Issue
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue Paleontology
Article Number 30
Number of page(s) 18
DOI https://doi.org/10.1051/bsgf/2020035
Published online 25 September 2020
  • Apostolescu V. 1959. Ostracodes du Lias du Bassin de Paris. Revue de l’Institut Français du Pétrole 14(6): 795–817. [Google Scholar]
  • Arias C. 2007. Changes in ostracod provincialism during the Early Toarcian in the European Epicontinental Sea-Western Tethys area. Revista española de micropaleontología 38: 245–267. [Google Scholar]
  • Arias C, Whatley RC. 2009. Multivariate hierarchical analyses of Early Jurassic Ostracoda assemblages. Lethaia 42: 495–510. [CrossRef] [Google Scholar]
  • Bate RH. 1977. Jurassic Ostracoda of the Atlantic Basin. In: Swain FM, ed. Stratigraphic micropaleontology of Atlantic basin and borderlands. New York: Elsevier Scientific Pub. Co. Amsterdam, pp. 231–244. [CrossRef] [Google Scholar]
  • Benton MJ, Zhang QY, Hu SX, et al. 2013. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth-Science Reviews 125: 199–243. [CrossRef] [Google Scholar]
  • Bernoulli D, Laubscher H. 1972. The palinspastic problem of the Hellenides. Eclogae Geologicae Helvetiae 65: 107–118. [Google Scholar]
  • Bernoulli D, de Graciansky PC, Monod O. 1974. The extension of the Lycian Nappes (SW Turkey) into the southeastern Aegean Islands. Eclogae Geologicae Helvetiae 67: 39–90. [Google Scholar]
  • Bolz H. 1971a. Late Triassic Bairdiidae and Healdiidae. In: Oertli HJ, ed. Paléoécologie des Ostracodes. Bulletin du Centre de Recherche SNPA 5 (Supplement), pp. 717–745. [Google Scholar]
  • Bolz H. 1971b. Die Zlambach-Schichten (alpine Obertrias) unter besonderer Berück- sichtigung der Ostrakoden, 1: Ostrakoden der Zlambach-Schichten, besonders Bairdiidae. Senckenbergiana Lethaea 52: 129–283. [Google Scholar]
  • Boomer I, Horne DJ, Slipper IJ. 2003. The use of ostracods in palaeoenvironmental studies or what can you do with an Ostracod shell? Palaeontological Society Papers 9: 153–179. [CrossRef] [Google Scholar]
  • Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G, Saccani E. 2013. Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins? International Journal of Earth Sciences 102: 783–811. [CrossRef] [Google Scholar]
  • Brandão SN, Hoppema M, Kamenev GM, et al. 2019. Review of Ostracoda (Crustacea) living below the Carbonate Compensation Depth and the deepest record of a calcified ostracod. Progress in Oceanography 178, in press. https://doi.org/10.1016/j.pocean.2019.102144. [Google Scholar]
  • Brunn JH, Dumont JF, de Graciansky PC, et al. 1971. Outline of the geology of the Western Taurides. In: Campbell AS, ed. Geology and history of Turkey. Tripoli, Libya: Petroleum Exploration Society of Libya, pp. 225–255. [Google Scholar]
  • Brusatte SL, Benton MJ, Lloyd GT, Ruta M, Wang SC. 2011. Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101: 367–382. [CrossRef] [Google Scholar]
  • Buffetaut E, Martin M, Monod O. 1988. Phytosaur remains from the Çenger Formation of the Lycian Taurus (western Turkey); stratigraphical implications. Geobios 21: 237–243. [CrossRef] [Google Scholar]
  • Bunza G, Kozur H. 1971. Beiträge zur Ostracodenfauna der tethyalen Trias. Geologisch-Paläontologische Mitteilungen Innsbruck 1: 1–76. [Google Scholar]
  • Chablais J, Martini R, Kobayashi F, Stampfli GM, Onoue T. 2011. Upper Triassic foraminifers from Panthalassan carbonate buildups of Southwestern Japan and their paleobiogeographic implications. Micropaleontology 57(2): 93–124. [Google Scholar]
  • Chen ZQ, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5: 375–383. [CrossRef] [Google Scholar]
  • Chen YL, Krystyn L, Orchard MJ, Lai XL, Richoz S. 2016. A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts. Papers in Palaeontology 2(2): 235–263. [CrossRef] [Google Scholar]
  • Crasquin-Soleau S, Dépêche F. 1993. Paleoecology of ODP LEG 122 Triassic Ostracodes (Wombat Plateau, NW Australia). Geobios 26(3): 331–344. [CrossRef] [Google Scholar]
  • Crasquin S, Forel MB. 2015. Ostracods (Crustacea) through Permian-Triassic events. Earth-Science Reviews 137: 52–64. [CrossRef] [Google Scholar]
  • Crasquin-Soleau S, Grădinaru E. 1996. Early Anisian ostracode fauna from the Tulcea unit (Cimmerian North Dobrogean orogeny, Romania). Annales de Paléontologie 82: 59–116. [Google Scholar]
  • Crasquin-Soleau S, Galfetti T, Bucher H, Kershaw S, Feng QL. 2007. Ostracod fauna recovery in the aftermath of Permian–Triassic crisis: dating of the Palaeozoic– Mesozoic turnover. Hydrobiologia 585: 13–27. [CrossRef] [Google Scholar]
  • Crasquin S, Forel MB, Feng QL, Yuan AH, Baudin F, Collin PY. 2010. Ostracods (Crustacea) through Permian-Triassic boundary in South China: the Meishan stratotype (Zhejiang Province). Journal of Systematic Palaeontology 8: 331–370. [CrossRef] [Google Scholar]
  • Crasquin S, Scuito F, Reitano A. 2018. Late Carnian (Tuvalian, Tropites dilleri zone) ostracods (Crustacea) from the Mufara Formation (Monte Scalpello, Central-Eastern Sicily, Italy). Annales de Paléontologie 104(2): 129–142. [CrossRef] [Google Scholar]
  • Dépêche F, Crasquin-Soleau S. 1992. 26. Triassic marine ostracodes of the Australian margin (Holes 759B, 760B, 761C, 764A and 764B). Proceedings of the Ocean Drilling Program, Scientific Results 122: 453–462. [Google Scholar]
  • Dercourt J, Zonenshain LP, Ricou LE, et al. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123: 241–315. [CrossRef] [Google Scholar]
  • Dercourt J, Ricou LE, Vrielynck B. 1993. Atlas Tethys palaeoenvironmental maps. Paris: Gauthier-Villars. [Google Scholar]
  • Dercourt J, Gaetani M, Vrielynck B, et al. 2000. Peri-Tethys Palaeogeographical Atlas. Paris: Gauthier-Villars. [Google Scholar]
  • Forel MB, Ozsvárt P, Moix P. 2018. Carnian (Late Triassic) ostracods from the Sorgun Ophiolitic Mélange (Southern Turkey): Taxonomy, palaeoenvironment and evidence of predation. Palaeontologia Electronica 21.2.26A: 1–23. [Google Scholar]
  • Forel MB, Tekin UK, Okuyucu C, Bedi Y, Tuncer A, Crasquin S. 2019a. Discovery of a long-term refuge for ostracods (Crustacea) after the end-Permian extinction: A unique Carnian (Late Triassic) fauna from the Mersin Mélange, southern Turkey. Journal of Systematic Palaeontology 17: 9–58. [CrossRef] [Google Scholar]
  • Forel MB, Thuy B, Wisshak M. 2019b. Digging into the ancestral stocks of Jurassic lineages: ostracods (Crustacea) from Carnian (Late Triassic) sponge mounds from the Maantang Formation (South China). Bulletin de la Société Géologique de France 190(9): 1–29. [CrossRef] [Google Scholar]
  • Graciansky de PC. 1968. Stratigraphie des unités superposées dans le Taurus Lycien et place dans l’arc dinaro-taurique. Bulletin of the Mineral Research and Exploration Institute of Turkey 71: 29–41. [Google Scholar]
  • Graciansky de PC. 1972. Recherches géologiques dans le Taurus Lycien. Thèse de doctorat, Université Paris Sud–Centre d’Orsay, Paris, 762 p. [Google Scholar]
  • Hao W. 1994. The development of the Late Permian-Early Triassic ostracod fauna in Guizhou Province. Geological Review 40(1): 87–93 [In Chinese with English abstract]. [Google Scholar]
  • Hao W. 1996. Ostracods from the Upper Permian and Lower Triassic of the Zhenfeng section, South China. Journal of Geosciences, Osaka City University 39(2): 19–27 [In Chinese with English abstract]. [Google Scholar]
  • Harloff J. 1993. Ostracoden des Unter-Pliensbachiums in Baden-Württemberg. Stuttgarter Beiträge zur Naturkunde Serie B. Geologie und Paläontologie 191: 1–214. [Google Scholar]
  • Harlton BH. 1933. Micropaleontology of the Pennsylvanian Johns Valley Shale of Ouachita Mountains, Oklahoma and its relationships to the Mississippian Caney Shale. Journal of Paleontology 7: 3–29. [Google Scholar]
  • Hausmann IM, Nützel A. 2015. Diversity and palaeoecology of a highly diverse Late Triassic marine biota from the Cassian Formation of north Italy. Lethaia 48: 235–255. [CrossRef] [Google Scholar]
  • Hillebrandt AV, Krystyn L, Kürschner WM. 2007. A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section, Karwendel Mountains, Tyrol, Austria). ISJS Newsletter 34(1): 2–20. [Google Scholar]
  • Hillebrandt AV, Krystyn L, Kürschner WM, et al. 2013. The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36(3): 162–198. [CrossRef] [Google Scholar]
  • Horne DJ, Cohen A, Martens K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. In: Holmes JA, Chivas A, eds. The Ostracoda: applications in Quaternary Research. Geophysical Monograph. Washington, DC: American Geophysical Union, pp. 5–36. [CrossRef] [Google Scholar]
  • Karanovic I. 2012. Recent freshwater ostracods of the world. Berlin, Heidelberg: Springer, 605 p. [CrossRef] [Google Scholar]
  • Ketmuangmoon P, Chitnarin A, Forel MB, Tepnarong P. 2018. Diversity and paleoenvironmental significance of Middle Triassic ostracods (Crustacea) from northern Thailand: Pha Kan Formation (Anisian, Lampang Group). Revue de micropaléontologie 61(1): 3–22. [CrossRef] [Google Scholar]
  • Klompmaker AA, Nützel A, Kaim A. 2016. Drill hole convergence and a quantitative analysis of drill holes in mollusks and brachiopods from the Triassic of Italy and Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 342–359. [CrossRef] [Google Scholar]
  • Kolar-Jurkovšek T. 1990. New ostracod and conodont species from the Triassic strata of Slovenia (NW Yugoslavia). Geologija 31-32: 219–224. [Google Scholar]
  • Kollmann K. 1960. Ostracoden aus der alpinen Trias. I Parabairdia n. g. und Ptychobairdia n. g. (Bairdiidae). Jahrbuch der Geologischen Bundesanstalt 5: 79–105. [Google Scholar]
  • Kollmann K. 1963. Ostracoden aus der alpinen Trias II. Weitere Bairdiidae. Jahrbuch der Geologischen Bundesanstalt 106: 121–203. [Google Scholar]
  • Kozur H. 1970. Neue Ostracoden-Arten aus dem obersten Anis des Bakonyhochlandes (Ungarn). Berichte Naturwiss, Vereins Innsbruck 58: 384–428. [Google Scholar]
  • Kozur H. 1971. Die Bairdiacea der Trias. Teil 1: Skulpturierte Bairdiidae aus Mitteltriassischen Flachwasser. Geologisch Paläontologische Mitteilungen Innsbruck 1: 1–27. [Google Scholar]
  • Kozur H. 1973a. Beiträge zur Stratigraphie und Paläontologie der Trias. Geologisch-Paläontologische Mitteilungen Innsbruck 3(1): 1–30. [Google Scholar]
  • Kozur H. 1973b. Faunenprovinzen in der Trias und ihre Bedeutung für die Klärung der Paläogeographie. Geologisch-Paläontologische Mitteilungen Innsbruck 3(8): 1–41. [Google Scholar]
  • Kozur H. 2000. Northern origin of the Antalya and Alanya Nappes (Western Taurus, Turkey) and causes for the end of the Tethyan faunal provincialism during the middle Carnian. In: Vlahovic I, Biondic R, eds. 2nd Croatian Geological Congress, Zbornik radova, Zagreb, pp. 275–282. [Google Scholar]
  • Kozur H. 2003. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to Stage/Substage subdivision and the numeric age of the Triassic stages. Albertiana 28: 57–74. [Google Scholar]
  • Kozur H, Mostler H. 1994. Anisian to Middle Carnian Radiolarian zonation and description of some stratigraphically important Radiolarians. Geologisch-Paläontologische Mitteilungen Innsbruck 3: 39–255. [Google Scholar]
  • Kozur H, Mostler H. 1996. Longobardian (Late Ladinian), Oertlispongidae (Radiolaria) from the Republic of Bosnia-Hercegovina and the stratigraphic value of advanced Oertispongidae. Geologisch-Paläontologische Mitteilungen Innsbruck 4: 105–193. [Google Scholar]
  • Kozur H, Şenel M, Tekin UK. 1998. First evidence of Hercynian Lower Carboniferous flyschoid deep-water sediments in the Lycian Nappes, Southwestern Turkey. Geologica Croatica 51: 15–22. [Google Scholar]
  • Kozur H, Aydin M, Demir O, Yakar H, Göncüoglu MC, Kuru F. 2000. New Stratigraphic and Palaeogeographic Results from the Palaeozoic and Early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Küre and Inebolu Areas: Implications for the Carboniferous–Early Cretaceous Geodynamic Evolution and Some Related Remarks to the Karakaya Oceanic Rift Basin. Geologica Croatica 53(2): 209–268. [Google Scholar]
  • Kristan-Tollmann E. 1963. Holothurien-Sklerite aus der Trias der Ostalpen. Sitzungberichte der Akademie der Wissenschaftern in Wien, Abteilung 1, 172: 351–380. [CrossRef] [Google Scholar]
  • Kristan-Tollmann E. 1971. Weitere Beobachtungen an skulptierten Bairdiidae (Ostrac.) der alpinen Trias. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 139: 57–81. [Google Scholar]
  • Kristan-Tollmann E. 1978. Bairdiidae (Ostracoda) aus den obertriadischen Cassianer Schichten der Ruones-Wiesen bei Corvara in Südtirol. Schriftenreihe der Erdwissenschaftlichen Kommissionen. Österreichische Akademie der Wissenschaften 4: 77–104. [Google Scholar]
  • Kristan-Tollmann E. 1983. Ostracoden aus dem Oberanis von Leidapo bei Guiyang in Südchina. Neue Beiträge zur Biostratigraphie der Tethys-Trias 5: 121–176. [Google Scholar]
  • Kristan-Tollmann E. 1986a. Triassic of the Tethys and its relations with the Triassic of the Pacific realm. In: McKenzie KG, ed. Shallow Tethys 2. Proceedings of the International Symposium on Shallow Tethys 2, Wagga Wagga, pp. 169–186. [Google Scholar]
  • Kristan-Tollmann E. 1986b. Beobachtungen zur Trias am Südostende der Tethys-Papua/Neuguinea, Australien, Neuseeland. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4: 201–222. [Google Scholar]
  • Kristan-Tollmann E. 1988a. Unexpected microfaunal communities within the Triassic Tethys. Geological Society of London, Special Publication 37: 213–223. [CrossRef] [Google Scholar]
  • Kristan-Tollmann E. 1988b. A comparison of Late Triassic agglutinated foraminifera of Western and Eastern Tethys. Abhandlungen der Geologischen Bundesanstalt 41: 245–253. [Google Scholar]
  • Kristan-Tollmann E. 1991. Triassic Tethyan microfauna in Dachstein Limestone blocks in Japan. In: Kotaka T, et al., eds. Shallow Tethys 3. International Symposium on Shallow Tethys, Sendai, 1990, Sendai: Saito Ho-on Kai? Special Publication 3, pp. 169–186. [Google Scholar]
  • Kristan-Tollmann E. 1993. Zur paläogeographischen Verbreitung der Ostracoden-Gattung Hermiella an der Rhät/Lias-Grenze. Zitteliana 20: 331–342. [Google Scholar]
  • Kristan-Tollmann E, Hamedani A. 1973. Eine spezifische Mikrofaunen-Vergesellschaftung aus den Opponitzer Schichten des Oberkarn der niederösterreichischen Kalkvoralpen. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 143(2): 193–222. [Google Scholar]
  • Kristan-Tollmann E, Tollmann A. 1981. Die Stellung der Tethys in der Trias und die Herkunft ihrer Fauna. Mitteilungen der Österreichischen Geologischen Gesellschaft 74/75: 129–135. [Google Scholar]
  • Kristan-Tollmann E, Tollmann A. 1982. Die Entwicklung der Tethystrias und Herkunft ihrer Fauna. Geologische Rundschau 71(8): 987–101. [CrossRef] [Google Scholar]
  • Kristan-Tollmann E, Tollmann A, Hamedani A. 1979. Beiträge zur Kenntnis der Trias von Persien. I. Revision der Triasgliederung. Rhätfazies in Raum von Isfaham und Kossener Fazieseinschlag bei Waliabad SE Abadeh. Mitteilungen der Österreichischen Geologischen Gesellschaft 70: 119–190. [Google Scholar]
  • Kristan-Tollmann E, Tollmann A, Hamedani A. 1980. Beiträge zur Kenntnis der Trias von Persien. II. Zur Rhätfauna von Bagerabad bei Isfahan (Korallen, Ostracoden). Mitteilungen der Österreichischen Geologischen Gesellschaft 73: 163–235. [Google Scholar]
  • Kristan-Tollmann E, Haas J, Kovács S. 1991. Karnische Ostracoden und Conodonten der Bohrung Zsámbék-14 im Transdanubischen Mittelgebirge (Ungarn). In: Lobitzer H, Csaszar G, eds. Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn. Wien: Teil I, pp. 193–219. [Google Scholar]
  • Latreille PA. 1806. Genera crustaceorum et insectorum secundum ordinem naturalem in familias disposita. In: Iconibus exemplisque plurimis explicata. Amand Koenig, Parisiis et Argentorati, 303 p. [Google Scholar]
  • Liebermann HM. 1979. Die Bivalven- und Ostracodenfauna von Raibl und ihr stratigraphischer Wert. Verhandlungen der Geologischen Bundesanstalt (Wien) 2: 85–131. [Google Scholar]
  • Lord AR. 1988. Ostracoda of the Early Jurassic Tethyan Ocean. In: Hanai T, Ikeya N, Ishizaki K, eds. Evolutionary biology of ostracoda: Its fundamentals and applications. Proceedings of the Ninth International Symposium on Ostracoda, Shizuoka, Japan, 1985. Developments in Palaeontology and Stratigraphy 11, Kodansha, Tokyo and Elsevier, Amsterdam, pp. 855–868. [Google Scholar]
  • Maddocks RF. 2005. Three new species of podocopid ostracoda from hydrothermal vent fields at 9°50’N on the East Pacific Rise. Micropaleontology 51(5): 345–372. [CrossRef] [Google Scholar]
  • McKenzie KG. 1982. Palaeozoic-Cenozoic Ostracoda of Tethys. Bollettino della Società Paleontologica Italiana 21(2-3): 311–326. [Google Scholar]
  • Méhes G. 1911. Über Trias-Ostrakoden aus dem Bakony. Resultate der wissenschaftlichen Erforschung des Balatonsees. Anhang zu Band 1, Teil 1. Paläontologie der Umgebung des Balatonsees 3: 1–38. [Google Scholar]
  • Mette W, Elsler A, Korte C. 2012. Palaeoenvironmental changes in the Late Triassic (Rhaetian) of the Northern Calcareous Alps: Clues from stable isotopes and microfossils. Palaeogeography, Palaeoclimatology, Palaeoecology 350-352: 62–72. [CrossRef] [Google Scholar]
  • Mette W, Honigstein A, Crasquin S. 2014. Deep-water ostracods from the Middle Anisian (Reifling Formation) of the Northern Calcareous Alps (Austria). Journal of Micropalaeontology 34: 71–91. [CrossRef] [Google Scholar]
  • Mirăuță E, Gheorghian D, Badiceanu M. 1993. Données biostratigraphiques sur la Formation de Cataloi (Dobrogea de Nord, Roumanie). Romanian Journal of Stratigraphy 75: 21–27. [Google Scholar]
  • Moix P, Kozur H, Stampfli GM, Mostler H. 2007. New palaeontological, biostratigraphical and palaeogeographical results from the Triassic of the Mersin mélange, SE Turkey. New Mexico Museum of Natural History and Science, Bulletin 41: 282–311. [Google Scholar]
  • Moix P, Beccaletto L, Kozur H, Hochard C, Rosselet F, Stampfli GM. 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 451: 7–39. [CrossRef] [Google Scholar]
  • Moix P, Vachard D, Allibon J, et al. 2013. Palaeotethyan, Neotethyan and Huğlu-Pindos series in the Lycian Nappes (SW Turkey): Geodynamical implications. In: Tanner LH, Spielmann JA, Lucas SG, eds. The Triassic System. New Mexico Museum of Natural History and Science, Bulletin 61, pp. 401–444. [Google Scholar]
  • Monod O, Meşhur M, Martin M, Lys M. 1983. Découverte de dipnoistes triasiques (Cératodontiformes, Dipnoi) dans la formation de Çenger (“Arkoses rouges”) du Taurus lycien (Turquie occidentale). Geobios 16: 161–168. [CrossRef] [Google Scholar]
  • Monostori M. 1994. Ostracod evidence of the Carnian salinity crisis in the Balaton Highland, Hungary. Neues Jahrbuch für Geologie und Paläontologie 193: 311–331. [Google Scholar]
  • Monostori M, Tóth E. 2013. Ladinian (Middle Triassic) silicified ostracod faunas from the Balaton Highland (Hungary). Rivista Italiana di Paleontologia e Stratigrafia 119: 303–323. [Google Scholar]
  • Monostori M, Tóth E. 2014. Additional Middle to Upper Triassic ostracod faunas from the boreholes of Transdanubian Central Range (Hungary). Hantkeniana 9: 21–43. [Google Scholar]
  • Moore RC. 1961. Treatise on Invertebrate Paleontology. Arthropoda 3, Crustacea, Ostracoda. Geological Society of America and University of Kansas Press. [Google Scholar]
  • Müller GW. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres Abschnilte. Fauna und Flora Neapel 21: 1–404. [Google Scholar]
  • Neale JW. 1983. Geological History of the Cladocopina. In: Maddocks R, ed. Applications of Ostracoda. Department of Geosciences, University of Houston, pp. 612–626. [Google Scholar]
  • Neubauer F, von Raumer JF. 1993. The Alpine basement − linkage between Variscan and Mediterranean mountain belts. In: Neubauer F, von Raumer JF, eds. Pre-Mesozoic geology in the Alps. Berlin: Springer, pp. 641–663. [CrossRef] [Google Scholar]
  • Oertli HJ. 1971. The aspect of Ostracode fauna – A possible new tool in petroleum sedimentology. In: Oertli HJ, ed. Paléoécologie des Ostracodes. Bulletin du Centre de Recherche SNPA 5 (Supplement), pp. 137–151. [Google Scholar]
  • Ozsvárt P, Dumitrica P, Moix P. 2017. New early Tuvalian (Carnian, Triassic) radiolarians from the Huğlu-Pindos succession in the Sorgun Ophiolitic Mélange, Southern Turkey. Ofioliti 42(1): 55–67. [Google Scholar]
  • Poisson A. 1977. Recherches géologiques dans les Taurides occidentales (Turquie). Thèse de doctorat, Université Paris-Sud (Centre d’Orsay), 795 p. (unpublished). [Google Scholar]
  • Rigo M, Mazza M, Karádi V, Nicora A. 2018. New Upper Triassic Conodont Biozonation of the Tethyan Realm. In: Tanner LH, ed. The Late Triassic World. Topics in Biology V 46, pp. 189–234. [CrossRef] [Google Scholar]
  • Robertson AHF, Dixon JE. 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: Dixon JE, Robertson AHF, eds. The geological evolution of the Eastern Mediterranean. Geological Society London Special Publications 17: 1–74. [Google Scholar]
  • Robertson AHF, Karamata S, Šarić K. 2009. Overview of ophiolites and related units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the north-ern part of the Balkan region. Lithos 108: 1–36. [CrossRef] [Google Scholar]
  • Robertson AHF, Parlak O, Ustaömer T. 2013. Late Palaeozoic-Early Cenozoic tectonic development of Southern Turkey and the easternmost Mediterranean region: evidence from the inter-relations of continental and oceanic units. Geological Society London Special Publications 372: 9–48. [CrossRef] [Google Scholar]
  • Salas MJ, Vannier J, Williams M. 2007. Early Ordovician Ostracods from Argentina: their bearing on the origin of Binodicope and Palaeocope clades. Journal of Paleontology 81(6): 1384–1395. [CrossRef] [Google Scholar]
  • Sars GO. 1866. Oversight af Norges marine Ostracoder. Forhandlinger i Videnskabs- Selskabet i Christiania 1865: 1–130. [Google Scholar]
  • Sars GO. 1887. Nye bidrag til kundskaben om middelhavets invertebrafauna: 4. Ostracods mediterranea (sydeuropaeiske ostracoder). Archiv for Mathematik og Naturvidenskab 12: 173–324. [Google Scholar]
  • Sars GO. 1922–1928. An account of the Crustacea of Norway. Volume 9, Crustacea. Bergen Museum 9: 1–277. [Google Scholar]
  • Schmid SM, Bernoulli D, Fügenschuh B, et al. 2008. The Alps-Carpathians-Dinarides-connection: a correlation of tectonic unit. Swiss Journal of Geosciences 10(1): 139–183. [CrossRef] [Google Scholar]
  • Sebe O, Crasquin S, Grădinaru E. 2013. Early and Middle Anisian (Triassic) deep-water ostracods (Crustacea) from North Dobrogea (Romania). Revue de Paléobiologie 32: 509–529. [Google Scholar]
  • Şenel M. 1997. 1:100 000 ölçekli, Türkiye jeoloji haritalari serisi, no 2. Fethiye − L8 Paftasi, Ankara (Turkey), 30 p. [Google Scholar]
  • Şenel M, Akdeniz N, Öztürk EM, et al. 1994. Fethiye (Muğla)-Kalkan (Antalya) ve kuzeyinin jeolojisi, Maden Tektik ve Arama Enstitüsü, Report no 9761, Ankara. [Google Scholar]
  • Şengör AMC. 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society London Special Publications 195: 1–82. [Google Scholar]
  • Spekoski JJJr. 1984. A kinetic model of Phanerozoic taxonomic diversity. Paleobiology 10: 246–267. [CrossRef] [Google Scholar]
  • Shi CG, Chen DQ. 1987. The Changhsingian ostracodes from Meishan, Changxing, Zhejiang. Stratigraphy and Palaeontology of Systemic Boundaries in China: Permian and Triassic Boundary 1: 23–80. [Google Scholar]
  • Shi CG, Chen DQ. 2002. Late Permian ostracodes from Heshan and Yishan of Guangxi. Bulletin of the Nanjing Institute Geology and Paleontology 15: 47–129 [In Chinese with English abstract]. [Google Scholar]
  • Siveter DJ. 2008. Ostracods in the Palaeozoic? Senckenbergiana Lethaea 88: 1–9. [CrossRef] [Google Scholar]
  • Stampfli GM, Borel G. 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA, eds. The TRANSMED Atlas: The Mediterranean region from crust to mantle. Berlin and Heidelberg: Springer, pp. 53–80. [CrossRef] [Google Scholar]
  • Stampfli GM, Kozur H. 2006. Europe from the Variscan to the Alpine cycles. In: Gee DG, Stephenson RA, eds. European Lithosphere Dynamics. Memoir of the Geological Society, London, pp. 57–82. [Google Scholar]
  • Sylvester-Bradley PC. 1961. Suborder Metacopina Sylvester-Bradley, n. suborder. In: Moore RC, ed. Treatise on invertebrate paleontology. Arthropoda 3, Crustacea, Ostracoda. Lawrence, Kansas: Geological Society of America and University of Kansas Press, pp. Q358–Q359. [Google Scholar]
  • Urlichs M. 1971. Variability of some ostracods from the Cassian beds (Alpine Triassic) depending on the ecology. In: Oertli HJ, ed. Paléoécologie des Ostracodes. Bulletin du Centre de Recherche SNPA 5 (Supplement), pp. 695–715. [Google Scholar]
  • Urlichs M. 1972. Ostracoden aus den Kössener Schichten und ihre Abhängigkeit von der Ökologie. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich 21: 661–710. [Google Scholar]
  • Urlichs M, Krystyn L. 2016. Stratigraphic significance of the early Rhaetian ostracods from the proposed Norian/Rhaetian GSSP at Steinbergkogel (late Triassic, Upper Austria). Albertiana 43: 19–23. [Google Scholar]
  • Vachard D, Moix P. 2011. Late Pennsylvanian to Middle Permian revised algal and foraminiferan biostratigraphy and palaeobiogeography of the Lycian Nappes (SW Turkey): palaeogeographic implications. Revue de micropaléontologie 54: 141–174. [CrossRef] [Google Scholar]
  • Vachard D, Moix P. 2013. Kubergandian (Roadian, Middle Permian) of the Lycian and Aladağ Nappes (Southern Turkey). Geobios 46: 335–356. [CrossRef] [Google Scholar]
  • van den Bold WA. 1946. Contribution to the study of Ostracoda with special reference to the tertiary and cretaceous microfauna of the Caribbean region. Amsterdam: DeBussy. [Google Scholar]
  • van den Boogaard M. 1966. Post-Carboniferous conodonts from southeastern Spain. Koninklijke Nederlandse Akademie van Wetenschappen B 69: 691–698. [Google Scholar]
  • Van Valen L. 1984. A resetting of Phanerozoic community evolution. Nature 307: 50–52. [CrossRef] [Google Scholar]
  • Vermeij GJ. 1977. The Mesozoic marine revolution; evidence from snails, predators and grazers. Paleobiology 3: 245–258. [CrossRef] [Google Scholar]
  • Warne MT, Whatley R. 2016. Neohornibrookella sorrentae (Chapman and Crespin, 1928) and allied ostracod taxa from the Neogene of southeastern Australia: Systematic and palaeoceanographical relationships, palaeoecology and palaeobiogeography. Marine Micropaleontology 125: 110–133. [CrossRef] [Google Scholar]
  • Yasuhara M, Sztybor K, Rasmussen TL, Okahashi H, Sato R, Tanaka H. 2018. Cold-seep ostracods from the western Svalbard margin: direct palaeo-indicator for methane seepage? Journal of Micropalaeontology 37: 139–148. [CrossRef] [Google Scholar]
  • Yi WJ. 2004. Ostracodes from the Upper Permian and Lower Triassic at the Kongtongshan section of Datian, Fujian. Acta Palaeontologica Sinica 43: 556–570. [Google Scholar]
  • Yuan AH, Crasquin-Soleau S, Feng QL, Gu S. 2009. Ostracods from uppermost Permian siliceous and muddy rocks of Guizhou, Guangxi and Anhui. Acta Micropalaeontologica Sinica 26: 385–403. [Google Scholar]
  • Zazzali S, Crasquin S, Deconinck JF, Feng QL. 2015. Biodiversity across the Guadalupian-Lopingian Boundary: first results on the ostracod (Crustacea) fauna, Chaotian section (Sichuan Province, South China). Geodiversitas 37(3): 283–313. [CrossRef] [Google Scholar]
  • Zorn I. 2010. Ostracodal Type Specimens Stored in the Paleontological Collection of the Geological Survey of Austria. Jahrbuch der Geologischen Bundesanstalt 150(1-2): 263–299. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.