Issue
BSGF - Earth Sci. Bull.
Volume 193, 2022
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Article Number 1
Number of page(s) 18
DOI https://doi.org/10.1051/bsgf/2021049
Published online 04 January 2022
  • Ardhuin F, Stutzmann E, Schimmel M, Mangeney A. 2011. Ocean wave sources of seismic noise. Journal of Geophysical Research 116: C09004. https://doi.org/10.1029/2011JC006952. [CrossRef] [Google Scholar]
  • Barruol G, Souriau A. 1995. Anisotropy beneath the Pyrenees range from teleseismic shear wave splitting: results from a test experiment. Geophys Res Lett 22(4): 493–496. [CrossRef] [Google Scholar]
  • Barruol G, Souriau A, Vauchez A, Díaz J, Gallart J, Tubía JM, et al. 1998. Lithospheric anisotropy beneath the Pyrenees from shear wave splitting. J Geophys Res 103(B12): 30039–30053. [CrossRef] [Google Scholar]
  • Barruol G, Deschamps A, Coutant O. 2004. Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates Neogene asthenospheric flow induced by Apeninic slab roll-back and deflected by the Alpine roots. Tectonophysics 394: 125–138. [CrossRef] [Google Scholar]
  • Becker TW, Chevrot S, Schulte-Pelkum V, Blackman DK. 2006. Statistical properties of seismic anisotropy in the upper mantle explored by geodynamic models. J Geophys Res 111(B08309). https://doi.org/10.1029/2005JB004095. [Google Scholar]
  • Beller S, Chevrot S. 2020. Probing depth and lateral variations of upper-mantle seismic anisotropy from full-waveform inversion of teleseismic body-waves. Geophys J Int 222: 352–387. [CrossRef] [Google Scholar]
  • Beller S, Monteiller V, Operto S, Nolet G, Paul A, Zhao L. 2018. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion. Geophys J Int 212(2): 1369–1388. [CrossRef] [Google Scholar]
  • Benz HM, Chouet BA, Dawson PB, Lahr JC, Page RA, Hole JA. 1996. Three dimensional P and S wave velocity structure of Redoubt volcano, Alaska. J Geophys Res 101(B4): 8111–8128. [CrossRef] [Google Scholar]
  • Bessière E, Jolivet L, Augier R, Scaillet S, Précigout J, Azañón J-M, et al. 2021. Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics: the Betic-Rif Cordillera example. BSGF − Earth Sciences Bulletin 192: 8. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bonnin M, Chevrot S, Gaudot I, Haugmard M, PYROPE Working Group. 2017. Upper-mantle deformation beneath the Pyrenean domain inferred from SKS splitting in northern Spain and southern France. Geophys J Int 210: 898–910. [CrossRef] [Google Scholar]
  • Brives J. 2020. Tomographie des Pyrénées à partir de corrélations de bruit : méthodes innovantes d’extraction des ondes de volume et de surface. Ph.D. thesis. Université Grenoble Alpes. [Google Scholar]
  • Brocher T. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95(6): 2081–2092. [CrossRef] [Google Scholar]
  • Casas A, Kearey P, Rivero L, Adam CR. 1997. Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth Planet Sci Lett 150: 65–78. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Ponsolles C, Benahmed S, Lefèvre JM, Paradis D. 2007. Source locations of secondary microseisms in western Europe: Evidence for both coastal and pelagic sources. J Geophys Res 112: B11301. https://doi.org/10.1029/2007JB005059. [CrossRef] [Google Scholar]
  • Chevrot S, Villaseñor A, Sylvander M, The PYROPE Team. 2014. High resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J Geophys Res 119(8): 6399–6420. https://doi.org/10.1002/2014JB010953. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Ruiz M, Paul A, The PYROPE Working Group. 2015. The Pyrenean architecture as revealed by teleseismic P-to-S converted waves recorded along two dense transects. Geophys J Int 200: 1096–1107. [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Mouthereau F, Manatschal G. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8: 9591. https://doi.org/10.1038/s41598-018-27889-x. [CrossRef] [Google Scholar]
  • Choukroune P. 1992. Tectonic evolution of the Pyrenees. Ann Rev Earth Planet Sci 20: 143–158. [CrossRef] [Google Scholar]
  • Choukroune P, The ECORS Team. 1989. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8: 23–39. [CrossRef] [Google Scholar]
  • Christensen NI. 1996. Poisson’s ratio and crustal seismology. J Geophys Res 101: 3139–3156. [CrossRef] [Google Scholar]
  • Daignières M, Gallart J, Banda E, Hirn A. 1982. Implications of the seismic structure for the orogenic evolution of the Pyrenean range. Earth Planet Sci Lett 57: 88–100. [CrossRef] [Google Scholar]
  • Daignières M, Séguret M, Specht M, The ECORS Team. 1994. The Arzacq-Mauléon-Western Pyrenees ECORS Deep Seismic Profile. In: Mascle A, ed. Hydrocarbon and Petroleum Geology of France. Vol. 4 of Eur Assoc Pet Geosci Spec Publ. USA: Springer-Verlag, Academic, pp. 199–208. [CrossRef] [Google Scholar]
  • Díaz J, Gallart J, Morais I, Silveira G, Pedreira D, Pulgar JA, et al. 2015. From the Bay of Biscay to the High Atlas: Completing the anisotropic characterization of the upper mantle beneath the westernmost Mediterranean region. Tectonophysics 663: 192–202. [CrossRef] [Google Scholar]
  • Díaz J, Vergès J, Chevrot S, Antonio-Vigil A, Ruiz M, Sylvander M, et al. 2018. Mapping the crustal structure beneath the Eastern Pyrenees. Tectonophysics 744: 296–309. [CrossRef] [Google Scholar]
  • ECORS Pyrenees Team. 1988. The ECORS deep reflection seismic survey across the Pyrenees. Nature 331: 508–511. [CrossRef] [Google Scholar]
  • Gallart J, Daignières M, Banda E, Surinach E, Hirn A. 1980. The Eastern Pyrenean domain: Lateral variations at crust-mantle level. Ann Geophys 36: 457–480. [Google Scholar]
  • Grandjean G. 1994. Étude des structures crustales dans une portion de la chaîne et leur relation avec les bassins sédimentaires. Application aux Pyrénées occidentales. Bull Centres Rech Explor − Prod Elf Aquitaine 18(2): 391–420. [Google Scholar]
  • Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28: TC4012. https://doi.org/10.1029/2008TC002406. [Google Scholar]
  • Jin G, Gaherty JB. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophys J Int 201: 1383–1398. [CrossRef] [Google Scholar]
  • Jolivet L, Romagny A, Gorini C, Maillard A, Thinon I, Couëffé R, et al. 2020. Fast dismantling of a mountain belt by mantle flow: Late-orogenic evolution of pyrenees and liguro-provenc¸al rifting. Tectonophysics 776: 228312. [CrossRef] [Google Scholar]
  • Jolivet L, Baudin T, Calassou S, Chevrot S, Ford M, Issautier B, et al. 2021. Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions. Bulletin de la Société Géologique de France 192(1): 48. https://doi.org/10.1051/bsgf/2021043. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kästle ED, El-Sharkawy A, Boschi L, Meier T, Rosenberg C, Bellahsen N, et al. 2018. Surface wave tomography of the Alps using ambient-noise and earthquake phase velocity measurements. J Geophys Res 123: 1770–1792. [CrossRef] [Google Scholar]
  • Kawai K, Takeuchi N, Geller RJ. 2006. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophys J Int 164: 411–424. [CrossRef] [Google Scholar]
  • Komatitsch D, Tromp J. 1999. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys J Int 139: 806–822. [CrossRef] [Google Scholar]
  • Lehujeur M, Chevrot S. 2020a. Eikonal tomography using coherent surface waves extracted from ambient noise by iterative matched filtering − Application to the large-N Maupasacq array. J Geophys Res 125: e2020JB019363. https://doi.org/10.1029/2020JB019363. [CrossRef] [Google Scholar]
  • Lehujeur M, Chevrot S. 2020b, On the validity of the eikonal equation for surface-wave phase-velocity tomography. Geophys J Int 223: 908–914. https://doi.org/10.1093/gji/ggaa352. [CrossRef] [Google Scholar]
  • Lehujeur M, Chevrot S, Villaseñor A, Masini E, Saspiturry N, Lescoutre R, et al. 2021. Three-dimensional shear velocity structure of the Mauleon and Arzacq basins (Western Pyrenees). BSGF − Earth Sciences Bulletin 192(1): 47. https://doi.org/10.1051/bsgf/2021039. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lin FC, Ritzwoller MH, Snieder R. 2009. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys J Int 177: 1091–1110. [CrossRef] [Google Scholar]
  • Lois A, Sokos E, Martakis N, Paraskevopoulos P, Tselentis G-A. 2013. A new automatic S-onset detection technique: Application in local earthquake data. Geophysics 78(1): KS1–KS11. [CrossRef] [Google Scholar]
  • Lu Y, Stehly L, Paul A, AlpArray Working Group. 2018. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophys J Int 214(2): 1136–1150. [CrossRef] [Google Scholar]
  • Lu Y, Stehly L, Brossier R, Paul A, AlpArray Working Group. 2020. Imaging Alpine crust using ambient noise wave-equation tomography. Geophys J Int 222(1): 69–85. [CrossRef] [Google Scholar]
  • Ma S, Beroza GC. 2012. Ambient-field Green’s functions from asynchronous seismic observations. Geophys Res Lett 39(6): L06301. https://doi.org/10.1029/2011GL050755. [Google Scholar]
  • Macquet M, Paul A, Pedersen HA, Villaseñor A, Chevrot S, Sylvander M, et al. 2014. Ambiant noise tomography of the Pyrenees and surrounding regions: inversion for a 3-D Vs model in the presence of a very heterogeneous crust. Geophys J Int 199: 402–415. [CrossRef] [Google Scholar]
  • Manatschal G, Chenin P, Lescoutre R, Miró J, Cadenas P, Saspiturry N, et al. 2021. The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective. Bulletin de la Société Géologique de France 192(1): 55. https://doi.org/10.1051/bsgf/2021042. [CrossRef] [EDP Sciences] [Google Scholar]
  • Martin R, Chevrot S, Komatitsch D, Seone L, Spangenberg H, Wang Y, et al. 2017. A high order 3-D spectral-element method for the forward modelling and inversion of gravimetric data − Application to the western Pyrenees. Geophys J Int 209: 406–424. [Google Scholar]
  • Martin R, Giraud J, Ogarko V, Chevrot S, Beller S, Gégout P, et al. 2021. Three-dimensional gravity anomaly data inversion in the Pyrenees using compressional seismic velocity model as structural similarity constraints. Geophysical Journal International 225: 1063–1085. [CrossRef] [Google Scholar]
  • McCaig AM. 1988. Deep geology of the Pyrenees. Nature 331: 480–481. [CrossRef] [Google Scholar]
  • Monteiller V, Chevrot S, Komatitsch D, Fuji N. 2013. A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model. Geophys J Int 192: 230–247. [CrossRef] [Google Scholar]
  • Monteiller V, Chevrot S, Komatitsch D, Wang Y. 2015. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method. Geophys J Int 202: 811–827. [CrossRef] [Google Scholar]
  • Monteiller V, Beller S, Plazolles B, Chevrot S. 2021. On the validity of the planar wave approximation to compute synthetic seismograms of teleseismic body waves in a 3-D regional model. Geophys J Int 224: 2060–2076. [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33(12): 2283–2314. https://doi.org/10.1002/2014TC003663. [Google Scholar]
  • Mouthereau F, Angrand P, Jourdon A, Ternois S, Fillon C, Calassou S, et al. 2021. Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics. Bulletin de la Société Géologique de France 192(1): 56. https://doi.org/10.1051/bsgf/2021040. [CrossRef] [EDP Sciences] [Google Scholar]
  • Muñoz JA. 1992. Thrust Tectonics, chap. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. UK: Chapman & Hall, Academi, pp. 235–246. [Google Scholar]
  • Nissen-Meyer T, Dahlen FA, Fournier A. 2007. Spherical-Earth Fréchet sensitivity kernels. Geophys J Int 168(3): 1067–1092. [CrossRef] [Google Scholar]
  • Nissen-Meyer T, Driel M, Stähler S, Hosseini K, Hempel S, Auer L, et al. 2014. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 1: 425–445. [CrossRef] [Google Scholar]
  • Palomeras I, Villaseñor A, Thurner S, Gallart J, Harnafi M. 2017. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise. Geochem Geophys Geosyst 18(5): 1824–1840. [CrossRef] [Google Scholar]
  • Pedreira D, Pulgar JA, Gallart J, Torné M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. J Geophys Res 112: B12405. https://doi.org/10.1029/2007JB005021. [CrossRef] [Google Scholar]
  • Pollitz FF. 2008. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (US Array). J Geophys Res 113: B10311. https://doi.org/10.1029/2007JB005556. [CrossRef] [Google Scholar]
  • Polychronopoulou K, Lois A, Martakis N, Chevrot S, Sylvander M, Díaz J, et al. 2018. Broadband, short-period or geophone nodes? Quality assessment of passive seismic signals acquired during the Maupasacq experiment. First Break 36: 71–76. [CrossRef] [Google Scholar]
  • Ross ZE, Meier MA, Hauksson E, Heaton TH. 2018. Generalized seismic phase detection with deep learning. Bull Seismol Soc Am 108(5A): 2894–2901. [CrossRef] [Google Scholar]
  • Roure F, Choukroune P, Berastegui X, Muñoz JA, Villien A, Matheron P, Bareyt M, et al. 1989. ECORS deep seismic data and balanced cross sections: geometric constraints on the evolution of the Pyrenees. Tectonics 8: 41–50. [CrossRef] [Google Scholar]
  • Savage MK. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys 37: 65–106. [CrossRef] [Google Scholar]
  • Shapiro NM, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7). https://doi.org/10.1029/2004g1019491. [Google Scholar]
  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307: 1615–1618. [CrossRef] [Google Scholar]
  • Shen W, Ritzwoller MH. 2016. Crustal and uppermost mantle structure beneath the United States. J Geophys Res 121: 4306–4342. https://doi.org/10.1002/2016JB012887. [CrossRef] [Google Scholar]
  • Silver PG. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu Rev Earth Planet Sci 24: 385–432. [CrossRef] [Google Scholar]
  • Souriau A, Granet M. 1995. A tomographic study of the lithosphere beneath the pyrenees from local and teleseismic data. J Geophys Res 100: 18117–18134. [CrossRef] [Google Scholar]
  • Souriau A, Chevrot S, Olivera C. 2008. A new tomographic image of the pyrenean lithosphere from teleseismic data. Tectonophysics 460: 206–214. [CrossRef] [Google Scholar]
  • Stehly L, Campillo M, Froment B, Weaver RL. 2008. Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise. J Geophys Res 113: B11306. https://doi.org/10.1029/2008JB005693. [CrossRef] [Google Scholar]
  • Stehly L, Fry B, Campillo M, Shapiro NM, Guilbert J, Boschi L, et al. 2009. Tomography of the Alpine region from observations of seismic ambient noise. Geophys J Int 178(1): 338–350. [CrossRef] [Google Scholar]
  • Sylvander M, Rigo A, Sénéchal G, Battaglia J, Benahmed S, Calvet M, et al. 2021. Seismicity patterns in southwestern France. Comptes Rendus Géoscience 353(S1): 1–26. [Google Scholar]
  • Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 3: 395–406. [CrossRef] [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724–725: 146–170. [Google Scholar]
  • Torné M, De Cabissole B, Bayer R, Casas A, Daignières M, Rivero A. 1989. Gravity constraints on the deep structure of the Pyrenean belt along the ECORS profile. Tectonophysics 165: 105–116. [CrossRef] [Google Scholar]
  • Tryggvason A, Rognvaldsson ST, Flovenz OG. 2002. Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath southwest Iceland. Geophysical Journal International 151(3): 848–866. [CrossRef] [Google Scholar]
  • Tselentis G-A, Martakis N, Paraskevopoulos P, Lois A, Sokos E. 2011. A method for microseismic event detection and P-phase picking, in SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists. [Google Scholar]
  • Vacher P, Souriau A. 2001. A 3-D model of the Pyrenean deep structure based on gravity modelling, seismic images, and petrological constraints. Geophys J Int 145: 460–470. [CrossRef] [Google Scholar]
  • Villaseñor A, Chevrot S, Sylvander M, Polychronopoulou K, Martakis N, Collin M, et al. 2019. Crustal architecture of the Mauleon Basin (Western Pyrenees) from high resolution local earthquake tomography using the large-N Maupasacq experiment. In: Geophysical Research Abstracts, Vol. 21, EGU General Assembly. [Google Scholar]
  • Wang N, Martin R, Plazolles B, Chevrot S, Borysov D, Ogarko V, et al. 2022. On the collaborative inversion of teleseismic waveforms and gravity anomalies. J Geophys Res (submitted). [Google Scholar]
  • Wang Y. 2017. High resolution imaging of lithospheric structures by full waveform inversion of short period teleseismic P waves. Ph.D. thesis. Toulouse: Université Paul-Sabatier. [Google Scholar]
  • Wang Y, Chevrot S, Monteiller V, Komatitsch D, Mouthereau F, Manatschal G, et al. 2016. The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves. Geology 44(6): 475–478. [CrossRef] [Google Scholar]
  • Watanabe T. 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys Res Lett 20: 2933–2936. [CrossRef] [Google Scholar]
  • Wehr H, Chevrot S, Courrioux G, Guillen A. 2018. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravity data. Tectonophysics 734–735: 16–32. [CrossRef] [Google Scholar]
  • Wielandt E. 1993. Propagation and structural interpretation of non-plane waves. Geophys J Int 113: 45–53. [CrossRef] [Google Scholar]
  • Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168(1): 259–274. [CrossRef] [Google Scholar]
  • Zhao L, Malusà MG, Yuan H, Paul A, Guillot S, Lu Y, et al. 2020. Evidence for a serpentinized plate interface favouring continental subduction. Nat Commun 11: 2171. https://doi.org/10.1038/s41467-020-15904-7. [CrossRef] [Google Scholar]
  • Zhu W, Beroza GC. 2019. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216: 261–273. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.