Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Article Number 9
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2022011
Published online 04 August 2022
  • Angel RJ. 1988. High-pressure structure of anorthite. Am. Miner. 73: 1114–1119. [Google Scholar]
  • Antony MP, Tathavadkar VD, Calvert CC, Jha A. 2001. The soda-ash roasting of chromite ore processing residue for the reclamation of chromium. Metall. Mater. Trans. B 32: 987–995. [CrossRef] [Google Scholar]
  • Baston GMN, Clacher AP, Heath TG, Hunter FMI, Smith V, Swanton SW. 2012. Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field. Miner. Mag. 76: 3045–3053. [CrossRef] [Google Scholar]
  • Bewley R. 2007. Treatment of chromium contamination and chromite ore processing residue (No. Technical Paper URS Corporation). [Google Scholar]
  • Burke T, Fagliano J, Goldoft M, Hazen RE, Iglewicz R, McKee T. 1991. Chromite ore processing residue in Hudson County, New Jersey. Environ. Health Perspect. 92: 131–137. [Google Scholar]
  • Chichagov AV. 1989. Information-calculating system on crystal structure data of mineral (MINCRYST). Moscow, USSR. [Google Scholar]
  • Chrysochoou M, Dermatas D. 2007. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. J. Hazard. Mater. 141: 370–377. [CrossRef] [Google Scholar]
  • Chrysochoou M, Fakra SC, Marcus MA, Moon DH, Dermatas D. 2009. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR). Environ. Sci. Technol. 43: 5461–5466. [CrossRef] [Google Scholar]
  • Collotti G, Conti L, Zocchi M. 1959. The structure of the orthorhombic modification of lead chromate PbCrO4 . Acta Crystallogr. 12: 416. [CrossRef] [Google Scholar]
  • De Flora S, Camoirano A, Serra D, Bennicelli C. 1989. Genotoxicity and metabolism of chromium compounds. Toxicol. Environ. Chem. 19: 153–160. [CrossRef] [Google Scholar]
  • Edwards R, Atkinson K. 1986. Ore deposit geology and its influence on mineral exploration. London (United Kingdom): Ed. Chapman and Hall. [CrossRef] [Google Scholar]
  • Effenberger H, Mereiter K, Zemann J. 1981. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z. Für Krist. 156: 233–243. [Google Scholar]
  • Elzinga EJ, Cirmo A. 2010. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). J. Hazard. Mater. 183: 145–154. [CrossRef] [Google Scholar]
  • Földi C, Dohrmann R, Matern K, Mansfeldt T. 2013. Characterization of chromium-containing wastes and soils affected by the production of chromium tanning agents. J. Soils Sedim. 13: 1170–1179. [CrossRef] [Google Scholar]
  • Freese K, Miller R, Cutright T, Senko J. 2014. Review of chromite ore processing residue (COPR): past practices, environmental impact and potential remediation methods. Curr. Environ. Eng. 1: 82–90. [CrossRef] [Google Scholar]
  • Geelhoed JS, Meeussen JC, Hillier S, Lumsdon DG, Thomas RP, Farmer JG, et al. 2002. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim. Cosmochim. Acta 66: 3927–3942. [CrossRef] [Google Scholar]
  • Gérard B, Le Bellego C, Bernard O. 2002. Simplified modelling of calcium leaching of concrete in various environments. Mater. Struct. 35: 632–640. [CrossRef] [Google Scholar]
  • Gu F, Wills BA. 1988. Chromite – mineralogy and processing. Miner. Eng. 1: 235–240. [CrossRef] [Google Scholar]
  • Harris AW, Manning MC, Tearle WM, Tweed CJ. 2002. Testing of models of the dissolution of cements-leaching of synthetic CSH gels. Cem. Concr. Res. 32: 731–746. [CrossRef] [Google Scholar]
  • Hillier S, Roe MJ, Geelhoed JS, Fraser AR, Farmer JG, Paterson E. 2003. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Sci. Total Environ. 308: 195–210. [CrossRef] [Google Scholar]
  • Hillier S, Lumsdon DG, Brydson R, Paterson E. 2007. Hydrogarnet: A host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. Environ. Sci. Technol. 41: 1921–1927. [CrossRef] [Google Scholar]
  • Jacobs M, Tennstedt D, Lachapelle J. 1999. Dermatite allergique de contact. Encycl. Méd. Chir. 7: 1–17. [Google Scholar]
  • Kamolpornwijit W, Meegoda Jay N, Zhengbo H. 2007. Characterization of chromite ore processing residue. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 11: 234–239. [CrossRef] [Google Scholar]
  • Lehoux AP, Sanchez-Hachair A, Lefebvre G, Carlier G, Hébrard C, Lima AT, et al. 2017. Chromium (VI) retrieval from chromium ore processing residues by electrokinetic treatment. Water. Air. Soil Pollut. 228: 378–391. [CrossRef] [Google Scholar]
  • Lenaz D, Skogby H, Princivalle F, Hålenius U. 2004. Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series. Phys. Chem. Miner. 31: 633–642. [CrossRef] [Google Scholar]
  • Matern K, Mansfeldt T. 2016. Chromate adsorption from chromite ore processing residue eluates by three Indian soils. Environ. Chem. 13: 674. [CrossRef] [Google Scholar]
  • Matern K, Kletti H, Mansfeldt T. 2016. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Chemosphere 155: 188–195. [CrossRef] [Google Scholar]
  • Matern K, Weigand H, Kretschmar R, Mansfeldt T. 2020. Leaching of hexavalent chromium from young chromite ore processing residue. J. Environ. Qual. 49: 712–722. [CrossRef] [Google Scholar]
  • Moore AE, Taylor HFW. 1970. Crystal structure of ettringite. Acta Crystallogr. Sect. B 26: 386–393. [CrossRef] [Google Scholar]
  • Myneni SCB. 1995. Oxyanion mineral surface interact ions in alkaline environments: AsO4 and CrO4 sorption and desorption in ettringite. Dissertation, The Ohio State University, 265 p. [Google Scholar]
  • Norseth T. 1981. The carcinogenicity of chromium. Environ. Health Perspect. 40: 121–130. [CrossRef] [Google Scholar]
  • Pedrotti M. 2012. Chromite: from the mineral to the commodity. Dissertation, Università degli studi di Milano, 117 p. [Google Scholar]
  • Perkins RB. 2000. The solubility and thermodynamic properties of ettringite, its chromium analogs, and calcium luminum monochromate (3CaO · Al2O3 · CaCrO4 · nH2O). Dissertation, Portland State University, 217 p. [Google Scholar]
  • Petricek V, Dusek M, Palatinus L. 2015. Jana2006. Institute of physics. Praha: Academy of sciences of the Czech Republic. [Google Scholar]
  • Redhammer GJ, Tippelt G, Roth G, Amthauer G. 2004. Structural variations in the brownmillerite series Ca2(Fe2–xAlx)O5: single-crystal X-ray diffraction at 25 °C and high-temperature X-ray powder diffraction (25 °C ≤ T ≤ 1000 °C). Am. Miner. 89: 405–420. [CrossRef] [Google Scholar]
  • Rietveld HM. 1969. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2: 65–71. [CrossRef] [Google Scholar]
  • Sacerdoti M, Passaglia E. 1988. Hydrocalumite from Latium, Italy: its crystal structure and relationship with related synthetic phases. Neues Jahrb. Mineral. Monatshefte 10: 462–475. [Google Scholar]
  • Sanchez-Hachair A. (2018). Remediation of polluted soils with chromite ore processing residue (COPR): development of an method coupling electrokinetics and in situ chemical reduction. Confidential dissertation, Université de Lille, 251 p. (in French) [Google Scholar]
  • Sanchez-Hachair A, Hofmann A. 2018. Hexavalent chromium quantification in solution: comparing direct UV-visible spectrometry with 1,5-diphenylcarbazide colorimetry. C. R. Chim. 21: 890–896. [CrossRef] [Google Scholar]
  • Sasaki S, Fujino K, Takeushi Y. 1979. X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms. Proc. Jpn. Acad. Ser. B 55: 43–48. [CrossRef] [Google Scholar]
  • Smith GS, Alexander LE. 1963. Refinement of the atomic parameters of α-quartz. Acta Crystallogr. 16: 462–471. [CrossRef] [Google Scholar]
  • Tallarida RJ, Murray RB. 1987. Area under a curve: trapezoidal and Simpson ’s rules. In: Manual of Pharmacologic Calculations . New York, NY: Springer, pp. 77–81. [CrossRef] [Google Scholar]
  • Tathavadkar VD, Jha A, Antony MP. 2003. The effect of salt-phase composition on the rate of soda-ash roasting of chromite ores. Metall. Mater. Trans. B 34: 555–563. [CrossRef] [Google Scholar]
  • Tennstedt D, Jacobs M-C, Baeck M, Lachapelle J-M. 2012. Dermatite allergique de contact. EMC Dermatologie 7(1): 1–17. [CrossRef] [Google Scholar]
  • Tessier A, Campbell PG, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851. [CrossRef] [Google Scholar]
  • Van Laethem F, Legrand J. 1993. Environmental impact of backfill materials of the A22 highway in the north of Lille: search for solutions. Bull. liaison lab. ponts chaussées 188: 59–66. (in French) [Google Scholar]
  • Wazne M, Jagupilla S, Moon D, Jagupilla S, Christodoulatos C, Kim M. 2007. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). J. Hazard. Mater. 143: 620–628. [CrossRef] [Google Scholar]
  • Wazne M, Jagupilla SC, Moon DH, Christodoulatos C, Koutsospyros A. 2008. Leaching mechanisms of Cr(VI) from chromite ore processing residue. J. Environ. Qual. 37: 2125. [CrossRef] [Google Scholar]
  • Winter JK, Okamura FP, Subrata G. 1979. A high-temperature structural study of high albite, monalbite, and the analbite/monalbite phase transition. Am. Miner. 64: 409–423. [Google Scholar]
  • Xie S, Qi L, Zhou D. 2004. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmos. Environ. 38: 4457–4466. [CrossRef] [Google Scholar]
  • Yamaoka T, Abe M, Tsuji M, 1989. Synthesis of Cu–Al hydrotalcite like compound and its ion exchange property. Mater. Res. Bull. 24: 1183–1199. [CrossRef] [Google Scholar]
  • Yongjun F. 2006. Formation et propriétés de materiaux hydroxydes doubles lamellaires bi-intercalés. Agrégats moléculaires et atomiques. English NNT: 2006CLF21708. Dissertation, Université Blaise Pascal–Clermont-Ferrand II. [Google Scholar]
  • Zeien H, Brummer GW. 1989. Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Boden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 59: 505–510. [Google Scholar]
  • Zhang Y, Zheng S, Du H, Xu H, Zhang Y. 2010. Effect of mechanical activation on alkali leaching of chromite ore. Trans. Nonferrous Met. Soc. China 20: 888–891. [CrossRef] [Google Scholar]
  • Zigan F, Rothbauer R. 1967. Neutronenbeugungsmessungen am Brucit. Neues Jahrb. Miner. Monatshefte 1967: 137–143. [Google Scholar]
  • Zubakov SM, Yusupova EN. 1962. Composition and properties of chromite ores from new deposits in Kazakhstan. Refractories 3: 341–344. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.