Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 193, 2022
|
|
---|---|---|
Numéro d'article | 6 | |
Nombre de pages | 27 | |
DOI | https://doi.org/10.1051/bsgf/2022006 | |
Publié en ligne | 18 juillet 2022 |
- Abd Elmola A, Buatier M, Monié P, Labaume P, Trap P, Charpentier D. 2018. 40Ar/39Ar muscovite dating of thrust activity: a case study from the Axial Zone of the Pyrenees. Tectonophysics 745: 412–429. https://doi.org/10.1016/j.tecto.2018.09.004. [CrossRef] [Google Scholar]
- Albarède F, Michard-Vitrac A. 1978. Datation du métamorphisme des terrains secondaires des Pyrénées par les méthodes 39Ar-40Ar et 87Rb-87Sr ; ses relations avec les péridotites associées. Bull. Soc. geol. Fr. 7: 681–687. [CrossRef] [Google Scholar]
- Allen PA, Allen JR. 2013. Basin analysis: Principles and applications to petroleum play assessment, 3rd ed. West Sussex, UK: John Wiley & sons. [Google Scholar]
- Althoff F, Barbey P, Pons J. 1994. La charnockite d’Ansignan et le granite de Saint-Arnac, témoins d’une extension crustale d’âge hercynien dans le massif de l’Agly (Pyrénées-Orientales, France). C. R. Acad. Sci. 319: 239–246. [Google Scholar]
- Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the Northern Iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics 38: 1666–1693. https://doi.org/10.1029/2018TC005428. [CrossRef] [Google Scholar]
- Autran A, Fonteilles M, Guitard G. 1970. Relations entre les intrusions de granitoïdes, l’anatexie et le métamorphisme régional considérées principalement du point de vue du rôle de l’eau ; cas de la chaîne hercynienne des Pyrénées-Orientales. Bull. Soc. geol. Fr. S7-XII: 673–731. https://doi.org/10.2113/gssgfbull.S7-XII.4.673. [CrossRef] [Google Scholar]
- Berger GM, Fonteilles M, Leblanc D, Clauzon G, Marchal JP, Vautrelle C. 1993. Notice explicative de la feuille Rivesaltes à 1/50 000. [Google Scholar]
- Bosse V, Villa IM. 2019. Petrochronology and hygrochronology of tectono-metamorphic events. Gondwana Research 71: 76–90. https://doi.org/10.1016/j.gr.2018.12.014. [CrossRef] [Google Scholar]
- Bouhallier H, Choukroune P, Ballèvre M. 1991. Évolution structurale de la croûte profonde Hercynienne : exemple du massif de l’Agly (Pyrénées-Orientales, France). C. R. Acad. Sci. 312: 647–654. [Google Scholar]
- Boulvais P, de Parseval P, D’Hulst A, Paris P. 2006. Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the Saint Barthélemy Massif. Mineralogy and Petrology 88: 499–526. https://doi.org/10.1007/s00710-006-0124-x. [CrossRef] [Google Scholar]
- Boulvais P, Ruffet G, Cornichet J, Mermet M. 2007. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrenees). Lithos 93: 89–106. https://doi.org/10.1016/j.lithos.2006.05.001. [CrossRef] [Google Scholar]
- Boutin A, de Saint Blanquat M, Poujol M, Boulvais P, De Parseval P, Rouleau C, et al. 2016. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit. Int. J. Earth Sci. 105: 747–770. https://doi.org/10.1007/s00531-015-1223-x. [CrossRef] [Google Scholar]
- Bronner A, Sauter D, Manatschal G, Peron-Pinvidic G, Munschy M. 2011. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience 4: 549–553. https://doi.org/10.1038/ngeo1201. [CrossRef] [Google Scholar]
- Canérot J. 1991. Comparative study of the Eastern Iberides (Spain) and the Western Pyrenees (France) Mesozoic basins. Paleogeography, Paleoclimatology, Paleoecology 87: 1–28. [CrossRef] [Google Scholar]
- Casteras M. 1933. Recherches sur la structure du versant Nord des Pyrénées centrales et orientales. Libraire Polytechnique, C. Béranger. [Google Scholar]
- Chelalou R, Nalpas T, Bousquet R, Prevost M, Lahfid A, Poujol M, et al. 2016. New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France). C. R. Geosci. 348: 312–321. https://doi.org/10.1016/j.crte.2015.11.008. [CrossRef] [Google Scholar]
- Cherniak DJ, Watson EB, Grove M, Harrison TM. 2004. Pb diffusion in monazite: a combined RBS/SIMS study1. Geochimica et Cosmochimica Acta 68: 829–840. https://doi.org/10.1016/j.gca.2003.07.012. [CrossRef] [Google Scholar]
- Choukroune P, Séguret M, Galdeano A. 1973. Caractéristiques et évolution structurale des Pyrénées ; un modèle de relations entre zone orogénique et mouvement des plaques. Bull. Soc. geol. Fr. S7-XV: 600–611. https://doi.org/10.2113/gssgfbull.S7-XV.5-6.600. [CrossRef] [Google Scholar]
- Choukroune P. 1974. Structure et évolution tectonique de la zone nord-pyrénéenne : analyse de la déformation dans une portion de chaîne à schistosité sub-verticale. PhD Thesis, Université des Sciences et Techniques du Languedoc. [Google Scholar]
- Choukroune P, Mattauer M. 1978. Tectonique des plaques et Pyrénées ; sur le fonctionnement de la faille transformante nord-pyrénéenne ; comparaisons avec des modèles actuels. Bull. Soc. geol. Fr. 7: 689–700. https://doi.org/10.2113/gssgfbull.S7-XX.5.689. [CrossRef] [Google Scholar]
- Choukroune P, Gapais D. 1983. Strain pattern in the Aar Granite (Central Alps): orthogneiss developed by bulk inhomogeneous flattening. In: Strain patterns in rocks, Elsevier, pp. 411–418. [CrossRef] [Google Scholar]
- Choukroune P, Gapais D, Merle O. 1987. Shear criteria and structural symmetry. J. Struct. Geol. 9: 525–530. [CrossRef] [Google Scholar]
- Choukroune P, Pinet B, Roure F, Cazes M. 1990. Major Hercynian thrusts along the ECORS Pyrenees and Biscay lines. Bull. Soc. geol. Fr. 6: 313–320. https://doi.org/10.2113/gssgfbull.VI.2.313. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y, Neumaier M, Reynaud J, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: Evidence from ultramafic-bearing clastic deposits nearby the Lherz Peridotite Body, French Pyrenees. Bull. Soc. geol. Fr. 183: 443–459. https://doi.org/10.2113/gssgfbull.183.5.443. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. https://doi.org/10.1002/2013TC003471. [CrossRef] [Google Scholar]
- Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. https://doi.org/10.5194/se-6-643-2015. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y, Labaume P, Ringenbach JC, Vauchez A, Nalpas T, et al. 2016. Basement–Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics 686: 82–97. https://doi.org/10.1016/j.tecto.2016.07.022. [CrossRef] [Google Scholar]
- Clerc C, Ringenbach JC, Jolivet L, Ballard J.-F. 2018. Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Research 53: 20–40. https://doi.org/10.1016/j.gr.2017.04.030. [CrossRef] [Google Scholar]
- Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bull. Soc. geol. Fr. 188: 39. https://doi.org/10.1051/bsgf/2017206. [CrossRef] [EDP Sciences] [Google Scholar]
- Corre B, Lagabrielle Y, Labaume P, Fourcade S, Clerc C, Ballèvre M. 2016. Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North Pyrenean Zone). From rifting to mountain building: the Pyrenean Belt. C. R. Geosci. 348: 279–289. https://doi.org/10.1016/j.crte.2015.11.007. [CrossRef] [Google Scholar]
- Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the North Pyrenean Zone, France. Mineralogy and Petrology 112: 647–670. https://doi.org/10.1007/s00710-018-0559-x. [CrossRef] [Google Scholar]
- Costa S, Maluski H. 1988. Use of the 40Ar-39Ar stepwise heating method for dating mylonite zones: An example from the Saint Barthélemy Massif (Northern Pyrenees, France). Chemical Geology, Isotope Geoscience section 72: 127–144. https://doi.org/10.1016/0168-9622(88)90061-9. [Google Scholar]
- de Jong K, Féraud G, Ruffet G, Amouric M, Wijbrans JR. 2001. Excess argon incorporation in phengite of the Mulhacén Complex: Submicroscopic illitezation and fluid ingress during late miocene extention in the Betic Zone, South-Eastern Spain. Chemical Geology, Isotope Geoscience Section 178: 159–195. https://doi.org/10.1016/S0009-2541(00)00411-3. [Google Scholar]
- de Saint Blanquat M, Brunel M, Mattauer M. 1986. Les zones de cisaillement du massif Nord-pyrénéen du Saint-Barthélemy témoins probables de l’extension crustale d'âge crétacé. C. R. Acad. Sci. 303: 1339–1344. [Google Scholar]
- de Saint Blanquat M, Lardeaux JM, Brunel M. 1990. Petrological arguments for high-temperature extensional deformation in the Pyrenean Variscan crust (Saint Barthélemy Massif, Ariège, France). Tectonophysics 177: 245–262. https://doi.org/10.1016/0040-1951(90)90284-F. [CrossRef] [Google Scholar]
- de Saint Blanquat M. 1993. La faille normale ductile du massif du Saint-Barthélemy. Evolution hercynienne des massifs nord-pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodinamica Acta 6: 59–77. [CrossRef] [Google Scholar]
- de Saint Blanquat M, Bajolet F, Grand’Homme A, Proietti A, Zanti M, Boutin A, et al. 2016. Cretaceous mantle exhumation in the central Pyrenees: new constraints from the peridotites in eastern Ariège (North Pyrenean Zone, France). C. R. Géosci. 348: 268–278. https://doi.org/10.1016/crte.2015.12.003. [CrossRef] [Google Scholar]
- Delaperriere E, Brunel M, Lancelot J, de Saint Blanquat M. 1994. U-Pb geochronology in the Saint Barthélemy Massif (Pyrenees, France): discussion about the age of Variscan and pre-Variscan events. Bull. Soc. geol. Fr. 165: 101–112. [Google Scholar]
- Delay F. 1989. Le massif nord-pyrénéen de l’Agly (Pyrénées-Orientales) : évolution tectono-métamorphique et exemple d’un amincissement crustal polyphasé. PhD Thesis, Lille 1. [Google Scholar]
- Delay F, Paquet J. 1989. Tectonique ductile en extension dans le massif hercynien de l’Agly (zone nord-pyrénéenne). C. R. Acad. Sci. 308: 1637–1643. [Google Scholar]
- Di Vincenzo G, Tonarini S, Lombardo B, Castelli D, Ottolini L. 2006. Comparison of 40Ar-39Ar and Rb-Sr Data on Phengites from the UHP Brossasco–Isasca Unit (Dora Maira Massif, Italy): Implications for dating white mica. J. Petrol. 47: 1439–1465. https://doi.org/10.1016/j.lithos.2016.07.022. [CrossRef] [Google Scholar]
- Di Vincenzo G, Grande A, Prosser G, Cavazza W, DeCelles PG. 2016. 40Ar-39Ar laser dating of ductile shear zones from central Corsica (France): Evidence of Alpine (middle to late Eocene) syn-burial shearing in Variscan granitoids. Lithos 262: 369–383. https://doi.org/10.1016/j.lithos.2016.07.022. [CrossRef] [Google Scholar]
- Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, et al. 2013. Disturbance versus preservation of U-Th-Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib. Miner. Pet. 16: 1051–1072. https://doi.org/10.1007/s00410-012-0847-0. [CrossRef] [Google Scholar]
- Didier A, Bosse V, Cherneva Z, Gautier P, Georgieva M, Paquette JL, et al. 2014. Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chemical Geology 381: 206–222. https://doi.org/10.1016/j.chemgeo.2014.05.020. [CrossRef] [Google Scholar]
- Dunlap WJ, Teyssier C, Mcdougall, I, Baldwin, S. 1991. Ages of deformation from K/Ar and 40Ar/39Ar dating of white micas. Geology 19: 1213–1216. https://doi.org/10.1130/0091-7613(1991)019%3C1213:AODFKA%3E2.3.CO;2. [CrossRef] [Google Scholar]
- Duretz T, Asti R, Lagabrielle Y, Brun JP, Jourdon A, Clerc C, et al. 2019. Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics. Basin Research 32: 652–667. https://doi.org/10.1011/bre.12389. [Google Scholar]
- Fabries J, Lorand JP, Bodinier JL, Dupuy C. 1991. Evolution of the Upper Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. J. Petrol. Special Volume: 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55. [CrossRef] [Google Scholar]
- Fallourd S, Poujol M, Boulvais P, Paquette JL, de Saint Blanquat M, Rémy P. 2014. In situ LA-ICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts: the North Pyrenean example. Int. J. Earth Sciences 10: 667–682. https://doi.org/10.1007/s00531-013-0978-1. [CrossRef] [Google Scholar]
- Fonteilles M. 1970. Géologie des terrains métamorphiques et granitiques du massif hercynien de l’Agly (Pyrénées-Orientales). Bull. Bur. Rech. Geol. Min. Paris 4: 21–72. [Google Scholar]
- Fourcade S, Javoy M. 1991. Sr-Nd-0 isotopic features of mafic microgranular enclaves and host granitoids from the Pyrenees, France: evidence for their hybrid nature and inference on their origin. In: Didier, J, Barbarin, B, eds. Enclaves and granite petrology. Developments in Petrology 13. Amsterdam: Elsevier, pp. 345–364. [Google Scholar]
- Gapais D, Bale P, Choukroune P, Cobbold P, Mahjoub Y, Marquer D. 1987. Bulk kinematics from shear zone patterns: some field examples. J. Struct. Geol. 9: 635–646. https://doi.org/10.1016/0191-8141(87)90148-9. [CrossRef] [Google Scholar]
- Gardés E, Jaoul O, Montel JM, Seydoux-Guillaume AM, Wirth R. 2006. Pb diffusion in monazite: An experimental study of Pb2++ Th4+⇔ 2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta 70: 2325–2336. https://doi.org/10.1016/j.gca.2006.01.018. [CrossRef] [Google Scholar]
- Golberg JM, Maluski H, Leyreloup AF. 1986. Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics 129: 275–290. https://doi.org/10.1016/0040-1951(86)90256-8. [CrossRef] [Google Scholar]
- Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib. Min. Pet. 104: 194–207. https://doi.org/10.1007/BF00306443. [CrossRef] [Google Scholar]
- Grand’Homme A, Janots E, Seydoux-Guillaume AM, Guillaume D, Bosse V, Magnin V. 2016. Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. Geology 44: 431–434. https://doi.org/10.1130/G37770.1. [CrossRef] [Google Scholar]
- Grove M, Harrison TM. 1996. 40Ar* diffusion in Fe-rich biotite. American Mineralogist 81(7-8): 940–951. https://doi.org/10.2138/am-1996-7-816. [CrossRef] [Google Scholar]
- Guitard G, Raguin E. 1958. Sur la présence de gneiss à grenat et hyperstène (appartenant au faciès granulite d’Eskola) dans le massif de l’Agly (Pyrénées-Orientales). C. R. Acad. Sci. 247: 2385–2388. [Google Scholar]
- Hanmer S, Passchier C. 1991. Shear-sense indicators: a review. Geol. Surv. Can. Pap. 90: 1–71. [Google Scholar]
- Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta 73: 1039–1051. https://doi.org/10.1016/j.gca.2008.09.038. [CrossRef] [Google Scholar]
- Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4): 1–24. https://doi.org/10.1029/2008TC002406. [Google Scholar]
- Jammes S, Manatschal G, Lavier L. 2010. Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bulletin 94: 957–975. https://doi.org/10.1306/12090909116. [CrossRef] [Google Scholar]
- Jarvis GT, McKenzie DP. 1980. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 48: 42–52. https://doi.org/10.1016/0012-821X(80)90168-5. [CrossRef] [Google Scholar]
- Kerrich R, Beckinsale RD, Durham JJ. 1977. The transition between deformation regimes dominated by intercrystalline diffusion and intracrystalline creep evaluated by oxygen isotope thermometry. Tectonophysics 38: 241–257. https://doi.org/10.1016/0040-1951(77)90213-X. [CrossRef] [Google Scholar]
- Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [CrossRef] [Google Scholar]
- Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29: https://doi.org/10.1029/2009TC002588. [Google Scholar]
- Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, et al. 2016. Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). C. R. Géosci. 348: 290–300. https://doi.org/10.1016/j.crte.2015.11.004. [CrossRef] [Google Scholar]
- Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019a. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). BSGF – Earth Sciences Bulletin 190(8). https://doi.org/10.1051/bsgf/2019007. [Google Scholar]
- Lagabrielle Y, Asti R, Fourcade S, Corre B, Labaume P, Uzel J, et al. 2019b. Mantle exhumation at magma-poor passive continental margins. Part II: Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). BSGF – Earth Sciences Bulletin 190(1). https://doi.org/10.1051/bsgf/2019013. [Google Scholar]
- Lagabrielle Y, Asti R, Duretz T, Clerc C, Fourcade S, Teixell A, et al. 2020. A review of cretaceous smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How pre-rift salt controls the modes of continental rifting and mantle exhumation. Earth-Science Reviews 201: 103071. [CrossRef] [Google Scholar]
- Laumonier B, Canérot J, Colin JP, Platel JP, Bilotte M. 2008. Les Pyrénées pré-hercyniennes et hercyniennes. Pyrénées d’hier et d’aujourd’hui. Pau: Ed. Atantica. [Google Scholar]
- Laurent V, Huet B, Labrousse L, Jolivet L, Monié P, Augier R. 2017. Extraneous argon in high-pressure metamorphic rocks: Distribution, origin and transport in the Cycladic Blueschist Unit (Greece). Lithos 272-273: 315–335. https://doi.org/10.1016/j.lithos.2016.12.013. [CrossRef] [Google Scholar]
- Mattauer M. 1968. Les traits structuraux essentiels de la chaîne Pyrénéenne. Rev. Géogr. Phys. Geol. Dynam. 10: 3–12. [Google Scholar]
- McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40: 25–32. https://doi.org/10.1016/0012-821X(78)90071-7. [CrossRef] [Google Scholar]
- Michard AV, Allègre CJ. 1975. A study of the formation and history of a piece of continental crust by 87Rb-87Sr method: The case of the French oriental Pyrenees. Contrib. Min. Pet. 50: 257–285. https://doi.org/10.1007/BF00394853. [CrossRef] [Google Scholar]
- Monié P, Soliva J, Brunel M, Maluski H. 1994. Les cisaillements mylonitiques du granite de Millas (Pyrénées, France); âge Crétacé 40Ar/39Ar et interprétation tectonique. Bull. Soc. geol. Fr. 165: 559–571. [Google Scholar]
- Mulch A, Cosca MA. 2004. Recrystallization or cooling ages: UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. J. Geol. Soc. London 161: 573–582. https://doi.org/10.1144/0016-764903-110. [CrossRef] [Google Scholar]
- Mulch A, Cosca MA, Andrese A, Fiebig J. 2005. Time scales of deformation and exhumation in extensional detachment systems determined by high-spatial resolution in situ UV-laser 40Ar/39Ar dating. Earth Planet. Sci. Lett. 233: 375–390. https://doi.org/10.1016/j.epsl.2005.01.042. [CrossRef] [Google Scholar]
- Newman J, Lamb WM, Drury MR, Vissers RLM. 1999. Deformation processes in a peridotite shear zone: reaction-softening by an HO-deficient, continuous net transfer reaction. Tectonophysics 303: 193–222. https://doi.org/10.1016/S0040-1951(98)00259-5. [CrossRef] [Google Scholar]
- Nissen SS, Hayes DE, Bochu Y, Zeng W, Chen Y, Nu X. 1995. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. J. Geophys. Res. Solid Earth 100: 22447–22483. https://doi.org/10.1029/95JB01868. [CrossRef] [Google Scholar]
- Odlum ML, Stockli DF. 2019. Thermotectonic evolution of the North Pyrenean Agly Massif during Early Cretaceous hyperextension using multi-mineral U-Pb thermochronometry. Tectonics 38: 1509–1531. https://doi.org/10.1029/2018TC005298. [CrossRef] [Google Scholar]
- Odlum ML, Stockli DF. 2020. Geochronologic constraints on deformation and metasomatism along an exhumed mylonitic shear zone using apatite U-Pb, geochemistry, and microtextural analysis. Earth Planet. Sci. Lett. 538: 116177. https://doi.org/10.1016/j.epsl.2020.116177. [CrossRef] [Google Scholar]
- Olivet JL. 1996. La cinématique de la plaque ibérique. Bull. Cent. Rech. Explor. Prof Elf Aquitaine 20. [Google Scholar]
- Olivier P, Gleizes G, Paquette JL. 2004. Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Varsican Agly Massif (Eastern Pyrenees, France). Geol. Soc. Am. Special Paper 380: 229–242. [Google Scholar]
- Olivier P, Gleizes G, Paquette JL, Muñoz Sáez C. 2008. Structure and U-Pb dating of the Saint Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. J. Geol. Soc. London 165: 141–152. https://doi.org/10.1144/0016-76492006-185. [CrossRef] [Google Scholar]
- Oriolo S, Wemmer K, Oyhantçabal P, Fossen H, Schulz B, Siegesmund S. 2018. Geochronology of shear zones – A review. Earth-Science Reviews 185: 665–683. https://doi.org/10.1016/j.earscirev.2018.07.007. [CrossRef] [Google Scholar]
- Paquet J, Delay F. 1989. Analyse en microscopie électronique des textures et des phases des mylonites nord-pyrénéennes des massifs de Saint Barthélemy et de l’Agly et discussion des âges. Bull. Soc. geol. Fr. 6: 1111–1122. https://doi-org.insu.bib.cnrs.fr/10.2113/gssgfbull.V.6.1111. [CrossRef] [Google Scholar]
- Paquet J, Mansy JL. 1991. La structure de l’Est pyrénéens (transversale du massif de l’Agly): un exemple d’amincissement crustal. C. R. Acad. Sci. 31: 913–919. [Google Scholar]
- Passchier CW. 1984. The generation of ductile and brittle shear bands in a low-angle mylonite zone. J. Struct. Geol. 6: 273–281. https://doi.org/10.1016/0191-8141(84)90051-8. [CrossRef] [Google Scholar]
- Picazo S, Müntener O, Manatschal G, Bauville A, Karner G, Johnson C. 2016. Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos 266-267: 233–263. https://doi.org/10.1016/j.lithos.2016.08.029. [CrossRef] [Google Scholar]
- Poujol M, Boulvais P, Kosler J. 2010. Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J. Geol. Soc. London 167: 751–767. https://doi.org/10.1144/0016-76492009-144. [CrossRef] [Google Scholar]
- Putnis A. 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine 66(5): 689–708. https://doi.org/10.1180/0026461026650056. [CrossRef] [Google Scholar]
- Putnis A, Austrheim H. 2010. Fluid-induced processes: metasomatism and metamorphism. Geofluids 10: 254–269. https://doi.org/10.1111/j.1468-8123.2010.00285.x. [Google Scholar]
- Putnis A, John T. 2010. Replacement processes in the Earth’s Crust. Elements 6: 159–164. https://doi.org/10.2113/gselements.6.3.159. [CrossRef] [Google Scholar]
- Ravier J. 1959. Le métamorphisme des terrains secondaires des Pyrénées. Mém. Soc. Geol. France, Paris XXXViiI: 86. [Google Scholar]
- Respaut JP, Lancelot JR. 1983. Datation de la mise en place synmétamorphe de la charnockite d’Ansignan (massif de l’Agly) par la méthode U/Pb sur zircons et monazites. Neues Jahrbuch für Mineralogie, Abhandlungen 14: 21–34. [Google Scholar]
- Sanchez G, Verati C, Oliot E, Marquer D, Schneider J, Corsini M, et al. 2011. Dating low deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 125: 521–536. https://doi.org/10.1016/j.lithos.2011.03.009. [CrossRef] [Google Scholar]
- Savva D, Meresse F, Pubellier M, Chamot-Rooke N, Lavier L, Po KW, et al. 2013. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam. Tectonophysics 608: 72–83. https://doi.org/10.1016/j.tecto.2013.07.010. [CrossRef] [Google Scholar]
- Schärer U, de Parseval P, Polvé M, de Saint Blanquat M. 1999. Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 Ma and 97 Ma. Terra Nova 11: 30–37. https://doi.org/10.1046/j.1365-3121.1999.00224.x. [CrossRef] [Google Scholar]
- Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. J. Geophys. Res. Solid Earth 109: B08104. https://doi.org/10.1029/2003JB002514. [CrossRef] [Google Scholar]
- Simpson C, Schmid SM. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol. Soc. Am. Bull. 94: 1281–1288. https://doi.org/10.1130/0016-7606(1983)94<1281:AEOCTD>2.0.CO;2. [CrossRef] [Google Scholar]
- Siron G, Goncalves P, Marquer D, Pierre T, Paquette JL, Vanardois J. 2020. Contribution of magmatism, partial melting buffering and localized crustal thinning on the late Variscan thermal structure of the Agly Massif (French Pyrenees). J. Metamorph. Geol. 38: 799–829. https://doi.org/10.1111/jmg.12549. [CrossRef] [Google Scholar]
- Skipton DR, Warren CJ, Hanke F. 2018. Numerical models of P.T., time and grain-size controls on Ar diffusion in biotite: An aide to interpreting 40Ar/39Ar ages. Chemical Geology 496: 14–24. https://doi.org/10.1016/j.chemgeo.2018.06.005. [CrossRef] [Google Scholar]
- Teixell A, Labaume P, Ayarz P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724-725: 146–170. https://doi.org/10.1016/j.tecto.2018.01.009. [CrossRef] [Google Scholar]
- Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological evidence of early orogenesis, Eastern Pyrenees, France. Tectonics 38: 1308–1336. https://doi.org/10.1029/2018TC005254. [CrossRef] [Google Scholar]
- Tournaire Guille BT, Olivier P, Paquette JL, Bosse V, Guillaume D. 2019. Evolution of the middle crust of the Pyrenees during the Paleozoic: new data on the plutonic rocks from the North Pyrenean Agly Massif. J. Int. Earth Sci. (Geol Rundsch) 108: 245–265. https://doi.org/10.1007/s00531-018-1652-4. [CrossRef] [Google Scholar]
- Tucholke BE, Sawyer DS, Sibuet, JC. 2007. Breakup of the Newfoundland-Iberia rift. Geol. Soc., London, Special Publications 282: 9–46. https://doi.org/10.1144/SP282.2. [CrossRef] [Google Scholar]
- Vanardois J, Trap P, Goncalves P, Marquer D, Gremmel J, Siron G, et al. 2020. Kinematics, deformation partitioning and late Variscan magmatism in the Agly Massif, Eastern Pyrenees, France. Bull. Soc. geol. Fr. 191. https://doi.org/10.1051/bsgf/2020009. [Google Scholar]
- Vauchez A, Clerc C, Bestani L, Lagabrielle Y, Chauvet A, Lahfid A, et al. 2013. Preorogenic exhumation of the North Pyrenean Agly Massif (Eastern Pyrenees-France). Tectonics 32: 95–106. https://doi-org.insu.bib.cnrs.fr/10.1002/tect.20015. [CrossRef] [Google Scholar]
- Vielzeuf D. 1984. Relations de phases dans le facies granulite et implications géodynamiques: l’exemple des granulites des Pyrénées. PhD Thesis. [Google Scholar]
- Vielzeuf D, Kornprobst J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet. Sci. Lett. 67: 87–96. https://doi.org/10.1016/0012-821X(84)90041-4. [CrossRef] [Google Scholar]
- Vielzeuf D, Pin C. 1991. Granulites orthoderivées d’âge tardi-hercynien; exemple de la norite de Treilles, Corbières (Aude, France). Bull. Soc. geol. Fr. 162: 1057–1066. [Google Scholar]
- Villa IM, Bucher S, Bousquet R, Kleinhanns IC, Schmid SM. 2014. Dating polygenetic metamorphic assemblages along a transect across the Western Alps. J. Petrol. 55: 803–830. https://doi.org/10.1093/petrology/egu007. [CrossRef] [Google Scholar]
- Vissers RLM, Drury MR, Newman J, Fliervoet, TF. 1997. Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): implications for strength and strain localization in the lithosphere. Tectonophysics, The Adolphe Nicolas Volume 279: 303–325. https://doi.org/10.1016/S0040-1951(97)00128-5. [CrossRef] [Google Scholar]
- Voll G. 1976. Recrystallization of quartz, biotite, and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweiz. Mineral. Petrog. Mitt. 56: 641–647. [Google Scholar]
- Warren CJ, Hanke F, Kelley SP. 2012. When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chemical Geology 291: 79–86. https://doi.org/10.1016/j.chemgeo.2011.09.017. [CrossRef] [Google Scholar]
- Wawrzenitz N, Krohe A, Rhede D, Romer RL. 2012. Dating rock deformation with monazite: The impact of dissolution precipitation creep. Lithos 134: 52–74. [CrossRef] [Google Scholar]
- Wehr H, Chevrot S, Courrioux G, Guillen A. 2018. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics 734-735: 16–32. https://doi.org/10.1016/j.tecto.2018.03.017. [CrossRef] [Google Scholar]
- White S, Ramsay JG, Wood DS. 1976. A Discussion on natural strain and geological structure – The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Phil. Trans. Royal Soc. London, Series A., Mathematical and Physical Sciences 283: 69–86. https://doi.org/10.1098/rsta.1976.0070. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.