Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 193, 2022
|
|
---|---|---|
Numéro d'article | 15 | |
Nombre de pages | 23 | |
DOI | https://doi.org/10.1051/bsgf/2022010 | |
Publié en ligne | 30 août 2022 |
- Álvaro JJ, Bauluz B, Clausen S, Devaere L, Gil Imaz A, Monceret É, et al. 2014. Stratigraphic review of the Cambrian-Lower Ordovician volcanosedimentary complexes from the northern Montagne Noire, France. Stratigraphy 11: 83–96. [Google Scholar]
- Álvaro JJ, Casas JM, Quesada C. 2020a. Reconstructing the pre-Variscan puzzle of Cambro-Ordovician basement rocks in the south-western European margin of Gondwana. Geol. Soc. Lond. Spec. Publ. 503: 531–562. [Google Scholar]
- Álvaro JJ, Sánchez-García T, Puddu C, Casas JM, Díez-Montes A, Liesa M, et al. 2020b. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean. Solid Earth 11: 2377–2409. [CrossRef] [Google Scholar]
- Arnaud F, Boullier AM, Burg JP. 2004. Shear structures and microstructures in micaschists: the Variscan Cévennes duplex (French Massif Central). J. Struct. Geol. 26: 855–868. [CrossRef] [Google Scholar]
- Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM. 2012. Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): Implications for the breakup of Gondwana. Gondwana Res. 21: 1019–1036. [CrossRef] [Google Scholar]
- Ballèvre M, Martinez Catalan JR, Lopez-Carmona A, Pitra P, Abati J, Fernandez RD, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol. Soc. Lond. Spec. Publ. 405: 77–113. [CrossRef] [Google Scholar]
- Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46: 605–626. [CrossRef] [Google Scholar]
- Barbey P, Villaros A, Marignac C, Montel JM. 2015. Multiphase melting, magma emplacement and P-T-time path in late-collisional context: the Velay example (Massif Central, France). Bull. Soc. Geol. Fr. 186: 93–116. [CrossRef] [Google Scholar]
- Bea F, Montero P, Zinger T. 2003. The nature, origin, and thermal influence of the granite source layer of Central Iberia. J. Geol. 111: 579–595. [CrossRef] [Google Scholar]
- Bea F, Montero P, Gonzalez-Lodeiro F, Talavera C. 2007. Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. J. Petrol. 48: 2327–2339. [CrossRef] [Google Scholar]
- Bodinier JL, Burg J-P, Leyreloup AF, Vidal H. 1988. Reliques d’un bassin d’arrière-arc subducté, puis obducté dans la région de Marvejols (Massif central). Bull. Soc. Geol. Fr. 4: 21–33 [CrossRef] [Google Scholar]
- Bonin B, Janoušek V, Moyen J-F. 2020. Chemical variation, modal composition and classification of granitoids. Geol. Soc. Lond. Spec. Publ. 491: 9–51. [CrossRef] [Google Scholar]
- Bouilhol P, Leyreloup AF, Delor C, Vauchez A, Monié P. 2006. Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes-French Massif Central). Geodin. Acta 19: 137–153 [CrossRef] [Google Scholar]
- Bouton P, Branger P. 2008. Notice explicative, Carte géol. France (1/50 000), feuille Coulonges-sur-l’Autize (587). BRGM, Orléans. [Google Scholar]
- Boynton WV. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry . Amsterdam: Elsevier, 1984, pp. 63–114. [CrossRef] [Google Scholar]
- Briand B, Bouchardon J-L, Santallier D, Piboule M, Ouali H, Capiez P. 1992. Alkaline affinity of the metabasites in the gneissic series surrounding the Velay migmatitic domain. Geol. Fr. 2: 9–15. [Google Scholar]
- Briand B, Bouchardon J-L, Capiez P, Piboule M. 2002. Felsic (A-type)-basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France). Geol. Mag. 139: 291–311. [CrossRef] [Google Scholar]
- Brichau S, Respaut J-P, Monié P. 2007. New age constraints on emplacement of the Cévenol granitoids, South French Massif Central. Int. J. Earth Sci. 97: 725–738. [Google Scholar]
- Brouder P. 1963. Description d’une succession lithologique avec niveaux-repères dans les schistes cristallins des Cévennes près de Villefort (Lozère). Bull. Soc. Geol. Fr. 7: 828–834 [CrossRef] [Google Scholar]
- Bryan SE. Environmental impact of silicic magmatism in Large Igneous Province events. In: Ernst ER, Dickson AJ, Bekker A, eds. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes . American Geophysical Union, 2021, pp. 133–151. [CrossRef] [Google Scholar]
- Burnham AD, Berry AJ. 2017. Formation of Hadean granites by melting of igneous crust. Nat. Geosci. 10: 457–461. [CrossRef] [Google Scholar]
- Burg J-P, Matte P. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z. dt. geol. Ges. 129: 429–460. [Google Scholar]
- Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow Injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand. Newsl. 25: 187–198. [CrossRef] [Google Scholar]
- Caron C. 1994. Les minéralisations Pb-Zn associées au Paléozoique inférieur d’Europe méridionale. Traçage isotopique Pb-Pb des gites de l’Iglesiente (SW Sardaigne) et des Cévennes et évolution du socle encaissant par la géochronologie U–Pb, 40Ar–39Ar et K–Ar. Université de Montpellier. [Google Scholar]
- Castro A, García-Casco A, Fernández C, Corretgé LG, Moreno-Ventas I, Gerya T, et al. 2009. Ordovician ferrosilicic magmas: Experimental evidence for ultrahigh temperatures affecting a metagreywacke source. Gondwana Res. 16: 622–632. [CrossRef] [Google Scholar]
- Chantraine J, Autran A, Cavelier C. 2003. Carte géologique de la France à l’échelle du millionième, 6e édition révisée. BRGM, Orléans. [Google Scholar]
- Chelle-Michou C, Laurent O, Moyen J-F, Block S, Paquette JL, Couzinié S, et al. 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Res. 46: 170–190. [CrossRef] [Google Scholar]
- Chenevoy M. 1968a. Les gneiss amygdalaires du Massif Central français : anciens tufs ou laves de chimisme rhyodacitique. C. R. Acad. Sci. Paris 266: 1921–1923. [Google Scholar]
- Chenevoy M. 1968b. Les gneiss amygdalaires du Massif Central français. Rev. Geogr. Phys. Geol. 2: 177–195. [Google Scholar]
- Chenevoy M, Ravier J. 1968. Extension des séries cristallophylliennes à andalousite-cordiérite et à disthène-staurotide dans les Cévennes septentrionales et médianes. Bull. Soc. Geol. Fr. 7: 613–617. [CrossRef] [Google Scholar]
- Cohen K, Finney S, Gibbard P, Fan J. 2013. The ICS International Chronostratigraphic Chart. Episodes 36: 199–204. [CrossRef] [Google Scholar]
- Costa S. 1989. Age radiométrique 39Ar–40Ar du métamorphisme des séries du Lot et du charriage du groupe leptyno-amphibolique de Marvejols (M.C.F.). C. R. Acad. Sci. Paris 309: 561–567. [Google Scholar]
- Couzinié S. 2017. Evolution of the continental crust and significance of the zircon record, a case study from the French Massif Central. Université de Saint-Étienne. [Google Scholar]
- Couzinié S, Moyen JF, Villaros A, Paquette JL, Scarrow JH, Marignac C. 2014. Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J. Geosci. 59: 69–86. [CrossRef] [Google Scholar]
- Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen JF, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin. Lithos 286-287: 16–34. [CrossRef] [Google Scholar]
- Couzinié S, Laurent O, Chelle-Michou C, Bouilhol P, Paquette JL, Gannoun AM, et al. 2019. Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Res. 324: 269–284. [CrossRef] [Google Scholar]
- Couzinié S, Bouilhol P, Laurent O, Marko L, Moyen JF. 2021. When zircon drowns: Elusive geochronological record of water-fluxed orthogneiss melting in the Velay dome (Massif Central, France). Lithos 384-385: 105938. [CrossRef] [Google Scholar]
- Crevola G, Boucarut M, Magontier J, Collomb P. 1983. Origine granitique des gneiss de la Cézarenque (Cévennes, Massif Central) : identification de plusieurs faciès plutoniques originels. C. R. Acad. Sci. Paris 296: 1519–1522. [Google Scholar]
- Cuney M, Friedrich M. 1987. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. Bull. Miner. 110: 235–247. [CrossRef] [Google Scholar]
- Davoine P. 1969. La distinction géochimique ortho-para des leptynites. Bull. Soc. Fr. Miner. Cr. 92: 59–75. [Google Scholar]
- de La Roche FH. 1968. Comportement géochimique différentiel de Na, K et Al dans les formations volcaniques et sédimentaires : un guide pour l’étude des formations métamorphiques et plutoniques. C. R. Acad. Sci. Paris 267: 39–42. [Google Scholar]
- Debon F, Le Fort P. 1988. A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull. Miner. 111: 493–510. [CrossRef] [Google Scholar]
- Demange M. 1982. Étude géologique du massif de l’Agout (Montagne Noire, France). Université Paris VI. [Google Scholar]
- Dias Da Silva I, Valverde-Vaquero P, Gonzalez-Clavijo E, Diez-Montes A, Martinez Catalan JR. 2014. Structural and stratigraphical significance of U–Pb ages from the Mora and Saldanha volcanic complexes (NE Portugal, Iberian Variscides). Geol. Soc. Lond. Spec. Publ. 405: 115–135. [CrossRef] [Google Scholar]
- Díaz-Alvarado J, Fernández C, Chichorro M, Castro A, Pereira MF. 2016. Tracing the Cambro–Ordovician ferrosilicic to calc-alkaline magmatic association in Iberia by in situ U–Pb SHRIMP zircon geochronology (Gredos massif, Spanish Central System batholith). Tectonophysics 681: 95–110. [CrossRef] [Google Scholar]
- Díez Fernández R, Castiñeiras P, Gómez Barreiro J. 2012. Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin. Gondwana Res. 21: 1066–1079. [CrossRef] [Google Scholar]
- Díez Montes AD, Catalán JRM, Mulas FB. 2010. Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Res. 17: 363–376. [CrossRef] [Google Scholar]
- Diot H, Féménias O, Moreau C, Gaufriau A, Roy CL, Karnay G. 2007. Notice explicative, Carte géol. France (1/50 000), feuille Fontenay-le-Comte (586). BRGM, Orléans. [Google Scholar]
- El Korh A, Schmidt ST, Ballèvre M, Ulianov A, Bruguier O. 2012. Discovery of an albite gneiss from the Île de Groix (Armorican Massif, France): geochemistry and LA–CP–MS U–Pb geochronology of its Ordovician protolith. Int. J. Earth Sci. 101: 1169–1190. [CrossRef] [Google Scholar]
- Elmi S, Feys R, Samama JC, Weisbrod A. 1974. Notice explicative, Carte géol. France (1/50 000), feuille Largentière (864). BRGM, Orléans. [Google Scholar]
- Elmi S, Brouder P, Berger G, Gras H, Busnardo R, Bérard P, et al. 1989. Notice explicative, Carte géol. France (1/50 000), feuille Bessèges (888). BRGM, Orléans. [Google Scholar]
- Farias P, Casado BO, Marcos A, Rubio-Ordoñez A, Fanning CM. 2014. U–Pb zircon SHRIMP evidences of Cambrian volcanism in the Schistose Domain within the Galicia-Tras-os-Montes Zone (Variscan Orogen, NW Iberian Peninsula). Geol. Acta 12: 209–218. [Google Scholar]
- Faure M, Charonnat X, Chauvet A, Chen Y, Talbot JY, Martelet G. 2001. Tectonic evolution of the Cévennes para-autochthonous domain of the Hercynian French Massif Central and its bearing on ore deposits formation. Bull. Soc. Geol. Fr. 172: 687–696. [CrossRef] [Google Scholar]
- Faure M, Brouder P, Thierry J, Alabouvette B, Cocherie A, Bouchot V. 2009a. Notice explicative, Carte géol. France (1/50 000), feuille Saint-André-de-Valborgne (911). BRGM, Orléans. [Google Scholar]
- Faure M, Lardeaux J-M, Ledru P. 2009b. A review of the pre-Permian geology of the Variscan French Massif Central. C. R. Geosci. 341: 202–213. [CrossRef] [Google Scholar]
- Fernández C, Becchio R, Castro A, Viramonte JM, Moreno-Ventas I, Corretgé LG. 2008. Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: Implications for cold plumes and back-arc magma generation. Gondwana Res. 14: 451–473. [CrossRef] [Google Scholar]
- Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 154: 429–437. [CrossRef] [Google Scholar]
- Fiannacca P, Williams IS, Cirrincione R, Pezzino A. 2019. Poly-orogenic melting of metasedimentary crust from a granite geochemistry and inherited zircon perspective (Southern Calabria-Peloritani Orogen, Italy). Front. Earth Sci. 7. [CrossRef] [Google Scholar]
- Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. J. Petrol. 42: 2033–2048. [CrossRef] [Google Scholar]
- Gaillard F, Scaillet B, Pichavant M, Bény J-M. 2001. The effect of water and fO2 on the ferric-ferrous ratio of silicic melts. Chem. Geol. 174: 255–273. [CrossRef] [Google Scholar]
- Galbraith RF. 2005. Statistics for fission track analysis. CRC Press. [CrossRef] [Google Scholar]
- Gao P, Zheng Y-F, Zhao Z-F. 2016. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 258-259: 77–91. [CrossRef] [Google Scholar]
- García-Arias M, Díez Montes A, Villaseca C, Blanco-Quintero IF. 2018. The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: A review. Earth-Sci. Rev. 176: 345–372. [CrossRef] [Google Scholar]
- Garfunkel Z. 2015. The relations between Gondwana and the adjacent peripheral Cadomian domain – Constrains on the origin, history, and paleogeography of the peripheral domain. Gondwana Res. 28: 1257–1281. [CrossRef] [Google Scholar]
- Gieré R. 1996. Formation of rare earth minerals in hydrothermal systems. In: Jones AP, Wall F, Williams CT, eds. Rare Earth Minerals: Chemistry, Origin and Ore Deposits . London, UK: Chapman and Hall, pp. 105–150. [Google Scholar]
- Guérangé-Lozes J, Burg J-P. 1990. Variscan nappes in the southwest of the Massif Central (1:250 000 geological and structural maps of Montpellier and Aurillac). Geol. Fr. 3-4: 71–106. [Google Scholar]
- Gutiérrez-Alonso G, Gutiérrez-Marco JC, Fernández-Suárez J, Bernárdez E, Corfu F. 2016. Was there a super-eruption on the Gondwanan coast 477 Ma ago? Tectonophysics 681: 85–94. [CrossRef] [Google Scholar]
- Harlaux M. 2016. Les systèmes métallogéniques hydrothermaux à tungstène et métaux rares (Nb, Ta, Sn) dans le contexte orogénique fini-varisque : exemple du Massif Central Français. Université de Lorraine. [Google Scholar]
- Holtz F, Johannes W. 1994. Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32: 149–159. [CrossRef] [Google Scholar]
- Holtz F, Johannes W, Pichavant M. 1992. Peraluminous granites: the effect of alumina on melt composition and coexisting minerals. Earth Environ. Sci. Trans. R. Soc. Edinb. 83: 409–416. [Google Scholar]
- Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, et al. 2016. Community-Derived Standards for LA–ICP–MS U–(Th–)Pb Geochronology – Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40: 311–332. [CrossRef] [Google Scholar]
- Iacono-Marziano G, Gaillard F, Scaillet B, Polozov A, Marecal V, Pirre M, et al. 2012. Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments. Earth Planet. Sci. Lett. 357-358: 319–326. [CrossRef] [Google Scholar]
- Ishihara S. 2004. The redox state of granitoids relative to tectonic setting and earth history: The magnetite-ilmenite series 30 years later. Earth Environ. Sci. Trans. R. Soc. Edinb. 95: 23–33. [CrossRef] [Google Scholar]
- Janoušek V, Farrow CM, Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing GeoChemical Data toolkit (GCDkit). J. Petrol. 47: 1255–1259. [CrossRef] [Google Scholar]
- Kroner U, Romer RL. 2013. Two plates – Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 24: 298–329. [CrossRef] [Google Scholar]
- Lacassin R, van den Driessche FJ. 1983. Finite strain determination of gneiss: Application of Fry’s method to porphyroid in the southern Massif Central (France). J. Struct. Geol. 5: 245–253. [CrossRef] [Google Scholar]
- Laurent O, Couzinié S, Zeh A, Vanderhaeghe O, Moyen JF, Villaros A, et al. 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. Int. J. Earth Sci. 106: 421–451. [CrossRef] [Google Scholar]
- Le Bas MJL, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27: 745–750. [CrossRef] [Google Scholar]
- Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floc’h JP, et al. 1989. Where are the nappes in the French Massif central? Bull. Soc. Geol. Fr. 8: 605–618. [CrossRef] [Google Scholar]
- Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, et al. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342: 207–237 [CrossRef] [Google Scholar]
- Loader MA, Wilkinson JJ, Armstrong RN. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 472: 107–119. [CrossRef] [Google Scholar]
- Lopez-Sanchez MA, Iriondo A, Marcos A, Martínez FJ. 2015. A U–Pb zircon age (479 ± 5 Ma) from the uppermost layers of the Ollo de Sapo Formation near Viveiro (NW Spain): implications for the duration of rifting-related Cambro–Ordovician volcanism in Iberia. Geol. Mag. 152: 341–350. [CrossRef] [Google Scholar]
- Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 308-309: 381–394. [CrossRef] [Google Scholar]
- Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From burial to exhumation: Emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). J. Petrol. 61. [CrossRef] [Google Scholar]
- Magontier J. 1988. Étude géologique de la Gardonenque entre St-Jean-du-Gard et la Grand’Combe à l’ouest d’Alès, Gard-France. Université Bordeaux 3. [Google Scholar]
- Mattauer M, Etchecopar A. 1976. Arguments en faveur de chevauchements du type himalayen dans la chaine hercynienne du Massif Central français. Coll. Int. CNRS 268: 261–267. [Google Scholar]
- Matte P. Variscan thrust nappes, detachments, and strike-slip faults in the French Massif Central: Interpretation of the lineations. In: Hatcher Jr RD, Carlson MP, McBride JH, Martínez Catalán JR, eds. 4-D Framework of Continental Crust . Geological Society of America, 2007, pp. 391–402. [CrossRef] [Google Scholar]
- Matzel JEP, Bowring SA, Miller RB. 2006. Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. GSA Bull. 118: 1412–1430. [CrossRef] [Google Scholar]
- Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res. 17: 13–25. [CrossRef] [Google Scholar]
- Montel JM, Marignac C, Barbey P, Pichavant M. 1992. Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J. Metamorph. Geol. 10: 1–15. [CrossRef] [Google Scholar]
- Montel JM, Foret S, Veschambre M, Nicollet C, Provost A. 1996. Electron microprobe dating of monazite. Chem. Geol. 131: 37–53. [CrossRef] [Google Scholar]
- Montero P, Bea F, González-Lodeiro F, Talavera C, Whitehouse MJ. 2007. Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geol. Mag. 144: 963–976. [CrossRef] [Google Scholar]
- Montero P, Talavera C, Bea F, Lodeiro FG, Whitehouse MJ. 2009. Zircon geochronology of the Ollo de Sapo Formation and the age of the Cambro–Ordovician rifting in Iberia. J. Geol. 117: 174–191. [CrossRef] [Google Scholar]
- Montero P, Talavera C, Bea F. 2017. Geochemical, isotopic, and zircon (U–Pb, O, Hf isotopes) evidence for the magmatic sources of the volcano-plutonic Ollo de Sapo Formation, Central Iberia. Geol. Acta 15: 245–260. [Google Scholar]
- Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, et al. 2017. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
- Murphy JB, Gutiérrez-Alonso G, Fernández-Suárez J, Braid JA. 2008. Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana. Tectonophysics 461: 166–180. [CrossRef] [Google Scholar]
- Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2010. Evolution of the Rheic Ocean. Gondwana Res. 17: 194–222. [CrossRef] [Google Scholar]
- Ni Z, Arevalo R, Piccoli P, Reno BL. 2020. A novel approach to identifying mantle-equilibrated zircon by using trace element chemistry. Geochem. Geophys. Geosyst. 21. [Google Scholar]
- Oggiano G, Gaggero L, Funedda A, Buzzi L, Tiepolo M. 2010. Multiple early Paleozoic volcanic events at the northern Gondwana margin: U–Pb age evidence from the Southern Variscan branch (Sardinia, Italy). Gondwana Res. 17: 44–58. [CrossRef] [Google Scholar]
- Oriolo S, Schulz B, Geuna S, González PD, Otamendi JE, Sláma J, et al. 2021. Early Paleozoic accretionary orogens along the Western Gondwana margin. Geosci. Front. 12: 109–130. [CrossRef] [Google Scholar]
- Parga Pondal I, Matte P, Capdevila R. 1964. Introduction à la géologie de l’« Ollo de Sapo », formation porphyroide anté-silurienne du Nord-Ouest de l’Espagne. Notas. Comun. Inst. Geol. Min. Esp. 76: 119–153. [Google Scholar]
- Pin C, Marini F. 1993. Early Ordovician continental break-up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29: 177–196. [CrossRef] [Google Scholar]
- Pouclet A, Álvaro JJ, Bardintzeff J-M, Imaz AG, Monceret E, Vizcaïno D. 2017. Cambrian–early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: Continental break-up and rifting of the northern Gondwana margin. Geosci. Front. 8: 25–64. [CrossRef] [Google Scholar]
- Quesnel F, Prost AE, Lablanche G, Thiry M, Simon-Coinçon R, Théveniaut H, et al. 2009. Notice explicative, Carte géol. France (1/50 000), feuille Châteaumeillant (595). BRGM, Orléans. [Google Scholar]
- Rakib A. 1996. Le métamorphisme régional de basse pression des Cévennes occidentales : une conséquence directe de la mise en place du dôme thermique vellave (Massif central français). Université de Montpellier. [Google Scholar]
- Rittman A. 1957. On the serial character of igneous rocks. Egypt J. Geol. 1: 23–48. [Google Scholar]
- Roger G. 1969. Étude géologique de la Cézarenque et du SE du Mont Lozère. Mémoires du BRGM (Paris) 66. [Google Scholar]
- Rudnick RL, Gao S. 2003. Composition of the continental crust. In: Rudnick RL, ed. The Crust . Oxford: Elsevier-Pergamon, pp. 1–64. [Google Scholar]
- Sandiford M, Hand M, McLaren S. 1998. High geothermal gradient metamorphism during thermal subsidence. Earth Planet. Sci. Lett. 163: 149–165. [CrossRef] [Google Scholar]
- Schiller D, Finger F. 2019. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contrib. Miner. Petrol. 174: 51. [CrossRef] [Google Scholar]
- Seyler M. 1986. Petrology and genesis of hercynian alkaline orthogneisses from Provence, France. J. Pet. 27: 1229–1251. [CrossRef] [Google Scholar]
- Spencer CJ, Kirkland CL, Taylor RJM. 2016. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 7: 581–589. [CrossRef] [Google Scholar]
- Stevens G, Villaros A, Moyen J-F. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35: 9–12. [CrossRef] [Google Scholar]
- Talavera C, Montero P, Bea F, González Lodeiro F, Whitehouse M. 2013. U–Pb Zircon geochronology of the Cambro–Ordovician metagranites and metavolcanic rocks of central and NW Iberia. Int. J. Earth Sci. 102: 1–23. [CrossRef] [Google Scholar]
- Tobschall HJ. 1971. Zur genese der migmatite des Beaume-Tales (Mittlere Cévennen, Dép. Ardèche). Contrib. Miner. Petrol. 32: 93–111. [CrossRef] [Google Scholar]
- Toteu SF, Macaudière J. 1984. Complex synkinematic and postkinematic garnet porphyroblast growth in polymetamorphic rocks. J. Struct. Geol. 6: 669–677. [CrossRef] [Google Scholar]
- Trail D, Bruce Watson E, Tailby ND. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97: 70–87. [CrossRef] [Google Scholar]
- Valverde-Vaquero P, Marcos A, Farias P, Gallastegui G. 2005. U–Pb dating of Ordovician felsic volcanism in the Schistose Domain of the Galicia-Trás-os-Montes Zone near Cabo Ortegal (NW Spain). Geol. Acta 3: 27–38. [Google Scholar]
- Vanderhaeghe O, Laurent O, Gardien V, Moyen JF, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. BSGF – Earth Sci. Bull. 191: 25. [CrossRef] [EDP Sciences] [Google Scholar]
- Venables WN, Ripley BD. 2002. Modern applied statistics with S, 4th ed. Springer. [Google Scholar]
- Vermeesch P. 2021. Maximum depositional age estimation revisited. Geosci. Front. 12: 843–850. [CrossRef] [Google Scholar]
- Villaros A, Laurent O, Couzinié S, Moyen JF, Mintrone M. 2018. Plutons and domes: the consequences of anatectic magma extraction – Example from the southeastern French Massif Central. Int. J. Earth Sci. 107: 2819–2842. [CrossRef] [Google Scholar]
- Villaseca C, Barbero L, Herreros V. 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth Environ. Sci. Trans. R. Soc. Edinb. 89: 113–119. [CrossRef] [Google Scholar]
- Villaseca C, Merino Martínez E, Orejana D, Andersen T, Belousova E. 2016. Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: Significance and sources of the Cambro–Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res. 34: 60–83. [CrossRef] [Google Scholar]
- von Raumer JF, Stampfli GM, 2018. Ollo de Sapo Cambro–Ordovician volcanics from the Central Iberian basement – A multiphase evolution. Terra Nova 30: 350–358. [CrossRef] [Google Scholar]
- Wang Q, Zhu D-C, Zhao Z-D, Guan Q, Zhang XQ, Sui QL, et al. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. J. Asian Earth Sci. 53: 59–66. [CrossRef] [Google Scholar]
- Watson EB. 1996. Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 87: 43–56. [Google Scholar]
- Watson EB, Harrison TM. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64: 295–304. [CrossRef] [Google Scholar]
- Weisbrod A. 1968. Les conditions du métamorphisme dans les Cévennes médianes (Massif Central, France). C. R. Acad. Sci. Paris 266: 755–757. [Google Scholar]
- Weisbrod A. 1969. Caractères géochimiques et origine des « schistes amygdalaires » des Cévennes (Massif Central français). C. R. Acad. Sci. Paris 268: 3018–3020. [Google Scholar]
- Weisbrod A. 1970. Pétrologie du socle métamorphique des Cévennes médianes (Massif Central français) : reconstitution sédimentologique et approche thermodynamique du métamorphisme. Université de Nancy. [Google Scholar]
- Weisbrod A, Marignac C. 1968. Sur l’origine des « schistes amygdalaires » des Cévennes (Massif Central français). C. R. Acad. Sci. Paris 266: 865–867. [Google Scholar]
- Whalen JB, Chappell BW. 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, Southeast Australia. Am. Miner. 73: 281–296. [Google Scholar]
- Wilke S, Holtz F, Neave DA, Almeev R. 2017. The effect of anorthite content and water on quartz-feldspar cotectic compositions in the rhyolitic system and implications for geobarometry. J. Petrol. 58: 789–818. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.