Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 194, 2023
Numéro d'article 8
Nombre de pages 26
DOI https://doi.org/10.1051/bsgf/2022020
Publié en ligne 24 mai 2023
  • Abdallah H, Sassi S, Meister C, Souissi R. 2000. Stratigraphie intégrée et paléogéographie des séries sédimentaires à la limite Cénomanien-Turonien dans la région Gafsa-Chotts (Tunisie centrale). Cretaceous Research 21: 35–106. [CrossRef] [Google Scholar]
  • Al-Marzouqi M, Budebeds S, Sultan E. 2010. Resolving carbonate complexity. Oilfield Review, Schlumberger 22(2): 40–55. [Google Scholar]
  • Al-Tooqi S, Ehrenberg SN, Al-Habsi N, Al-Shukaili M. 2014. Reservoir rock typing of Upper Shu’aiba limestones, northwestern Oman. Petroleum Geoscience 20(4): 339–352. [CrossRef] [Google Scholar]
  • Ali SA, Clark WJ, Ray Moore W, Dribus JR. 2010. Diagenesis and reservoir quality. Oilfield Review, Schlumberger 22(2): 14–27. [Google Scholar]
  • Bachari M, Grosheny D, Ferry S, France-Lanord C, Negra MG. 2019. The Cenomanian-Turonian Boundary Event (CTBE) in north-central Tunisia (Jebels Serj and Bargou) integrated into regional data (Algeria to Tunisia). Cretaceous Research 94: 108–125. [CrossRef] [Google Scholar]
  • Bailly C, Fortin J, Adelinet M, Hamon Y. 2019. Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth 124(12): 13021–13038. [CrossRef] [Google Scholar]
  • Belikov BP. 1967. Plastic constants of rock-forming minerals and their effect on the elasticity of rocks. IPST, pp. 118–124. [Google Scholar]
  • Ben Ayed N. 1986. Évolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début de mésozoïque à l’actuel. Thèse d’État, Université de Paris-Sud, Orsay, France, 286 p. [Google Scholar]
  • Bertrand L, Géraud Y, Diraison M. 2021. Petrophysical properties in faulted basement rocks: Insights from outcropping analogues on the Western Rift shoulders. Geothermics 95: 102–144. [Google Scholar]
  • Bey S, Kuss J, Premoli Silva I, Negra MH, Gardin S. 2012. Fault-controlled stratigraphy of the Late Cretaceous Abiod Formation at Ain Medheker (Northeast Tunisia). Cretaceous Research 34: 10–25. [CrossRef] [Google Scholar]
  • Boughalmi S. 2020. Sédimentologie et diagenèse des faciès d’intérêt pétrolier du Crétacé Supérieur (Turonien-Coniacien) dans la région de Sfax et dans le Golfe de Gabès. Thèse de Doctorat, Université de Tunis El Manar, Tunisia, 257 p. [Google Scholar]
  • Boughalmi S, Negra MH, Géraud Y, Grosheny D, Saïdi M. 2019. Reservoir properties of Turonian rudist-rich carbonates in Central Tunisia (the onshore of Sfax area). Arabian Journal of Geosciences 12(15): 1–14. [CrossRef] [Google Scholar]
  • Boulanouar A, Rahmouni A, Boukalouch M, Samaouali A, Géraud Y, Harnafi M, Sebbani J. 2013. Determination of thermal conductivity and porosity of building stone from ultrasonic velocity measurements. Geomaterials 3: 138–144. [CrossRef] [Google Scholar]
  • Bourbié T, Coussy O, Zinszer B. 1986. Acoustiques des milieux poreux. Publication de l’Institut Français du Pétrole, 339 p. [Google Scholar]
  • Buiting JJM, Clerke EA. 2013. Permeability from porosimetry measurements: Derivation for a tortuous and fractal tubular bundle. Journal of Petroleum Science and Engineering 108: 267–278. [CrossRef] [Google Scholar]
  • Burollet PF. 1956. Contribution à l’étude stratigraphique de la Tunisie centrale. Thèse Sc. Alger. Ann. Min. Géol. Tunis 18: 350. [Google Scholar]
  • Camoin G. 1989. Les plates-formes carbonatées du Turonien et du Sénonien de la Méditerranée centrale (Tunisie, Algérie, Sicile). Thèse de Doctorat d’État, Université Aix-Marseille, 242 p. [Google Scholar]
  • Caron M, Dall’Agnolo S, Accaire H, Barrera E, Kauffman EG, Amédro F, et al. 2006. High-resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39: 171–200. [CrossRef] [Google Scholar]
  • Chaabouni M. 1996. The Bireno member excellent potential reservoir in central Tunisia. In: 10th Proceedings of Tunisia Petroleum Exploration & Production Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 331–335. [Google Scholar]
  • Clauser C, Huenges E. 1995. Thermal conductivity of rocks and minerals. Handbook of physical constants. American Geophysical Union (AGU): 105–126. [Google Scholar]
  • Corbett PWM, Wang H, Câmara RN, Tavares AC, Borghi De Almeida LF, Perosi F, et al. 2017. Using the porosity exponent (m) and pore-scale resistivity modelling to understand pore fabric types in coquinas (Barremian-Aptian) of the Morro do Chaves Formation, NE Brazil. Marine and Petroleum Geology 88: 628–647. [CrossRef] [Google Scholar]
  • Denis A. 1990. Perméabilité de fracture et diagraphies acoustiques : traitements numériques de données obtenues en forage profond et sur modèle. Thèse de Doctorat, Université Bordeaux I, France, 174 p. [Google Scholar]
  • Dullien FAL. 1979. Porous media fluid transport and pore structure. Academic Press, 369 p. [Google Scholar]
  • Ehnenberg SN, Eberli GP, Keramati M, Moallemi SA. 2006. Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. American Association of Petroleum Geologists 90(1): 91–114. [CrossRef] [Google Scholar]
  • El Husseiny A, Vanorio T. 2016. Porosity-permeability relationship in dual-porosity carbonate analogs porosity-permeability of carbonates. Geophysics 82(1): MR65-MR74. [Google Scholar]
  • Fournier F, Léonide P, Kleipool L, Toullec R, Reijmer JJG, Borgomano J, et al. 2014. Pore space evolution and elastic properties of platform carbonates (Urgonian limestone, Barremian–Aptian, SE France). Sedimentary Geology 308: 1–17. [CrossRef] [Google Scholar]
  • Gardner GHF, Gardner LW, Gregory RW. 1974. Formation velocity and density: The diagnostic basis for stratigraphic traps. Geophysics 39: 770–780. [CrossRef] [Google Scholar]
  • Ghafoori M, Rastegarnia A, Lashkaripour GR. 2018. Estimation of static parameters based on dynamical and physical properties in limestone rocks. Journal of African Earth Sciences 137: 22–31. [CrossRef] [Google Scholar]
  • Grasso M, Torelli L, Mazzoldi G. 1999. Cretaceous-Paleogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian Islands (Central Mediterranean). Tectonophysics 315: 235–250. [CrossRef] [Google Scholar]
  • Grosheny D, Ferry S, Jati M, Ouaja M, Bensalah M, Atrops F, et al. 2013. The Cenomanian-Turonian boundary on the Saharan Platform (Tunisia and Algeria). Cretaceous Research 42: 1–19. [Google Scholar]
  • Guéguen Y, Palciauskas V. 1992. Introduction à la physique des roches. Herman Edition, 299 p. [Google Scholar]
  • Haffen S, Géraud Y, Rosener M, Diraison M. 2017. Thermal conductivity and porosity maps for different materials: A combined case study of granite and sandstone. Geothermics 66: 143–150. [CrossRef] [Google Scholar]
  • Hanini A, Zagrarni MF, Negra MH, Handoura M. 2004. The Cenomanian-Turonian Bahloul Formation in Central-North Tunisia. Biosedimentary events and hydrocarbon signification. In: Proceedings of the 9th Tunisia Petroleum Exploration & Production Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 73–83. [Google Scholar]
  • Hartmann A, Rath V, Clauser C. 2005. Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences 42(7-8): 1042–1055. [CrossRef] [Google Scholar]
  • Homand F, Duffaut P. 2000. Manuel de mécanique des roches. Paris : École des Mines, 265 p. [Google Scholar]
  • Jaballah J. 2017. Les séries du Crétacé supérieur (Albien-Campanien inférieur) en Tunisie centrale Méridionale. Caractères sédimentaires et intérêt économique. Thèse de Doctorat, Université de Tunis, Tunisia, 289 p. [Google Scholar]
  • Jaballah J, Negra MH. 2016. Stratigraphical and sedimentary characters of Late Cretaceous formations outcropping in central and southern Tunisia, Tethyan southern margin. Journal of African Earth Sciences 124: 289–310. [CrossRef] [Google Scholar]
  • Katz AJ, Thompson AH. 1986. Quantitative prediction of permeability in porous rock. Physical Review 24: 8179–8181. [CrossRef] [Google Scholar]
  • Khessibi M. 1978. Études géologiques du secteur de Maknassi-Mezzona et du Djebel Kébar (Tunisie centrale). Thèse de Doctorat, Université de Lyon, France, 175 p. [Google Scholar]
  • Klinkenberg LJ. 1941. The permeability of porous media to liquids and gases. Drilling and production practice. American Petroleum Institute, pp. 200–213. [Google Scholar]
  • Kloubek J. 1981. A new method for the investigation of porous structures using mercury porosimetry. Powder Technology 29: 89–97. [CrossRef] [Google Scholar]
  • Lansari F, Troudi H, Negra MH. 2010. Outcrops-subsurface lithostratigraphic correlations of the Bireno carbonatic reservoir in Central Tunisia. In: Proceedings of the 12th Tunisian Petroleum Exploration & Production Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 63–69. [Google Scholar]
  • Lebedel V, Lézin C, Andreu B, Ettachfini ELM, Grosheny D. 2015. The upper Cenomanian-lower Turonian of the Preafrican trough (Morocco): Platform configuration and paleo environmental conditions. Journal of African Earth Sciences 106: 1–16. [CrossRef] [Google Scholar]
  • Li Y, Wardlaw NC. 1986. The influence of wettability and critical pore-throat size ratio on snap-off. Journal of Colloid and Interface Science 109: 461–472. [CrossRef] [Google Scholar]
  • Lucia FJ. 1999. Carbonate reservoir characterization. Berlin: Springer, 226 p. [CrossRef] [Google Scholar]
  • Lucia FJ. 2004. Origin and petrophysics of dolostone pore space. In: Braithwaite CJR, Rizzi G, Darke G, eds. The geometry and petrogenesis of dolomite hydrocarbon reservoirs. London: Geological Society, pp. 141–155. [Google Scholar]
  • Martinez C, Truillet R. 1987. Evolution structurale et paléogéographique de la Tunisie. Memoria de le Societa Italiana de Geologia 38: 35–45. [Google Scholar]
  • Masse JP, Philip J. 1981. Cretaceous coral-rudistid buildups of France. In: Toomey DF, ed. Fossil reef models. European, Soc. Econ. Paleont. Mineral, Special 30: 399–426. [CrossRef] [Google Scholar]
  • Melki S, Negra MH. 2004. The Abiod Formation in the Enfida area: Particular sedimentary features and reservoir properties and implications. In: Tunisia Petroleum Exploration Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 129–137. [Google Scholar]
  • Mielke P, Bär K, Sass I. 2017. Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization. Journal of Applied Geophysics 140: 135–144. [CrossRef] [Google Scholar]
  • M’Rabet A, Mejri F, Burollet PF, Memmi L, Chandoul H. 1995. Catalog of types sections in Tunisia: Cretaceous. Entreprise Tunisienne d’Activités pétrolières (ETAP). Mem. 8A. Tunisia. [Google Scholar]
  • Nabawy BS. 2015. Impacts of the pore and petro-fabrics on porosity and lithology factor of Archie’s equation for carbonate rocks. Journal of African Earth Sciences 108: 101–114. [CrossRef] [Google Scholar]
  • Nabawy BS, Kassab MA. 2014. Porosity-reducing and porosity-enhancing diagenetic factors for some carbonate microfacies: A guide for petrophysical facies discrimination. Arabian Journal Geosciences 7(11): 4523–4539. [CrossRef] [Google Scholar]
  • Nabawy BS, Géraud Y. 2016. Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones. Journal of African Earth Sciences 115: 48–62. [CrossRef] [Google Scholar]
  • Negra MH, Philip J. 1986. Stratigraphie et paléontologie des formations à rudistes et grands foraminifères du Campanien du Jebel Kébar (Tunisie centrale). Géologie Méditerranéenne 12: 49–57. [Google Scholar]
  • Negra MH, Gili E. 2004. The role of rudists formations in micrite production and stabilization. Example of the Upper Cretaceous rudist formations in Jebel el Kebar, Central Tunisia. Courier Forschungsinstitut Senckenberg 247: 193–205. [Google Scholar]
  • Negra MH, Jaballah J. 2021. The rudist-rich carbonate units in central Tunisia as markers of Late Cretaceous transgressive events. Arabian Journal of Geosciences 13: 1298. [Google Scholar]
  • Negra MH, M’Rabet A, Troudi H, El Asmi K, Saidi F. 1996. Lithofacies and paleogeographic evolution of the upper Cretaceous reservoir rocks in Central Tunisia. In: Proceedings of the 5th Tunisian Petroleum Exploration Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 173–190. [Google Scholar]
  • Njahi Z, Kassabi N, Touir J. 2017. Porosity and reservoir potentiality of the Cherahil Formation limestone (middle-upper Eocene) in the Gulf of Gabes (Tunisia). Journal of African Earth Sciences 131: 166–178. [CrossRef] [Google Scholar]
  • Norton D, Knapp R. 1977. Transport phenomena in hydrothermal system: The nature of porosity. American Journal of Science 277: 913–917. [CrossRef] [Google Scholar]
  • Nooruddin HA, Hossain ME, Al-Yousef H, Okasha T. 2014. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. Journal of Petroleum Science and Engineering 121: 9–22. [CrossRef] [Google Scholar]
  • Pasquale V, Verdoya M, Chiozzi P. 2015. Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics 53: 183–189. [CrossRef] [Google Scholar]
  • Philip J., 1985. Les formations à rudistes du Crétacé en Tunisie. Une revue. Premier Congrès National des Sciences de la Terre, Tunis 1: 235–240. [Google Scholar]
  • Philip J. 2003. Peri-Tethyan neritic carbonate areas: Distribution through time and driving factors. Paleogeography, Paleoclimatology, Paleoecology 196: 19–37. [CrossRef] [Google Scholar]
  • Popov YA, Seminov VG, Korosteliov VM, Berezin VV. 1983. None-contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source. Physics of the solid Earth 19: 563–567. [Google Scholar]
  • Popov YA, Berezin VV, Seminov VG, Korosteliov VM. 1985. Complex detailed investigation of the thermal properties of rocks based on a moving point source. Physics of the solid Earth 21: 64–70. [Google Scholar]
  • Popov YA, Pribnow DFC, Sass JH, Williams CF, Burkhardt H. 1999. Characterization of rock thermal conductivity by high resolution optical scanning. Geothermics 28: 253–276. [CrossRef] [Google Scholar]
  • Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J. 2003. Interrelations between thermal conductivity ans other physical properties of rocks: experimental data. Pure and Applied Geophysics 160: 1137–1161. [CrossRef] [Google Scholar]
  • Purser BH. 1975. Sédimentation et diagenèse précoce de séries carbonatées du Jurassique moyen de Bourgogne. Thèse de Doctorat, Université Paris-Orsay, 383 p. [Google Scholar]
  • Rashid F, Glover PWJ, Lorinczi P, Hussein D, Collier R, Lawrence J. 2015. Permeability prediction in tight carbonate rocks using capillary pressure measurements. Marine and Petroleum Geology 68: 536–550. [CrossRef] [Google Scholar]
  • Rilem. 1978. Altération et protection des monuments en pierre, méthodes expérimentales conseillées. In: Colloque international, Paris, 5–9 juin. [Google Scholar]
  • Robaszynski F, Amédro F, Gonzalez-Donoso JM, Linares D. 2007. Les bio-évènements de la limite Albien (Vraconnien)-Cénomanien aux marges nord et sud de la Téthys (S.E. de la France et Tunisie centrale). Carnets de Géologie. Notebooks on Geology 2: 3–15. [Google Scholar]
  • Saïdi F, Ben Ismail MH, M’Rabet A. 1997. Les récifs Coniaciens à rudistes de Tunisie Centro-Occidentale : sédimentologie, cadre paléogéographique et interprétation séquentielle. Journal of African Earth Sciences 24(4): 531–548. [CrossRef] [Google Scholar]
  • Salah MK, El Ghandour MM, Abdel-Hameed AMT. 2016. Effect of diagenesis on the petrophysical properties of the Miocene rocks at the Qattara depression, north Western Desert, Egypt. Arabian Journal of Geosciences 9(5): 329. [CrossRef] [Google Scholar]
  • Salah MK, Alqudah M, David C. 2020. Acoustics and petrophysical investigations on upper cretaceous carbonate rocks from northern Lebanon. Journal of African Earth Sciences 172: 103955. [CrossRef] [Google Scholar]
  • Salaj J. 1978. The geology of the Pelagian block: The eastern Tunisian Platform. In: Nairn AEM, Kanes WH, Stehli FG, eds. The Ocean Basins and Margin: The western Mediterranean. New York: Plenum Press 4(B), pp. 77–95. [Google Scholar]
  • Salmouna-Jomaa D. 2017. Lithostratigraphy and sedimentology of the Turonian-Coniacian Biréno-Douleb carbonates in Gafsa region: Correlation with the Gulf of Gabes. Thèse de Doctorat, Université de Tunis El Manar, Tunisia, 253 p. [Google Scholar]
  • Salmouna-Jomaa D, Chaabani F, Dhahri F, Mzoughi M, Salmouna A, Bessaies-Zijlstra H. 2014. Lithostratigraphic analysis of the Turonian-Coniacian Bireno and Douleb carbonate Members in Jebels Berda and Chemsi, Gafsa basin, central-southern Atlas of Tunisia. Journal of African Earth Sciences 100: 733–754. [CrossRef] [Google Scholar]
  • Scheidegger AE. 1974. The physics of flow through porous media. University of Toronto Press, 353 p. [Google Scholar]
  • Scott RW. 2003. High resolution North African Cretaceous stratigraphy: Status. In: North African Cretaceous Carbonate Plateform Systems. Amsterdam: Kluwer Academic Publishers, pp. 1–17. [Google Scholar]
  • Skelton PW. 2003. In: Skelton PW, ed. The Cretaceous World. The Open University, Cambridge University Press, 360 p. [Google Scholar]
  • Skelton PW, Gili E. 1991. Palaeoecological classification of rudist morphotypes. In: First International Conference on Rudists, Belgrade, Serbian Geological Society, pp. 71–86. [Google Scholar]
  • Soete J, Kleipool LM, Claes H, Claes S, Hamaekers H, Kele S, et al. 2015. Acoustic properties in travertines and their relation to porosity and pore types. Marine and Petroleum Geology 59: 320–335. [CrossRef] [Google Scholar]
  • Touati MA, Rodgers MR. 1998. Tectono-stratigraphic history of the southern gulf of Gabes and the hydrocarbon habitas. In: Proceeding of the 6th Tunisian Petroleum Exploration And Production Conference, Tunisia, Entreprise Tunisienne d’Activités Pétrolières (ETAP), pp. 343–369. [Google Scholar]
  • Touir J, Soussi M, Troudi H. 2009. Polyphased dolomitization of a shoal-rimmed carbonate platform: example from the middle Turonian Bireno dolomites of central Tunisia. Cretaceous Research 30: 785–804. [CrossRef] [Google Scholar]
  • Troudi H. 1998. Les réservoirs et faciès associés du Crétacé supérieur en Tunisie centrale : sédimentologie, stratigraphie séquentielle et diagenèse. Thèse de Doctorat, Université de Tunis, Tunisia, 287 p. [Google Scholar]
  • Troudi H, Negra MH, M’Rabet A. 1999. Predictive evaluation of Lower-Middle Turonian carbonate reservoir in Central Tunisia through integration of depositional environment and diagenesis. Ann. Mines Géol. 40: 81–98. [Google Scholar]
  • Vernik L. 1994. Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastic. Geophysics 59: 420–427. [CrossRef] [Google Scholar]
  • Verwer K, Eberli GP, Weger RJ. 2011. effect of pore structures on electrical resistivity in carbonates. American Association of Petroleum Geologists 95(2): 175–190. [CrossRef] [Google Scholar]
  • Wang Z, Nur A. 1992. Elastic wave velocity in porous media: A theorical recipe. In: Wang Z, Nur A, eds. Seismic and acoustic velocities in reservoir rocks. Geophysics, pp. 1–35. [Google Scholar]
  • Wardlaw NC, Taylor RP. 1976. Mercury capillary pressure curves and the interpretation of pore structure and capillary behavior in reservoir rocks. Bulletin of Canadian Petroleum Geology 24: 226–272. [Google Scholar]
  • Wardlaw NC, Cassan JP. 1978. Estimation of recovery efficiency by visual observation of pore systems in reservoir rocks. Bulletin of Canadian Petroleum Geology 26: 572–585. [Google Scholar]
  • Wardlaw NC, Mckellar M. 1981. Mercury porosimetry and interpretation of pore geometry in sedimentary rocks and artificial models. Powder Technology 29: 127–143. [CrossRef] [Google Scholar]
  • Wardlaw NC, Yu L. 1988. Fluid topology, pore size and aspect ratio during imbibition. Transport in Porous Media 3: 17–34. [CrossRef] [Google Scholar]
  • Washburn EW. 1921. Note on a method of determining the distribution of pores sizes in a porous material. Proceeding of the National Academy of Science 7: 115–116. [CrossRef] [Google Scholar]
  • Watanabe N, Kusanagi H, Shimazu T, Yagi M. 2019. Local non-vuggy modeling and relations among porosity, permeability and preferential flow for vuggy carbonates. Engineering Geology 248: 197–206. [CrossRef] [Google Scholar]
  • Wyllie MRJ, Gregory AR, Gargner GHF. 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23: 459–493. [CrossRef] [Google Scholar]
  • Zagrarni MF. 1996. Sédimentologie, stratigraphie séquentielle et diagenèse des faciès du Crétacé supérieur du Jebel Biréno. Paléogéographies des plates-formes carbonatées du Cénomanien supérieur-Coniacien en Tunisie centrale. Thèse de Doctorat, Université de Tunis, Tunisia, 358 p. [Google Scholar]
  • Zagrarni MF, Negra MH, Melki S. 2003. Turonian rudist-coral limestones in Jebel Biréno, Central Tunisia. In: Gili E, Negra MH, Skelton P, eds. North African Cretaceous Carbonate Platform Systems. Amsterdam: Kluwer Academic Publishers, pp. 111–128. [CrossRef] [Google Scholar]
  • Zagrarni MF, Negra MH, Melki S. 2008. The Cenomanian-Turonian Bahloul Formation in central-north Tunisia. Biosedimentary events and sequence stratigraphy. Sedimentary Geology 204: 18–35. [CrossRef] [Google Scholar]
  • Zinszner B, Pellerin FM. 2007. A Geoscientist’s guide to petrophysics. Publication de l’Institut Français du Pétrole, 384 p. [Google Scholar]
  • Zouari H, Turki MM, Deteil J, Stephan JP. 1999. Tectonique transtensive de la paléomarge tunisienne au cours de l’Aptien-Campanien. Bulletin de la Société géologique de France 3: 295–301. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.