Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 196, 2025
Numéro d'article 13
Nombre de pages 32
DOI https://doi.org/10.1051/bsgf/2025004
Publié en ligne 18 juillet 2025
  • Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JA. 2009. Titanium in phengite: a geobarometer for high temperature eclogites. Contributions to Mineralogy and Petrology 159(1): 1. https://doi.org/10.1007/s00410-009-0412-7. [Google Scholar]
  • Avigad D, Abbo A, Gerdes A, Schmitt AK. 2022. Crustal evolution of Western Europe: Constraints from detrital zircon U–Pb–Hf–O isotopes. Gondwana Research 106: 379–396. https://doi.org/10.1016/J.GR.2022.02.006. [Google Scholar]
  • Ballèvre M, Catalán JRM, López-Carmona A, Abati J, Díez-Fernández R, Fernández-Suárez J. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: A joint French-Spanish project. Geological Society Special Publication 405(1): 77–113. https://doi.org/10.1144/SP405.13. [Google Scholar]
  • Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46(3): 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1. [CrossRef] [Google Scholar]
  • Barbey P, Marignac C, Montel JM, Macaudière J, Gasquet D, Jabbori J. 1999. Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: The Velay granite complex (Massif Central, France). Journal of Petrology 40(9): 1425–1441. https://doi.org/10.1093/petroj/40.9.1425. [Google Scholar]
  • Barbey P, Villaros A, Marignac C, Montel JM. 2015. Multiphase melting, magma emplacement and P–T–time path in late-collisional context: The Velay example (Massif Central, France). Bulletin de la Société Géologique de France 186(2–3): 93–116. https://doi.org/10.2113/gssgfbull.186.2-3.93. [Google Scholar]
  • Barboza SA, Bergantz GW, Brown M. 1999. Regional granulite facies metamorphism in the Ivrea zone: Is the Mafic Complex the smoking gun or a red herring? Geology 27(5): 450. [Google Scholar]
  • Bellanger M, Hermant B, Galibert S, Auxiètre JL. 2019. Fault-controlled hydrothermal system associated with major crustal fault zone: future drilling target to assess the deep geothermal potential– The Sioule license project. In: Proceedings European Geothermal Congress, Den Haag, The Netherlands [Google Scholar]
  • Benmammar A, Couzinié S, Faure M, Cocherie A, Rossi P, Mezger K, Melleton J. 2020. Pressure–temperature conditions and significance of Upper Devonian eclogite and amphibolite facies metamorphisms in southern French Massif Central. Bulletin de la Société Géologique de France 191(1). https://doi.org/10.1051/BSGF/2020033. [Google Scholar]
  • Berger J, Faure M, Couzinié S, Janots E, Bé Mézème E, Bruguier O, Gèze B, Duguet M. 2024. Short-lived active margin magmatism preceding Variscan collision in the Western French Massif Central. Bulletin de la Société Géologique de France 195(1): 7. https://doi.org/10.1051/BSGF/2024003. [Google Scholar]
  • Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier JC, Demaiffe D. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid–rock interactions. Lithos 118(3): 365–382. https://doi.org/10.1016/j.lithos.2010.05.013. [Google Scholar]
  • Bernard-Griffiths J, Cornichet J. 1985. Origin of eclogites from South Brittany, France: A Sm–Nd isotopic and REE study. Chemical Geology: Isotope Geoscience Section 52(2): 185–201. https://doi.org/10.1016/0168-9622(85)90017-X. [Google Scholar]
  • Bertrand JM, Leterrier J, Cuney M, Brouand M, Stussi JM, Delaperrière E. 2001. Géochronologie U–Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux–Civray (seuil du Poitou) et de Vendée. Géologie de la France 1(2): 167–189. [Google Scholar]
  • Binon M, Pin C. 1989. Géochronologie Rb–Sr et U–Pb des granites du Mayet-de-Montagne et des Bois Noirs, Montagne Bourbonnaise (Massif Central). Bulletin de la Société Géologique de France V(4): 695–703. https://doi.org/10.2113/GSSGFBULL.V.4.695. [Google Scholar]
  • Bouilhol P, Leyreloup AF, Delor C, Vauchez A, Monié P. 2006. Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes, French Massif Central). Geodinamica Acta 19(3–4): 137–153. https://doi.org/10.3166/GA.19.137-153. [Google Scholar]
  • Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273(1–2): 48–57. https://doi.org/10.1016/J.EPSL.2008.06.010. [Google Scholar]
  • Brodie KH, Rutter EH, Evans P. 1982. On the structure of the Ivrea–Verbano Zone (northern Italy) and its implications for present-day lower continental crust geometry. Terra Nova 4(1): 34–40. [Google Scholar]
  • Brousse R, 1990. Carte géologique de la France à 1/50 000. 740, La Tour-d’Auvergne, BRGM (French Geological Survey). Bureau de recherches géologiques et minières’. [Google Scholar]
  • Brown M. 2001. Crustal melting and granite magmatism: key issues. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26(4): 201–212. https://doi.org/10.1016/S1464-1895(01)00047-3. [Google Scholar]
  • Burg JP, Leyreloup AF, Romney F, Delor CP. 1989. Inverted metamorphic zonation and Variscan thrust tectonics in the Rouergue area (Massif Central, France): P–T–t record from mineral to regional scale. Geological Society Special Publication 43: 423–439. https://doi.org/10.1144/GSL.SP.1989.043.01.38. [Google Scholar]
  • Burg JP, Matte P, Leyreloup A, Marchand J. 1984. Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: An example in the French Massif Central. Geological Society Special Publication 14: 47–61. https://doi.org/10.1144/GSL.SP.1984.014.01.05. [Google Scholar]
  • Burg JP, Matte PJ. 1978. A cross section through the French Massif Central and the scope of its Variscan geodynamic evolution. Zeitschrift der Deutschen Geologischen Gesellschaft 129(2): 429–460. https://doi.org/10.1127/zdgg/129/1978/429. [Google Scholar]
  • Burg JP, Vanderhaeghe O. 1993. Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). Journal of Structural Geology 15(11): 1293–1301. https://doi.org/10.1016/0191-8141(93)90103-H. [Google Scholar]
  • Cavalcante C, Hollanda MH, Vauchez A, Kawata M. 2018. How long can the middle crust remain partially molten during orogeny? Geology 46(10): 839–842. https://doi.org/10.1130/G45126.1. [Google Scholar]
  • Cawood PA, Hawkesworth CJ, Dhuime B. 2013. The continental record and the generation of continental crust. Bulletin of the Geological Society of America 125(1–2): 14–32. https://doi.org/10.1130/B30722.1. [Google Scholar]
  • Chantraine J, Autran A, Cavelier C, Clozier L. 2003. Carte géologique de la France à l’échelle du millionième. Bureau de recherches géologiques et minières’. [Google Scholar]
  • Chelle-Michou C, Faure M, Cocherie A, Rossi P, Paquette JL, Ganne J. 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Research 46: 170–190. https://doi.org/10.1016/j.gr.2017.02.010. [Google Scholar]
  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17(12): 1567–1574. https://doi.org/10.1039/B206707B. [Google Scholar]
  • Clemens JD. 1990. The granulite–granite connexion. In: Granulites and crustal evolution, pp. 25–36. https://doi.org/10.1007/978-94-009-2055-2_3/COVER. [Google Scholar]
  • Clemens JD, Stevens G, Bryan SE. 2020. Conditions during the formation of granitic magmas by crustal melting– Hot or cold; drenched, damp or dry? Earth-Science Reviews 200: 102982. https://doi.org/10.1016/J.EARSCIREV.2019.102982. [Google Scholar]
  • Coggon R, Holland TJB. 2002. Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. Journal of Metamorphic Geology 20(7): 683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x. [Google Scholar]
  • Connolly JAD. 2009. The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems 10(10): 10014. https://doi.org/10.1029/2009GC002540. [Google Scholar]
  • Costa S, Rey P. 1995. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23(10): 905–908. https://doi.org/10.1130/0091-7613(1995)0230905:LCRAGD2.3.CO;2–. [Google Scholar]
  • Do Couto D, Faure M, Augier R, Cocherie A, Rossi P, Li XH, Lin W. 2016. Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central. International Journal of Earth Sciences 105(2): 557–579. https://doi.org/10.1007/s00531-015-1184-0. [Google Scholar]
  • Couzinié S. et al., 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287: 16–34 [Google Scholar]
  • Couzinié S, Laurent O, Bouilhol P, Marko L, Moyen JF. 2021. When zircon drowns: Elusive geochronological record of water-fluxed orthogneiss melting in the Velay dome (Massif Central, France). Lithos 384–385: 105938. https://doi.org/10.1016/j.lithos.2020.105938. [Google Scholar]
  • Couzinié S, Laurent O, Chelle-Michou C, Bouilhol P, Paquette JL, Gannoun AM, Moyen JF. 2019. Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Research 324: 269–284. https://doi.org/10.1016/j.precamres.2019.01.016. [Google Scholar]
  • Couzinié S, Bouilhol P, Laurent O, Moyen JF, Villaros A. 2016. Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth and Planetary Science Letters 456: 182–195. https://doi.org/10.1016/j.epsl.2016.09.033. [Google Scholar]
  • Demarchi G, Quick JE, Sinigoi S, Mayer A. 1998. Pressure gradient and original orientation of a lower-crustal intrusion in the Ivrea–Verbano Zone, Northern Italy. Journal name missing, volume(issue): page range. [DOI if available[pg1]]. [Google Scholar]
  • Dostal J, Dupuy C, Leyreloup A. 1980. Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France — implications for the lower crust. Earth and Planetary Science Letters 50(1): 31–40. https://doi.org/10.1016/0012-821X(80)90117-X [Google Scholar]
  • Downes H, Leyreloup A. 1986. Granulitic xenoliths from the French Massif Central: petrology, Sr and Nd isotope systematics and model age estimates. Geological Society Special Publication 24: 319–330. https://doi.org/10.1144/GSL.SP.1986.024.01.28. [Google Scholar]
  • Duwiquet H, Arbaret L, Guillou-Frottier L, Heap MJ, Bellanger M. 2019. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geothermal Energy 7(1). https://doi.org/10.1186/s40517-019-0150-7. [Google Scholar]
  • Duwiquet H, Guillou-Frottier L, Arbaret L, Bellanger M, Guillon T, Heap MJ. 2021. Crustal fault zones (CFZ) as geothermal power systems: a preliminary 3D THM model constrained by a multidisciplinary approach. Geofluids 2021. https://doi.org/10.1155/2021/8855632. [Google Scholar]
  • England PC, Thompson AB. 1984. Pressure–temperature–time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25(4): 894–928. https://doi.org/10.1093/petrology/25.4.894— [Google Scholar]
  • Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D. 2008. Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics 27(2). https://doi.org/10.1029/2007TC002115. [Google Scholar]
  • Faure M, Lardeaux J, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes Rendus Géoscience 341(2–3): 202–213. https://doi.org/10.1016/j.crte.2008.12.001. [Google Scholar]
  • Fernandez A. 1969. La série cristallophyllienne et les granites de la région de Pontgibaud (Puy de Dôme), Massif Central Français. Doctoral dissertation, Université de Clermont-Ferrand. [Google Scholar]
  • Fernandez A, Tempier P. 1977. Mise en place, fabrique mésoscopique et rapports structuraux du granite de Gelles avec l’enveloppe métamorphique (Puy-de-Dôme, Massif Central français). Bulletin du B.R.G.M. (2), IV(4): 357–366. [Google Scholar]
  • Finger E, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP. 1997. Variscan granitoids of Central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology 61(1–4): 67–96. [Google Scholar]
  • Gardien V, Tegyey M, Lardeaux JM, Misseri M, Dufour E. 1990. Crust–mantle relationships in the French Variscan chain: the example of the Southern Monts du Lyonnais unit (eastern French Massif Central). Journal of Metamorphic Geology 8(5): 477–492. https://doi.org/10.1111/J.1525-1314.1990.TB00481.X. [Google Scholar]
  • Gardien V, Vanderhaeghe O, Arnaud N, Cocherie A, Grange M, Lécuyer C. 2011. Thermal maturation and exhumation of a middle orogenic crust in the Livradois area (French Massif Central). Bulletin de la Société Géologique de France 182(1): 5–24. https://doi.org/10.2113/gssgfbull.182.1.5. [Google Scholar]
  • Gasquet D, Boulvais P, 2010. Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French Western Alps: new U–Th–Pb and Argon ages from the Lauzière Massif. Bulletin de la Société Géologique de France 181: 227–241. https://doi.org/10.2113/gssgfbull.181.3.227. [Google Scholar]
  • Girardeau J, Dubuisson G, Mercier JC. 1986. Cinématique de mise en place des ophiolites et nappes cristallophylliennes du Limousin, Ouest du Massif Central français. Bulletin de la Société Géologique de France II(5): 849–860. https://doi.org/10.2113/GSSGFBULL.II.5.849. [Google Scholar]
  • Guergouz C, Martin L, Vanderhaeghe O, Thébaud N, Fiorentini M. 2018. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea–Verbano and Strona–Ceneri Zones, NW Italy. Lithos 308–309: 1–18. https://doi.org/10.1016/j.lithos.2018.02.014. [Google Scholar]
  • Guille BT, Olivier P, Paquette JL, Bosse V, Guillaume D. 2019. Evolution of the middle crust of the Pyrenees during the Paleozoic: new data on the plutonic rocks from the North Pyrenean Agly Massif. International Journal of Earth Sciences 108(1): 245–265. https://doi.org/10.1007/S00531-018-1652-4. [Google Scholar]
  • Hacker BR, Kelemen PB, Behn MD. 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters 307(3–4): 501–516. https://doi.org/10.1016/j.epsl.2011.05.024. [Google Scholar]
  • Handy MR, Franz L, Heller F, Janott B, Zurbriggen R. 1999. Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics 18(6): 1154–1177. https://doi.org/10.1029/1999TC900034. [Google Scholar]
  • Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD. 2010. The generation and evolution of the continental crust. Journal of the Geological Society 167(2): 229–248. https://doi.org/10.1144/0016-76492009-072. [Google Scholar]
  • Hellstrom J, Paton C, Woodhead J, Hergt J. 2008. Iolite: software for spatially resolved LA-(quad and MC) ICP-MS analysis. Mineralogical Association of Canada Short Course Series 40: 343–348. [Google Scholar]
  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. Geological Society Special Publication 179: 387–399. https://doi.org/10.1144/GSL.SP.2000.179.01.23. [Google Scholar]
  • Holdaway MJ. 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet–biotite geothermometer. American Mineralogist 86(10): 1117–1129. [Google Scholar]
  • Holland T, Baker J, Powell R. 1998. Mixing properties and activity–composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. European Journal of Mineralogy 10(3): 395–406. https://doi.org/10.1127/ejm/10/3/0395. [Google Scholar]
  • Holland T, Powell R. 1996. Thermodynamics of order–disorder in minerals: II. Symmetric formalism applied to solid solutions. American Mineralogist 81(11–12): 1425–1437. https://doi.org/10.2138/am-1996-11-1215. [Google Scholar]
  • Holland T, Powell R. 2003. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145(4): 492–501. https://doi.org/10.1007/S00410-003-0464-Z. [Google Scholar]
  • Holland T, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29(3): 333–383. https://doi.org/10.1111/J.1525-1314.2010.00923.X. [Google Scholar]
  • Horstwood M, 2016. Community-derived standards for LA-ICP-MS U–Th–Pb geochronology– uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research 40: n/a. https://doi.org/10.1111/j.1751-908X.2016.00379.x. [Google Scholar]
  • Hottin AM, Camus G, Besson JC, Michaely B, Marchand J, Perichaud JJ. 1989. Notice explicative de la feuille Pontgibaud à 1/50 000. [Google Scholar]
  • Jacob JB, 2021. Crustal melting vs. fractionation of basaltic magmas: Part 2, Attempting to quantify mantle and crustal contributions in granitoids. Lithos 402–403: 106292. https://doi.org/10.1016/J.LITHOS.2021.106292. [Google Scholar]
  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E. 2000. Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. Journal of Petrology 41(4): 511–543. https://doi.org/10.1093/PETROLOGY/41.4.511. [Google Scholar]
  • Kelsey DE, Clark C, Hand M. 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology 26(2): 199–212. https://doi.org/10.1111/j.1525-1314.2007.00757.x. [Google Scholar]
  • Kennedy A, Wotzlaw JF, Crowley J, Schmitz M, Schaltegger U. 2014. Eocene zircon reference material for microanalysis of U–Th–Pb isotopes and trace elements. The Canadian Mineralogist 52: 409–421. https://doi.org/10.3749/canmin.52.3.409. [Google Scholar]
  • Lardeaux JM, 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: Differences and similarities. Geological Society Special Publication 405(1): 7–44. https://doi.org/10.1144/SP405.14. [Google Scholar]
  • Lardeaux JM, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central– A new addition to the ultra-high pressure metamorphic “club”: Exhumation processes and geodynamic consequences. Tectonophysics 332(1–2): 143–155. https://doi.org/10.1016/S0040-1951(00)00253-5“”. [Google Scholar]
  • Laurent O, 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences 106(2): 421–451. https://doi.org/10.1007/s00531-016-1434-9. [Google Scholar]
  • Laurent O, Couzinié S, Doucet LS. 2023. Timescales of ultra-high temperature metamorphism and crustal differentiation: Zircon petrochronology from granulite xenoliths of the Variscan French Massif Central. Earth and Planetary Science Letters 611: 118133. https://doi.org/10.1016/J.EPSL.2023.118133. [Google Scholar]
  • Ledru P, 1989. Où sont les nappes dans le Massif Central français? Bulletin de la Société Géologique de France V(3): 605–618. https://doi.org/10.2113/gssgfbull.V.3.605. [Google Scholar]
  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342(3–4): 207–237. [Google Scholar]
  • Leyreloup A. 1992. La croûte métamorphique du Sud de la France (Massif Central, Languedoc). Géologie de surface et des enclaves remontées par les volcans cénozoïques: Le rôle des intrusions mafiques basi-crustales dans la croûte inférieure. (Thèse d’État). Montpellier. [Google Scholar]
  • Leyreloup A, Dupuy C, Andriambololona R. 1977. Catazonal xenoliths in French Neogene volcanic rocks: constitution of the lower crust 2. Chemical composition and consequences of the evolution of the French Massif Central Precambrian crust. Contributions to Mineralogy and Petrology 62(3): 283–300. [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Anczkiewicz R, Van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos 308–309: 381–394. https://doi.org/10.1016/j.lithos.2018.03.022. [Google Scholar]
  • Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From burial to exhumation: emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). Journal of Petrology 61(4). https://doi.org/10.1093/petrology/egaa046. [Google Scholar]
  • Marsh JH, Jørgensen TRC, Petrus JA, Hamilton MA, Mole DR. 2019. U–Pb, trace element, and hafnium isotope composition of the Maniitsoq zircon: A potential new Archean zircon reference material. Goldschmidt Abstracts: 2161. [Google Scholar]
  • Matte P. 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126(2–4): 329–374. https://doi.org/10.1016/0040-1951(86)90237-4. [Google Scholar]
  • Matte P. 2001. The Variscan collage [pg2]and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 13: 122–128. [Google Scholar]
  • Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the West European Variscan Belt. Gondwana Research 17(1): 13–25. https://doi.org/10.1016/j.gr.2009.05.007. [Google Scholar]
  • Monnier L, 2021. Episodic precipitation of wolframite during an orogen: The Echassières District, Variscan Belt of France. Minerals 11(9): 923. https://doi.org/10.3390/MIN11090923. [Google Scholar]
  • Montel JM, Vielzeuf D. 1997. Partial melting of metagreywackes, part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology 128(2): 176–196. [Google Scholar]
  • Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS, Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS. Chemical Geology 255(1–2): 231–235. https://doi.org/10.1016/J.CHEMGEO.2008.06.040. [Google Scholar]
  • Mougeot R, Respaut JP, Ledru P, Marignac C. 1997. U–Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). European Journal of Mineralogy 9(1): 141–156. [Google Scholar]
  • Moyen JF, 2017. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277: 154–177. https://doi.org/10.1016/j.lithos.2016.09.018. [Google Scholar]
  • Négroni JM. 1981. Le district de Pontgibaud: cadre géologique, évolution structurale et métallogénique. Doctoral dissertation, Université de Clermont-Ferrand. [Google Scholar]
  • Newton RC, Charlu TV, Kleppa OJ. 1980. Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta 44(7): 933–941. https://doi.org/10.1016/0016-7037(80)90283-5. [Google Scholar]
  • Olivier P, Gleizes G, Paquette JL, Sáez CM. 2008. Structure and U–Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly Massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. Journal of the Geological Society 165(1): 141–152. https://doi.org/10.1144/0016-76492006-185. [Google Scholar]
  • Paquette JL, Tiepolo M. 2007. High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICP-MS. Chemical Geology 240(3): 222–237. https://doi.org/10.1016/j.chemgeo.2007.02.014. [Google Scholar]
  • Paton C, Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R. 2010. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems 11: Q0AA06. https://doi.org/10.1029/2009GC002618. [Google Scholar]
  • Petrus JA, Kamber BS. 2012. VizualAge: A novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research 36(3): 247–270. https://doi.org/10.1111/J.1751-908X.2012.00158.X. [Google Scholar]
  • Pin C, Lancelot J. 1982. U–Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contributions to Mineralogy and Petrology 79(1): 1–12. https://doi.org/10.1007/BF00376956. [Google Scholar]
  • Pin C, Paquette JL. 2002. Le magmatisme basique calcoalcalin d’âge dévono-dinantien du nord du Massif Central, témoin d’une marge active hercynienne: arguments géochimiques et isotopiques Sr/Nd. Geodinamica Acta 15(1): 63–77. https://doi.org/10.1080/09853111.2002.10510739’’. [Google Scholar]
  • von Raumer JF, Finger F, Veselá P, Stampfli GM. 2014. Durbachites–Vaugnerites: a geodynamic marker in the Central European Variscan orogen. Terra Nova 26(2): 85–95. https://doi.org/10.1111/ter.12071. [Google Scholar]
  • Rubatto D, Williams IS, Buick IS. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology 140(4): 458–468. https://doi.org/10.1007/PL00007673. [Google Scholar]
  • Rudnick RL. 1995. Making continental crust. Nature 378(6557): 571–578. https://doi.org/10.1038/378571a0. [Google Scholar]
  • Sandiford M, McLaren S, Neumann N. 2002. Long-term thermal consequences of the redistribution of heat-producing elements associated with large-scale granitic complexes. Journal of Metamorphic Geology 20(1): 87–98. https://doi.org/10.1046/J.0263-4929.2001.00359.X. [Google Scholar]
  • Santallier D, Briand B, Menot R, Piboule M. 1988. Les complexes leptyno-amphiboliques (C.L.A.): revue critique et suggestions pour un meilleur emploi de ce terme. Bulletin de la Société Géologique de France IV(1): 3–12. https://doi.org/10.2113/gssgfbull.IV.1.3. [Google Scholar]
  • Santallier D, Lardeaux J, Marchand J, Marignac C. 1994. Metamorphism. In: Chantraine J, Rolet J, Santallier DS, Piqué A, Keppie JD, eds. Pre-Mesozoic Geology in France and Related Areas. Berlin: Springer, pp. 324–340. https://doi.org/10.1007. [Google Scholar]
  • Sawyer EW, Cesare B, Brown M. 2011. When the continental crust melts. Elements 7(4): 229–234. https://doi.org/10.2113/GSELEMENTS.7.4.229. [Google Scholar]
  • Scherer E, Münker C, Mezger K. 2001. Calibration of the lutetium–hafnium clock. Science 293(5530): 683–687. https://doi.org/10.1126/SCIENCE.1061372. [Google Scholar]
  • Schulz B. 2009. EMP-monazite age controls on P–T paths of garnet metapelites in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Bulletin de la Société Géologique de France 180(3): 271–282. https://doi.org/10.2113/gssgfbull.180.3.271. [Google Scholar]
  • Schulz B. 2014. Early Carboniferous P–T path from the Upper Gneiss Unit of Haut-Allier (French Massif Central)– Reconstructed by geothermobarometry and EMP–Th–U–Pb monazite dating. Journal of Geosciences (Czech Republic) 59(4): 327–349. https://doi.org/10.3190/jgeosci.178. [Google Scholar]
  • Schulz B, Triboulet C, Audren C, Feybesse JL. 1996. Zoned garnets in metapelites and P–T–deformation path interpretation of the Variscan inverted metamorphic sequence of Haut-Allier, French Massif Central. Zeitschrift der Deutschen Geologischen Gesellschaft 147(2): 249–273. https://doi.org/10.1127/zdgg/147/1996/249. [Google Scholar]
  • Shaw A, Downes H, Thirlwall MF. 1993. The quartz–diorites of Limousin: elemental and isotopic evidence for Devono–Carboniferous subduction in the Hercynian belt of the French Massif Central. Chemical Geology 107(1–2): 1–18. https://doi.org/10.1016/0009-2541(93)90098-4. [Google Scholar]
  • Sláma J, 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249(1): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005. [Google Scholar]
  • Spencer CJ, Kirkland CL, Taylor RJM. 2016. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontiers 7(4): 581–589. https://doi.org/10.1016/j.gsf.2015.11.006. [Google Scholar]
  • Tajčmanová L, Connolly JAD, Cesare B. 2009. A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology 27(2): 153–165. https://doi.org/10.1111/J.1525-1314.2009.00812.X. [Google Scholar]
  • Tempier P. 1969. Hypothèse sur une relation possible entre les séries cristallophylliennes de la Moyenne Dordogne et de Pontgibaud. Comptes Rendus de l’Académie des Sciences, Paris: 1–4. [Google Scholar]
  • Tempier P. 1974. Les schistes cristallins de la région de Bourg-Lastic (Puy-de-Dôme). Étude pétrographique et structurale. Revue des Sciences Naturelles d’Auvergne 40: 3–25. [Google Scholar]
  • Thompson AB, Connolly JAD. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research 100(B8). https://doi.org/10.1029/95jb00191. [Google Scholar]
  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477(3): 119–134. https://doi.org/10.1016/j.tecto.2009.06.021. [Google Scholar]
  • Vanderhaeghe O, 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. BSGF - Earth Sciences Bulletin 191. https://doi.org/10.1051/bsgf/2020013. [Google Scholar]
  • Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics 342(3–4): 451–472. https://doi.org/10.1016/S0040-1951(01)00175-5. [Google Scholar]
  • Vermeesch P. 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001. [Google Scholar]
  • Vielzeuf D. 1996. Les massifs nord-pyrénéens à soubassement granulitique. In: Barnolas A, Chiron JC, eds. Synthèse géologique et géophysique des Pyrénées. BRGM–ITGE: 502–521. [Google Scholar]
  • Vielzeuf D, Clemens JD, Pin C, Moinet E. 1990. Granites, granulites, and crustal differentiation. In: Granulites and crustal evolution: 59–85. https://doi.org/10.1007/978-94-009-2055-2_5/COVER. [Google Scholar]
  • Vielzeuf D, Paquette JL, Clemens JD, Stevens G, Gannoun A, Suchorski K, Saúl A. 2021. Age, duration and mineral markers of magma interactions in the deep crust: an example from the Pyrenees. Contributions to Mineralogy and Petrology 176(5): 1–22. https://doi.org/10.1007/S00410-021-01789-2. [Google Scholar]
  • Vigneresse JL, Barbey P, Cuney M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37(6): 1579–1600. [Google Scholar]
  • Villaros A, Laurent O, Couzinié S, Moyen JF, Mintrone M. 2018. Plutons and domes: the consequences of anatectic magma extraction — example from the southeastern French Massif Central. International Journal of Earth Sciences 107(8): 2819–2842. https://doi.org/10.1007/s00531-018-1630-x. [Google Scholar]
  • Waldbaum DR, Thompson JB. 1968. Mixing properties of sanidine crystalline solutions: II. Calculations based on volume data. American Mineralogist 53(11–12): 2000–2017. [Google Scholar]
  • Wendt I, Carl C. 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section 86(4): 275–285. https://doi.org/10.1016/0168-9622(91)90010-T. [Google Scholar]
  • Werle M, Stevens G, Moyen J, Laurent O, Harris C, Lana CC, Janney PE. 2023. Cryptic crustal growth identified through Variscan post-collisional lamprophyre–granite composite dykes, French Massif Central. Lithos 454: 107270. [Google Scholar]
  • White RW, Powell R, Holland T, Worley B. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology 18(5): 497–511. https://doi.org/10.1046/j.1525-1314.2000.00269.x. [Google Scholar]
  • White RW, Powell R. 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology 20(7): 621–632. https://doi.org/10.1046/J.1525-1314.2002.00206_20_7.X. [Google Scholar]
  • White RW, Powell R, Holland T. 2001. Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). Journal of Metamorphic Geology 19(2): 139–153. https://doi.org/10.1046/j.0263-4929.2000.00303.x.–– [Google Scholar]
  • Wiedenbeck M, 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19: 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x. [Google Scholar]
  • Woodhead JD, Hergt JM. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research 29(2): 183–195. https://doi.org/10.1111/J.1751-908X.2005.TB00891.X. [Google Scholar]
  • Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society 171(4): 465–479. https://doi.org/10.1144/jgs2013-115. [Google Scholar]
  • Zeyen H, Novak O, Landes M, Prodehl C, Driad L, Hirn A. 1997. Refraction-s N–S seismic investigations of the northern Massif Central (France). Tectonophysics 275(1–3): 99–117. https://doi.org/10.1016/S0040-1951(97)00017-6. [Google Scholar]
  • Zingg A, Handy MR, Hunziker JC, Schmid SM. 1990. Tectonometamorphic history of the Ivrea Zone and its relationship to the crustal evolution of the Southern Alps. Tectonophysics 182(1–2): 169–192. https://doi.org/10.1016/0040-1951(90)90349-D. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.