Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 193, 2022
|
|
---|---|---|
Numéro d'article | 2 | |
Nombre de pages | 22 | |
DOI | https://doi.org/10.1051/bsgf/2022001 | |
Publié en ligne | 20 janvier 2022 |
- Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology 268: 211–225. [Google Scholar]
- Ando T, Sawada K, Okano K, Takashima R, Nishi H. 2017. Marine primary producer community during the mid-Cretaceous oceanic events (OAEs) 1a, 1b and 1d in the Vocontian Basin (SE France) evaluated from triaromatic steroids in sediments. Organic Geochemistry 106: 13–24. [CrossRef] [Google Scholar]
- Arnaud-Vanneau A, Arnaud H. 1991. Sédimentation et variations relatives du niveau de la mer sur les plates-formes carbonatées du Berriasien-Valanginien et du Barrémien dans les massifs subalpins septentrionaux et le Jura (SE de la France). Bull. Soc. géol. Fr. 162: 535–545. [CrossRef] [Google Scholar]
- Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO. 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Ginsburg RN, Beaudoin B, eds. Cretaceous Resources, Events and Rhythms: Background and Plans for Research. NATO ASI Series C 304: 75–119. [Google Scholar]
- Attewell PB, Farmer IW. 1976. Principles of Engineering Geology. London: Chapman and Hall. [CrossRef] [Google Scholar]
- Babos HB, Stuart S, Pluskowski A, Brown A, Rohrssen MK, Chappaz A. 2019. Evidence for the onset of mining activities during the 13th century in Poland using lead isotopes from lake sediment cores. Science of the Total Environment 683: 589–599. [CrossRef] [Google Scholar]
- Basilone L. 2020. Mesozoic tectono-sedimentary evolution of the Trapanese Southern Tethyan margin (NW Sicily) integrating facies and stratigraphic analysis with subsidence history. Italian Journal of Geosciences 139: 54–75. [CrossRef] [Google Scholar]
- Basilone L. 2021a. Synsedimentary tectonics vs. paleoclimatic changes across the Aptian-Albian boundary along the Southern Tethyan margin: The panormide carbonate platform case history (NW Sicily). Marine and Petroleum Geology 124: 104801. [CrossRef] [Google Scholar]
- Basilone L. 2021b. Valanginian cold/warm climatic oscillation and synsedimentary tectonic interaction for drowning the carbonate platform of Southern Tethys (Sicily). Sedimentary Geology 423: 105991. [CrossRef] [Google Scholar]
- Basilone L, Perri F, Sulli A, Critelli S. 2017. Paleoclimate and extensional tectonics of short-lived lacustrine environments. Lower Cretaceous of the Panormide Southern Tethyan carbonate platform (NW Sicily). Marine and Petroleum Geology 88: 428–439. [CrossRef] [Google Scholar]
- Baudin F, Fiet N, Coccioni R, Galeotti S. 1998. Organic matter characterisation of the Selli Level (Umbria-Marche Basin, Central Italy). Cretaceous Research 19: 701–714. [CrossRef] [Google Scholar]
- Beaudoin B, Friès G, Joseph P, Bouchet R, Cabrol C. 1986. Tectonique synsédimentaire crétacée à l’Ouest de la Durance (SE France). C. R. Acad. Sci. Paris 303: 713–718. [Google Scholar]
- Behar F, Beaumont V, De B, Penteado HL. 2001. Technologie Rock-Eval 6 : performances et développements. Oil Gas Sci. Technol. Rev. Inst. Fr. Pétrole 56: 111–134. [CrossRef] [Google Scholar]
- Benamara A, Charbonnier G, Adatte T, Spangenberg JE, Föllmia KB. 2020. Precession-driven monsoonal activity controlled the development of the early Albian Paquier oceanic anoxic event (OAE1b): Evidence from the Vocontian Basin, SE France. Palaeogeography, Palaeoclimatology, Palaeoecology 537: 109406. [CrossRef] [Google Scholar]
- Bodin S, Meissner P, Janssen NMM, Steuber T, Mutterlose J. 2015. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change 133: 238–253. [CrossRef] [Google Scholar]
- Bohacs KM, Grabowski GJ, Caroll AR, Mankiewicz PJ, Miskell-Gerhardt KJ, Schwalbach JR, et al. 2005. In: Harris NB, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. Special Publications of SEPM, pp. 31–101. [Google Scholar]
- Bottini C, Erba E. 2018. Mid-Cretaceous paleoenvironmental changes in the western Tethys. Climate of the Past Discussions 1–23. [Google Scholar]
- Bottini C, Erba E, Tiraboschi D, Jenkyns HC, Schouten S, Sinninghe Damsté JS. 2015. Climate variability and ocean fertility during the Aptian Stage. Climate of the Past 11(3): 383–402. [CrossRef] [Google Scholar]
- Bout-Roumazeilles V, Eisa C, Laurent L, Pierre D. 1999. Clay mineral evidence of nepheloid layer contributions to the heinrich layers in the Northwest Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 146(1-4): 211–28. [CrossRef] [Google Scholar]
- Bralower T, Thierstein H. 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology 12(10): 614–618. [CrossRef] [Google Scholar]
- Bralower TJ, Sliter WV, Arthur MA, Leckie RM, Allard DJ, Schlanger SO. 1993. Dysoxic/anoxic episodes in the Aptian‐Albian (Early Cretaceous). In: Pringle MS, Sager WW, Sliter WV, Stein S, eds. The Mesozoic Pacific: Geology, Tectonics and Volcanism. Geophysical Monograph Series 77. Washington, D.C.: AGU, pp. 5–37. [CrossRef] [Google Scholar]
- Bralower TJ, Cobabe E, Clement B, Sliter WV, Osburn CL, Longoria J. 1999. The record of global change in mid-Cretaceous (Barremian-Albian) sections from Sierra Madre, northeastern Mexico. Journal of Foraminiferal Research 29: 418–437 [Google Scholar]
- Bréhéret JG. 1994. The Mid-cretaceous organic-rich sediments from the Vocontian Zone of the French Southeast Basin. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France, Special Publication EAPG 4: 295–320. [Google Scholar]
- Bréhéret JG. 1997. L’Aptien et l’Albien de la fosse vocontienne (des bordures au basin). Évolution de la sédimentation et enseignements sur les évènements anoxiques. Ph.D. Thesis. University of Tours, France. Publication Société Géologique du Nord 25, 614 p. [Google Scholar]
- Burdige DJ. 2005. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19. [Google Scholar]
- Burdige DJ. 2006. Geochemistry of Marine Sediments. Princeton: Princeton University Press. [Google Scholar]
- Burdige DJ. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews 107(2): 467–485. [CrossRef] [Google Scholar]
- Caillaud A, Quijada M, Huet B, Reynaud J-Y, Riboulleau A, Bout-Roumazeilles V, et al. 2020. Turbidite-induced re-oxygenation episodes of the sediment-water interface in a diverticulum of the Tethys Ocean during the Oceanic Anoxic Event 1a: The French Vocontian Basin. The Depositional Record 6: 352–382. [CrossRef] [Google Scholar]
- Chamley H. 1989. Clay sedimentology. Berlin: Springer Verlag. [CrossRef] [Google Scholar]
- Coccioni R, Franchi R, Nesci O, Perilli N, Wezel FC, Battistini F. 1990. Stratigrafia, micropaleontologia e mineralogia delle Marne a Fucoidi delle sezioni di Poggio le Guaine e del Fiume Bosso (Appennino umbro-marchigiano). In: Atti 2° Convegno Internazionale “Fossili, Evoluzione, Ambiente”, Pergola, 25–30 ottobre 1987, Tecnostampa, pp. 163–201. [Google Scholar]
- Coccioni R, Luciani V, Marsili A. 2006. Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: Paleoecological and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 235: 66–92. [CrossRef] [Google Scholar]
- Corentin P, Deconinck J-F, Pellenard P, Amédro F, Bruneau L, Chenot E, et al. 2020. Environmental and climatic controls of the clay mineralogy of Albian deposits in the Paris and Vocontian basins (France). Cretaceous Research 108: 104342 [CrossRef] [Google Scholar]
- Cotillon P, Banvillet M, Gaillard C, Groshény D, Olivero D. 2000. Les surfaces à Rhizocorallium de l’Aptien inférieur sur la bordure méridionale du bassin vocontien (France Sud-Est), marqueurs de dynamiques locales ; leur relation avec un événement anoxique global. Bull. Soc. géol. Fr. 171: 229–238. [CrossRef] [Google Scholar]
- Dauphin L. 2002. Litho-, bio- et chronostratigraphie comparées dans le bassin vocontien, à l’Aptien. Ph.D. Thesis, University of Lille I, France, 516 p. [Google Scholar]
- Deconinck J-F. 1984. Sédimentation et diagénèse des minéraux argileux du Jurassique supérieur-Crétacé dans le Jura meridional et le domaine subalpine (France Sud-Est) ; comparaison avec le domaine Atlantique Nord. Ph.D. Thesis, University of Lille, 150 p. [Google Scholar]
- Deconinck J-F. 1987. Identification de l’origine détritique ou diagénétique des assemblages argileux : le cas des alternances marne-calcaire du Crétacé inférieur subalpin. Bull. Soc. géol. France III(1): 139–145. [CrossRef] [Google Scholar]
- Demaison G, Moore GT. 1980. Anoxic environment and oil source bed genesis. AAPG Bulletin 64: 1179–1209. [Google Scholar]
- Erba E. 1994. Nannofossils and superplumes: The early Aptian “nannoconid crisis”. Paleoceanography 9(3): 483–501. [CrossRef] [Google Scholar]
- Erba E, Coccioni R, Premoli Silva I. 1989. The “Scisti a Fucoidi” in the Umbria-Marche area: The Apecchiese road sections. Mem Descr Carta Geol Ital 39: 146–164. [Google Scholar]
- Erba E, Duncan RA, Bottini C, Tiraboschi D, Weissert H, Jenkyns HC, et al. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. Geological Society of America Special Papers. Geological Society of America, SPE511-15. [Google Scholar]
- Erbacher J, Thurow J, Littke R. 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea level changes in mid-Cretaceous pelagic environments. Geology 24: 499–502. [CrossRef] [Google Scholar]
- Erbacher J, Gerth W, Schmiedl G, Hemleben C. 1998. Benthic foraminiferal assemblages of late Aptian early Albian black shale intervals in the Vocontian Basin, SE France. Cretaceous Research 19: 805–826. [CrossRef] [Google Scholar]
- Erbacher J, Huber BT, Norris RD, Markey M. 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409: 325. [CrossRef] [Google Scholar]
- Espitalié J. 1993. Rock-Eval pyrolysis. In: Bordenave ML, ed. Applied Petroleum Geochemistry. Paris : Technip, pp. 237–261. [Google Scholar]
- Espitalié J, Deroo G, Marquis F. 1985. La pyrolyse Rock-Eval et ses applications. Rev. l’Inst. Fr. Pétrol. 40: 563–579. [Google Scholar]
- Ferry S. 1999. Apports des forages ANDRA de Marcoule à la connaissance de la marge crétacée rhodanienne. In: Actes des Journées scientifiques CNRS-ANDRA, Bagnols-sur-Cèze, 20–21 octobre 1997. Paris: EDP Sciences, pp. 63–91. [Google Scholar]
- Ferry S. 2017. Summary on Mesozoic carbonate deposits of the Vocontian Trough (Sub-alpine Chains, SE France). In: Granier B, ed. Some Key Lower Cretaceous Sites in Drôme (SE France). Carnets de Géologie. Madrid, CG2017_B01, pp. 9–42. [Google Scholar]
- Föllmi KB. 1995. 160 m.y. record of marine sedimentary phosphorous burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology 23: 859–862. [CrossRef] [Google Scholar]
- Föllmi KB. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35: 230–257 [CrossRef] [Google Scholar]
- Föllmi KB, Bôle M, Jammet N, Froidevaux P, Godet A., Bodin S, et al. 2012. Bridging the Faraoni and Selli oceanic anoxic events: Late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys. Climate of the Past 8: 171–189. [CrossRef] [Google Scholar]
- Friedrich O, Reichelt K, Herrle JO, Lehmann J, Pross J, Hemleben C. 2003. Formation of the Late Aptian Niveau Fallot black shales in the Vocontian Basin (SE France): Evidence from foraminifera, palynomorphs, and stable isotopes. Marine Micropaleontology 49: 65–85. [CrossRef] [Google Scholar]
- Friès G. 1987. Dynamique du basin subalpin méridional de l’Aptien au Cénomanien. Ph.D. Thesis, University of Paris 6, France. Mémoire des Sciences de la Terre ENS Mines Paris 4, 370 p. [Google Scholar]
- Friès G., Parize O. 2003. Anatomy of ancient passive margin slope systems: Aptian gravity-driven deposition on the Vocontian palaomargin, western Alps, south-east France. Sedimentology 50(6): 1231–1270. [CrossRef] [Google Scholar]
- Gambacorta G, Bottini C, Brumsack H-J, Schnetger B, Erba E. 2020. Major and trace element characterization of Oceanic Anoxic Event 1d (OAE1d): Insight from the Umbria-Marche Basin, central Italy. Chemical Geology, 119834. [CrossRef] [Google Scholar]
- Ghirardi J, Deconinck J-F, Pellenard P, Martinez M, Bruneau L, Amiotte-Suchet P, et al. 2014. Multi-proxy orbital chronology in the aftermath of the Aptian Oceanic Anoxic Event 1a: Palaeoceanographic implications (Serre Chaitieu section, Vocontian Basin, SE France). Newsletters on Stratigraphy 47(3): 247–262. [CrossRef] [Google Scholar]
- Goldberg K, Humayun M. 2010. The applicability of the chemical index of alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 293: 175–183. [CrossRef] [Google Scholar]
- Godet A, Bodin S, Adatte T, Föllmi KB. 2008. Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian). Cretaceous Research 29: 830–847. [CrossRef] [Google Scholar]
- Graciansky PC de, Lemoine M. 1988. Early Cretaceous extensional tectonics in the southwestern French Alps: A consequence of North-Atlantic rifting during Tethyan spreading. Bull. Soc. géol. Fr. 4(5): 733–737. [CrossRef] [Google Scholar]
- Guérin S. 1981. Utilisation des foraminifères planctoniques et benthiques dans l’étude des paléo-environnements océaniques au Crétacé moyen : application au matériel des forages DSDP de l’Atlantique Nord et Sud. Comparaison avec la Téthys. Unpublished report, University of Nice, 198 p. [Google Scholar]
- Haq BU. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113: 44–58. [Google Scholar]
- Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167. [Google Scholar]
- Hardenbol J, Thierry J, Farley MB, Jacquin T, Graciansky P-CD, Vail PR. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky P-CD, Hardenbol J, Jacquin T, Vail PR, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60, Charts, pp. 1–8. [Google Scholar]
- Harris N. 2005. In: Harris NB, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. Special Publications of SEPM, pp. 1–5. [Google Scholar]
- Heimhofer U, Hochuli PA, Herrle JO, Andersen N, Weissert H. 2004. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth Planetary Science Letters 223: 303–318. [CrossRef] [Google Scholar]
- Heimhofer U, Hochuli PA, Herrle JO, Weissert H. 2006. Contrasting origins of Early Cretaceous black shales in the Vocontian basin: Evidence from palynological and calcareous nannofossil records. Palaeogeography, Palaeoclimatology, Palaeoecology 235: 93–109. [CrossRef] [Google Scholar]
- Herrle JO, Pross J, Friedrich O, Kößler P, Hemleben C. 2003. Forcing mechanisms for mid-Cretaceous black shale formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology 190: 399–426. [CrossRef] [Google Scholar]
- Herrle JO, Kößler P, Friedrich O, Erlenkeuser H, Hemleben C. 2004. High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): A stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth and Planetary Science Letters 218: 149–161. [CrossRef] [Google Scholar]
- Herrle JO, Kössler P, Bollmann J. 2010. Palaeoceanographic differences of early Late Aptian black shale events in the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology 297: 367–376. [CrossRef] [Google Scholar]
- Hu G, Hu W, Cao J, Yao S, Liu W, Zhou Z. 2014. Fluctuation of organic carbon isotopes of the Lower Cretaceous in coastal southeastern China: Terrestrial response to the Oceanic Anoxic Events (OAE1b). Palaeogeography, Palaeoclimatology, Palaeoecology 399: 352–362. [CrossRef] [Google Scholar]
- Huang C, Hinnov L, Fischer AG, Grippo A, Herbert T. 2010. Astronomical tuning of the Aptian Stage from Italian reference sections. Geology 38(10): 899–902. [CrossRef] [Google Scholar]
- Jenkyns HC. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11(3): 1–30. [Google Scholar]
- Joseph P, Beaudoin B, Friès G, Parize O. 1989. Les vallées sous-marines enregistrent au Crétacé inférieur le fonctionnement en blocs basculés du domaine vocontien. C R Acad Sci Paris 309: 1031–1038. [Google Scholar]
- Kößler P, Herrle JO, Appel E, Erbacher J, Hemleben C. 2001. Magnetic records of climatic cycles from mid-cretaceous hemipelagic sediments of the Vocontian Basin, SE France. Cretaceous Research 22: 321–331. [CrossRef] [Google Scholar]
- Larson RL, Erba E. 1999. Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary and geochemical responses. Paleoceanography 14: 663–678. [CrossRef] [Google Scholar]
- Leckie RM, Bralower TJ, Cashman R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17. [Google Scholar]
- Levert F, Ferry S. 1987. L’apport argileux dans le bassin mésozoïque subalpin. Quantification et problème d’altération de l’héritage. Géol. Alp, Mém. h.s. 13: 209–2013. [Google Scholar]
- Levert J, Ferry S. 1988. Diagenèse argileuse complexe dans le Mésozoïque subalpin révélée par cartographie des proportions relatives d’argiles selon des niveaux isochrones. Bull. Soc. géol. Fr. 4: 1029–1038. [CrossRef] [Google Scholar]
- Malinverno A, Erba E, Herbert TD. 2010. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli level) in the Cismon APTICORE. Paleoceanography 25: PA2203. [CrossRef] [Google Scholar]
- Masse J-P, Bouaziz S, Amon EO, Baraboshin E, Tarkowski RA, Bergerat F, et al. 2000. Early Aptian (112–114 Ma), map 13. In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M, eds. Atlas Peri-Tethys: palaeoenvironmental maps, Explanatory notes. Paris, 268 p. [Google Scholar]
- McCave IN, Manighetti B, Robinson SG. 1995. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10(3): 593–610. [CrossRef] [Google Scholar]
- McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2: 1021. [Google Scholar]
- Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, et al. 1998. High-resolution δ13C stratigraphy through the early Aptian ‘Livello Selli’ of the Alpine Tethys. Paleoceanography 13(5): 530–545. [CrossRef] [Google Scholar]
- Montero-Serrano JC, Föllmi KB, Adatte T, Spangenberg JE, Tribovillard N, Fantasia A, et al. 2015. Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology 429: 83–99. [CrossRef] [Google Scholar]
- Nesbitt HW, Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. [CrossRef] [Google Scholar]
- O’Brien CL, Robinson SA, Pancost RD, Sinninghe Damsté JS, Schouten S, Lunt DJ, et al. 2017. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews 172: 224–247. [CrossRef] [Google Scholar]
- Okano K, Sawada K, Takashima R, Nishi H, Okada H. 2008. Further examples of archaeal-derived hydrocarbons in mid-Cretaceous oceanic anoxic event (OAE) 1b sediments. Organic Geochemistry 39: 1088–1091. [CrossRef] [Google Scholar]
- Pedersen TF, Calvert SE. 1990. Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedi-mentary rocks? AAPG Bulletin 74: 454–466. [Google Scholar]
- Premoli Silva I, Erba E, Salvini G, Locatelli C, Verga D. 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research 29: 352–370. [Google Scholar]
- Riboulleau A, Bout-Roumazeilles V, Tribovillard N. 2014. Controls on detrital sedimentation in the Cariaco Basin during the last climatic cycle: Insight from clay minerals. Quaternary Science Reviews 94: 62–73. [Google Scholar]
- Rubino J-L. 1989. Introductory remarks on Upper Aptian to Albian siliciclastic/carbonate depositional sequences. In: Ferry S., Rubino J-L, eds. Mesozoic Eustacy on Western Tethyan Margins. Post-Meeting Field Trip in the “Vocontian Trough”. ASF, Publ. Spéc. 12: 28–45. [Google Scholar]
- Sabatino N, Coccioni R, Salvagio Manta D, Baudin F, Vallefuoco M, Traina A, et al. 2015. High-resolution chemostratigraphy of the late Aptian-early Albian oceanic anoxic event (OAE1b) from the Poggio le Guaine section (Umbria-Marche Basin, central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 426: 319–333. [CrossRef] [Google Scholar]
- Sabatino N, Ferraro S, Coccioni R, Bonsignore M, Del M, Tancredi V, et al. 2018. Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm. Palaeogeography, Palaeoclimatology, Palaeoecology 495: 163–170. [CrossRef] [Google Scholar]
- Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW. 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology 195: 229–273. [CrossRef] [Google Scholar]
- Sanfourche J, Baudin F. 2001. La genèse des évènements anoxiques de la période moyenne du Crétacé. Examen de l’hypothèse du mécromictisme océanique. Ann. Soc Geol. du Nord 8(2e série): 107–119. [Google Scholar]
- Schlanger SO, Jenkyns HC. 1976. Cretaceous oceanic anoxic event: causes and consequences. Geol. Mijnbouw 55: 179–188. [Google Scholar]
- Sperazza M, Moore JN, Hendrix MS. 2004. High-resolution particle size analysis of naturally occurring very Fine-Grained sediment through laser diffractometry. Journal of Sedimentary Research 74(5): 736–743. [CrossRef] [Google Scholar]
- Stein M, Föllmi KB, Westermann S, Godet A, Adatte T, Matera V, et al. 2011. Progressive palaeoenvironmental change during the Late Barremian-Early Aptian as prelude to Oceanic Anoxic Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 302: 396–406. [CrossRef] [Google Scholar]
- Trabucho Alexandre J, Tuenter E, Henstra GA, van der Zwan KJ, van de Wal RSW, Dijkstra HA, et al. 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography 25: PA4201. [Google Scholar]
- Trabucho Alexandre JT, Van Gilst RI, Rodríguez-López JP, De Boer PL. 2011. The sedimentary expression of oceanic anoxic event 1b in the North Atlantic. Sedimentology 58: 1217–1246. [CrossRef] [Google Scholar]
- Trentesaux A, Recourt P, Bout-Roumazeilles V, Tribovillard N. 2001. Carbonate grain- size distribution in hemipelagic sediments from a laser particle sizer. Journal of Sedimentary Research 71: 858–862. [CrossRef] [Google Scholar]
- Tribovillard NP. 1989. Sédimentation rythmique dans les Marnes Bleues de l’Aptien-Albien du bassin vocontien (France Sud-Est). In: Cotillon P, ed. Les événements de la partie moyenne du Crétacé, Géobios Spec. Publ. 11: 213–224. [Google Scholar]
- Tribovillard NP, Gorin GE. 1991. Organic facies of the early Albian Niveau Paquier, a key black shales horizon of the Marnes Bleues formation in the Vocontian Trough (Subalpine Ranges, SE France). Palaeogeography, Palaeoclimatology, Palaeoecology 85: 227–237. [CrossRef] [Google Scholar]
- Tribovillard N, Algeo T, Lyons TW, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232: 12–32. [CrossRef] [Google Scholar]
- Tyson RV. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32: 333–339. [CrossRef] [Google Scholar]
- Tyson RV. 2005. The ‘productivity versus preservation’ controversy: cause, flaws and resolution. In: Harris NB, ed. The Deposition of Organic-carbon-rich Sediments: Models, Mechanisms and Consequences. SEPM Spec Publ 82: 17–33. [Google Scholar]
- Vickers ML, Price GD, Jerrett RM, Watkinson M. 2016. Stratigraphic and geochemical expression of Barremian-Aptian global climate change in Arctic Svalbard. Geosphere 12: 1594–1605. [CrossRef] [Google Scholar]
- Von Eynatten H, Barcelo-Vidal C, Pawlowsky-Glahn V. 2003. Modelling compositional change: the example of chemical weathering of granitoid rocks. Mathematical Geology 35: 231–251. [CrossRef] [Google Scholar]
- Weissert H. 1990. Siliciclastics in the Early Cretaceous Tethys and North Atlantic oceans: Documents of periodic greenhouse climate conditions. Memorie – Società Geologica Italiana 44: 59–69. [Google Scholar]
- Westermann S, Stein M, Matera V, Fiet N, Fleitmann D, Adatte T, et al. 2013. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event. Geochimica et Cosmochimica Acta 121: 467–486. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.