Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 193, 2022
Numéro d'article 17
Nombre de pages 20
DOI https://doi.org/10.1051/bsgf/2022019
Publié en ligne 22 novembre 2022
  • Barton PB, Bethke PM. 1987. Chalcopyrite disease in sphalerite: pathology and epidemiology. American Mineralogist 72(5-6): 451–467. [Google Scholar]
  • Beaufort D, Meunier A. 1983. A petrographic study of phyllic alteration superimposed on potassic alteration; the Sibert porphyry deposit (Rhône, France). Economic Geology 78(7): 1514–1527. https://doi.org/10.2113/gsecongeo.78.7.1514. [CrossRef] [Google Scholar]
  • Belissont R, Boiron MC, Luais B, Cathelineau M. 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta 126: 518–540. [CrossRef] [Google Scholar]
  • Benites D, Torró L, Vallance J, Laurent O, Quispe P, Rosas S, et al. 2022. Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn–Pb–Ag–In–Sn–Cu deposit, Pasco, Peru. Mineralium Deposita 57(3): 481–507. [CrossRef] [Google Scholar]
  • Bertaux J, Becq-Giraudon JF, Jacquemin H. 1993. Les bassins anthracifères de la région de Roanne (Loire, Massif central), marqueurs d’une activité tectonique durant le Viséen supérieur. Géologie de la France 4: 3–10. [Google Scholar]
  • Breiter K, Škoda R, Uher P. 2007. Nb–Ta–Ti–W–Sn–oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic. Mineralogy and Petrology 91: 225–248. [Google Scholar]
  • BRGM. 1977. Carte des Gîtes minéraux de la France à 1/500 000e, feuille Lyon. [Google Scholar]
  • BRGM. 1981. Les ressources minières françaises. Tome 11 : Les gisements de cuivre. Document inédit, 102 p. [Google Scholar]
  • Cantinolle P, Laforêt C, Maurel C, Picot P, Grangeon J. 1985. Contribution à la minéralogie de l’indium : découverte en France de deux nouveaux sulfures d’indium et de deux nouvelles occurrences de roquesite. Bulletin de minéralogie 108(2): 245–248. https://doi.org/10.3406/bulmi.1985.7873. [CrossRef] [Google Scholar]
  • Carr PA, Zink S, Bennett VC, Norman MD, Amelin Y, Blevin PL. 2020. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia. Chemical Geology 539. https://doi.org/10.1016/j.chemgeo.2020.119539. [Google Scholar]
  • Carvalho NJ, Relvas JMRS, Pinto AMM, Marques F, Rosai CJP, Pacheco N, et al. 2014. New insights on the metallogenesis of the Neves Corvo deposit: mineralogy and geochemistry of the zinc-rich Lombador orebody. Goldschmidt Abstracts 353, 8–13 June, Sacramento, California. [Google Scholar]
  • Černý P, Roberts WL, Ercit TS, Chapman R. 1985. Wodginite and associated oxide minerals from the Perless pegmatite, Pennington County, South Dakota. American Mineralogist 70: 1044–1049. [Google Scholar]
  • Cesbron F, Giraud R, Picot P, Pillard F. 1985. La vinciennite, une nouvelle espèce minérale. Étude paragénétique du gîte-type de Chizeuil, Saône-et-Loire. Bulletin de minéralogie 108: 447–456. https://doi.org/10.3406/bulmi.1985.7841. [CrossRef] [Google Scholar]
  • Cheilletz A. 1988. Stratiform tungsten deposits: a review with implications for the Yxsjorberg-Sandudden deposits in Sweden. Geologie En Mijnbouw 67: 293–311. [Google Scholar]
  • Chew DM, Petrus JA, Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006. [Google Scholar]
  • Cochrane R, Spikings RA, Chew D, Wotzlaw JF, Chiaradia M, Tyrrell S, et al. 2014. High temperature (> 350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56. https://doi.org/10.1016/j.gca.2013.11.028. [CrossRef] [Google Scholar]
  • Cook NJ, Ciobanu CL. 2001. Paragenesis of Cu–Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting. Mineralogical Magazine 65(3): 351–372. [CrossRef] [Google Scholar]
  • Cook NJ, Sundblad K, Valkama M, Nygard R, Ciobanu CL, Danyushevsky L. 2011. Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology 284(1-2): 62–73. [CrossRef] [Google Scholar]
  • Cuney M. 1978. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Economic Geology 73(8): 1567–1610. https://doi.org/10.2113/gsecongeo.73.8.1567. [CrossRef] [Google Scholar]
  • Delfour J, Raber C, Barrier P, Genna A, Gagnaison C, Vautier Y. 2009. Notice explicative de la feuille Le Donjon. Éditions BRGM. [Google Scholar]
  • Einaudi MT, Burt DM. 1982. Introduction, terminology, classification and composition of skarn deposits. A special issue devoted to skarn deposits. Economic Geology 77: 745–754. [CrossRef] [Google Scholar]
  • El Korh A, Boiron MC, Cathelineau M, Deloule E, Luais B. 2020. Tracing metallic pre-concentrations in the Limousin ophiolite-derived rocks and Variscan granites (French Massif Central). Lithos 356-357: 105345. [CrossRef] [Google Scholar]
  • Faure M, Monié P, Pin C, Maluski H, Leloix C. 2002. Late Visean thermal event in the northern part of the French Massif Central: new 40Ar/39Ar and Rb-Sr isotopic constraints on tne Hercynian syn-orogenic extension. International Journal of Earth Sciences (Geol. Rundsch) 91: 53–75. https://doi.org/10.1007/s005310100202. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot JY. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. Journal of the Virtual Explorer 19, Paper 5. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D. 2008. Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics 27: TC2005. https://doi.org/10.1029/2007TC002115. [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the French Massif Central. Comptes Rendus Géosciences 341: 202–213. [CrossRef] [Google Scholar]
  • Grolier J. 1971. Contribution à l’étude géologique des séries cristallophylliennes inverses du Massif Central français : la série de la Sioule (Puy de Dôme, Allier). Mémoire BRGM 64: 163. [Google Scholar]
  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M. 2018. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif central revealed by U-Pb dating of wolframite. Mineralium Deposita 53: 21–51. [CrossRef] [Google Scholar]
  • Harlaux M, Marignac C, Mercadier J, Poujol M, Boiron MC, Kouzmanov K, et al. 2021. Multistage development of a hydrothermal W deposit during thes Variscan late-orogenic evolution: the Puy-les-Vignes breccia pipe (Massif Central, France). BSGF Earth Sciences Bulletin (Special Issue Minéralisations périgranitiques, Ed. E. Marcoux) 192: 33. https://doi.org/10.1051/bsgf/2021023. [Google Scholar]
  • Heaman LM. 2009. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards. Chemical Geology 261(1): 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021. [CrossRef] [Google Scholar]
  • Heaman LM, LeCheminant AN. 1993. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chemical Geology 110: 95– 126. [CrossRef] [Google Scholar]
  • Icart JC, Lacharpagne JC, Sider H, Walgenwitz F. 1980. Altération et minéralisation de « type porphyry » à Sibert (Rhône). Chronique de la recherche minière 455: 7–35. [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211: 47–69. [Google Scholar]
  • Johan Z. 1988. Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology 39: 211–29. [CrossRef] [Google Scholar]
  • Kato A, Shinohara K. 1968. The occurrence of roquesite from the Akenobe mine, Hyogo prefecture, Japan. Mineralogical Journal 5(4): 276–284. [CrossRef] [Google Scholar]
  • Lé VT, Jeambrun M, Bouiller R. 1978. Carte géologique au 1/50 000e de Mayet-de-Montagne (671). Éditions BRGM. [Google Scholar]
  • Lefebvre MG, Rommer RL, Glodny J, Roscher M. 2019. Skarn formation and tin enrichment during regional metamorphism: the Hämmerlein polymetallic skarn deposit. Lithos 348-349: 105171. https://doi.org/10.1016/j.lithos.2019.105171. [CrossRef] [Google Scholar]
  • Lerouge C, Gloaguen É, Wille G, Bailly L. 2017. Distribution of In and other rare metals in cassiterite and associated minerals in Sn ± W ore deposits of the western Variscan belt. European Journal of Mineralogy 29: 739–753. [CrossRef] [Google Scholar]
  • Lescuyer JL, Leistel JM, Marcoux É, Milési JP, Thiéblemont D. 1997. Late Devonian-early Carboniferous peak sulphide mineralization in the Western Hercynides. Mineralium Deposita 33: 208–220. [CrossRef] [Google Scholar]
  • Lin W, Faure M, Li XH, Chu Y, Ji W, Xue Z. 2016. Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold-and-Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution. Tectonophysics 677-678: 1–33. [CrossRef] [Google Scholar]
  • Lindeberg T. 2013. Indium analysis and small-scale distribution in sulphides from the Lindbom prospect, Langban area, Western Bergslagen ore province. Unpulished Uppsala University thesis. [Google Scholar]
  • Marcoux É. 1987. Isotopes du plomb et paragenèses métalliques, traceurs de l’histoire des gîtes minéraux. Illustration des concepts de source, d’héritage et de régionalisme dans les gîtes français. Applications en recherche minière. Thèse de doctorat d’État, Université de Clermont-Ferrand II. Mémoire BRGM, n°117, 289 p. + annexes. [Google Scholar]
  • Marcoux É. 2017. Mines et ressources minérales en Armorique. Paris : Éditions Société de l’Industrie Minérale, 468 p. [Google Scholar]
  • Marcoux É, Faure M. 2021. Les minéralisations du Varisque français dans leurs contextes géostructuraux. Géochronique 157: 14–23. [Google Scholar]
  • Marcoux É, Pélisson P, Baubron JC, Lhégu J, Touray JC. 1990. Ages des formations filoniennes à fluorine-barytine-quartz du district de Paulhaguet (Haute-Loire, Massif central français). Compte Rendus Académie des Sciences Paris 311, série I: 829–835. [Google Scholar]
  • Marcoux É, Barré B, Pichavant M, Poujol, M. 2021. Âge et genèse de la coupole granitique à métaux rares (Sn, Li, Nb-Ta, W) de Montebras (Creuse, Massif central français). BSGF – Earth Sciences Bulletin (Special Issue Minéralisations périgranitiques Ed. E. Marcoux) 192. https://doi.org/10.1051/bsgf/2020042. [Google Scholar]
  • Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineralium Deposita 34: 472–504. [CrossRef] [Google Scholar]
  • McDowell FW, McIntosh WC, Farley KA. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology 214(3): 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002. [Google Scholar]
  • Meinert LD, Dipple GM, Nicolescu S. 2005. World skarn deposits. Economic Geology 100th Anniversary Volume: 299–336. [Google Scholar]
  • Meisser N, Thelin P, Chiappero PJ, Maurel C. 1999. Laforêtite, AgInS2, a new mineral of the chalcopyrite group from the Montgros mine, Haute-Loire, France. European Journal of Mineralogy 11: 891–897. [CrossRef] [Google Scholar]
  • Michel J. 2007. Évolution othomagmatique et hydrothermale comparée des coupoles granitiques d’Échassières et de Montebras (Massif central français). Rapport de stage inédit Université d’Orléans, 44 p. [Google Scholar]
  • Monnier L, Salvi S, Melleton J, Bailly L, Béziat D, de Parseval P, et al. 2019. Multiple generations of wolframite mineralization in the Échassières district (Massif central France). Minerals 9(10): 637. https://doi.org/10.3390/min9100637. [CrossRef] [Google Scholar]
  • Monnier L, Melleton J, Vanderhaeghe O, Salvi S, Lach P, Bruguier O, et al. 2021. Episodic precipitation of Wolframite during an orogen: the Échassières district, Variscan belt of France. Minerals 11: 923. https://doi.org/10.3390/min11090923. [CrossRef] [Google Scholar]
  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, et al. 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. [CrossRef] [Google Scholar]
  • Nosenzo F, Manzotti P, Poujol M, Ballèvre M, Langlade J. 2022. A window into an older orogenic cycle: P–T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps). Journal of Metamorphic Geology 40(4): 789–821. https://doi.org/10.1111/jmg.12646. [CrossRef] [Google Scholar]
  • O’Callaghan JW. 2011. The influence of magmatic processes on the geochemistry and mineralisation of indium in the Land’s End pluton, Cornwall. BSc Applied Geology Camborne School of Mines, University of Exeter Cornwall Campus, Tremough, Penryn, Cornwall, TR10 9EZ, 67 p. [Google Scholar]
  • Olivier E. 1888. Mines de cuivre et galène argentifères de Charrier-Laprugne. Extrait de la Revue scientifique du Bourbonnais et du centre de la France. Moulins : Édition Imprimerie Auclaire, 12 p. [Google Scholar]
  • Paradis S. 2015. Indium, germanium and gallium in volcanic- and sediment-hosted base-metal sulphide deposits. In: Simandl GJ, Neetz M, eds. Symposium on Strategic and critical Materials Proceedings, November 13–14, 2015, Victoria, British Columbia. Geological Survey Paper 2015-3, pp. 23–29. [Google Scholar]
  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems 11(3). https://doi.org/10.1029/2009GC002618. [Google Scholar]
  • Picot P. 1954. Le gîte cupro-stannifère de Charrier. Thèse de doctorat, Université de Clermont-Ferrand, 88 p. [Google Scholar]
  • Picot P. 1973. Un nouvel indice de roquesite CuInS2 : Les Clochettes, col du Lautaret (Hautes-Alpes). Bulletin de la Société française de Minéralogie et Cristallographie 96: 319–320. [CrossRef] [Google Scholar]
  • Picot P, Pierrot R. 1963. La roquésite, premier minéral d’indium, CuInS2. Bulletin de la Société française de Minéralogie et Cristallographie 86: 7–14. [CrossRef] [Google Scholar]
  • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D. 2016. U–Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). American Mineralogist 101(11): 2430–2442. https://doi.org/10.2138/am-2016-5736. [CrossRef] [Google Scholar]
  • Reed MH, Palandri J. 2006. Sulfide mineral precipitation from hydrothermal fluids. Reviews in Mineralogy and Geochemistry 61: 609–631. [CrossRef] [Google Scholar]
  • Routhier P. 1980. Où sont les métaux pour l’avenir ? Mémoire BRGM 105: 410. [Google Scholar]
  • Schoene B, Bowring S. 2006. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contributions to Mineralogy and Petrology 151(5): 615. [CrossRef] [Google Scholar]
  • Simons B, Shail RK, Andersen JCO. 2016. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos 260: 76–94. https://doi.org/10.1016/j.lithos.2016.05.010. [CrossRef] [Google Scholar]
  • Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard. 2006. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews 28: 123–145. [CrossRef] [Google Scholar]
  • Sizaret S, Marcoux É, Jébrak M, Touray JC. 2004. The Rossignol fluorite vein, Chaillac, France: Multiphase hydrothermal activity and intra-vein sedimentation. Economic Geology 99: 1107–1122. [Google Scholar]
  • Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Plesovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249(1-2): 1–35. [CrossRef] [Google Scholar]
  • Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotopic evolution by a two-stage model. Earth and Planetary Science Letters 26: 207–221. [Google Scholar]
  • Sugaki A, Kitakaze A, Hayashi K. 1984. Hydrothermal synthesis and phase relations of the polymetallic sulfide system, especially on the Cu–FeBi–S system. In: Sunagawa I, ed. Materials Science of the Earth’s Interior. Tokyo: Terra Science Publishing Co, pp. 545. [Google Scholar]
  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R. 2012. Routine low-damage apatite U/Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13: Q0AA21. [Google Scholar]
  • Tindle AG, Breaks FW. 1998. Oxide minerals of the separation rapids rare-element granitic pegmatite group, Northwestern Ontario. The Canadian Mineralogist 36: 609–635. [Google Scholar]
  • Touray JC, Marcoux É, Hubert P, Proust D. 1989. Hydrothermal processes and ore-forming fluids in the Le Bourneix gold deposit, Central France. Economic Geology 84: 1328–1339. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Laurent O, Gardien V, Moyen JF, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. BSGF – Earth Sciences Bulletin 191: 25. https://doi.org/10.1051/bsgf/2020013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vermeesch, P. 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001. [CrossRef] [Google Scholar]
  • Warr LN. 2021. IMA-CNMNC approved minerals symbols. Mineralogical Magazine 85: 291–320. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.