K. 2010a. A major element, PGE and Re–Os isotope study of Middle Atlas (Morocco) peridotite xenoliths: Evidence for coupled introduction of metasomatic sulphides and clinopyroxene. Lithos 115: 15–26. https://doi.org/10.1016/j.lithos.2009.11.003. [CrossRef] [Google Scholar]
- Wittig N, Pearson DG, Duggen S, Baker JA, Hoernle K. 2010b. Tracing the metasomatic and magmatic evolution of continental mantle roots with Sr, Nd, Hf and and Pb isotopes: A case study of Middle Atlas (Morocco) peridotite xenoliths. Geochim. Cosmochim. Acta 74: 1417–1435. https://doi.org/10.1016/j.gca.2009.10.048. [CrossRef] [Google Scholar]
- Youbi N, Kouyaté D, Söderlund U, Ernst RE, Soulaimani A, Hafid A, et al. 2013. The 1750 Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambrian Res. 236: 106–123. https://doi.org/10.1016/j.precamres.2013.07.003. [CrossRef] [Google Scholar]
- Żelaźniewicz A, Oberc-Dziedzic T, Fanning CM, Protas A, Muszyński A. 2016. Late Carboniferous–Early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland. Tectonophysics 675: 227–243. https://doi.org/10.1016/j.tecto.2016.02.040. [CrossRef] [Google Scholar]
- Ziegler PA, Cloetingh S, Wees J-D van. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252: 7–59. https://doi.org/10.1016/0040-1951(95)00102-6. [CrossRef] [Google Scholar]
- Ziegler PA, Wees J-D van, Cloetingh S. 1998. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300: 103–129. https://doi.org/10.1016/s0040-1951(98)00236-4. [CrossRef] [Google Scholar]
- Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P. 2015. Closure of the Paleotethys in the External Hellenides: Constraints from U-Pb ages of magmatic and detrital zircons (Crete). Gondwana Research 28: 642–667. https://doi.org/10.1016/j.gr.2014.06.011. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.