Open Access
Issue
BSGF - Earth Sci. Bull.
Volume 195, 2024
Article Number 26
Number of page(s) 16
DOI https://doi.org/10.1051/bsgf/2024026
Published online 23 December 2024
  • Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling. Earth Planet Sci Lett 357-358: 238–248. [CrossRef] [Google Scholar]
  • Arcay D, Tric E, Doin M-P. 2005. Numerical simulations of subduction zones. Phys Earth Planet Inter 149: 133–153. [CrossRef] [Google Scholar]
  • Bebout GE, Barton MD. 1989. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology 17: 976. [CrossRef] [Google Scholar]
  • Boutier A, Brovarone AV, Martinez I, Sissmann O, Mana S. 2021. High-pressure serpentinization and abiotic methane formation in metaperidotite from the Appalachian subduction, northern Vermont. Lithos 396: 106190. [CrossRef] [Google Scholar]
  • Burov EB, Guillou-Frottier L. 1999. Thermomechanical behavior of large ash flow calderas. J Geophys Res: Solid Earth 104: 23081–23109. [CrossRef] [Google Scholar]
  • Carrillo Ramirez A, Gonzalez Penagos F, Rodriguez G, Moretti I. 2023. Natural H2 emissions in Colombian Ophiolites: first findings. Geosciences 13: 358. [CrossRef] [Google Scholar]
  • Cerpa, N. G., Wada, I., & Wilson, C. R. (2019). Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting. Geosphere, 15: 1–23. https://doi.org/10.1130/GES01660.1 [Google Scholar]
  • Clift PD, Vannucchi P, Morgan JP. 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci Rev 97: 80–04. [CrossRef] [Google Scholar]
  • Connolly JA. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236: 524–41. [CrossRef] [Google Scholar]
  • Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: insights from analog modeling. Tectonics 27: 2007TC002175. [CrossRef] [Google Scholar]
  • Evans BW. 2010. Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life (?). Geology 38: 879–82. [CrossRef] [Google Scholar]
  • Faccenda M. 2014. Water in the slab: a trilogy. Tectonophysics 614: 1–0. [CrossRef] [Google Scholar]
  • Ficini E, Dal Zilio L, Doglioni C, Gerya T. 2017. Horizontal mantle flow controls subduction dynamics. Sci Rep 7: 7550. [CrossRef] [Google Scholar]
  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G. 2013. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14: 489–18. [CrossRef] [Google Scholar]
  • Gaucher EC, Moretti I, Pélissier N, Burridge G, Gonthier N. 2023. The place of natural hydrogen in the energy transition: a position paper. https://doi.org/10.5281/ZENODO8108239 [Google Scholar]
  • Gerya T. 2022. Numerical modeling of subduction: state of the art and future directions. Geosphere 18: 503–61. [CrossRef] [Google Scholar]
  • Gerya TV, Meilick F. 2011. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Metamorp Geol 29: 7–1. [CrossRef] [Google Scholar]
  • Gies NB, Konrad‐Schmolke M, Hermann J. 2024. Modeling the global water cycle—the effect of Mg‐Sursassite and Phase A on deep slab dehydration and the global subduction zone water budget. Geochem Geophys Geosyst 25: e2024GC011507. [CrossRef] [Google Scholar]
  • Gleason GC, Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247: 1–3. [CrossRef] [Google Scholar]
  • Green, T. (1982). Anatexis of mafic crust and high pressure crystallization of andesite. American Society of Mechanical Engineers (Paper), 465–487. [Google Scholar]
  • Grevemeyer I, Ranero CR, Flueh ER, Kläschen D, Bialas J. 2007. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet Sci Lett 258: 528–42. [CrossRef] [Google Scholar]
  • Gutscher M-A., Maury R, Eissen J-P., Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology 28: 535–38. [CrossRef] [Google Scholar]
  • Hacker BR. 2008. H 2 O subduction beyond arcs. Geochem Geophys Geosyst 9: 2007GC001707. [CrossRef] [Google Scholar]
  • Hart SR, Zindler A. 1986. In search of a bulk-Earth composition. Chem Geol 57: 247–67. [CrossRef] [Google Scholar]
  • Heuret A, Funiciello F, Faccenna C, Lallemand S. 2007. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth Planet Sci Lett 256: 473–83. [CrossRef] [Google Scholar]
  • Huangfu P, Wang Y, Cawood PA, Li Z-H., Fan W, Gerya TV. 2016. Thermo-mechanical controls of flat subduction: insights from numerical modeling. Gondwana Res 40: 170–83. [CrossRef] [Google Scholar]
  • Hyndman RD, Peacock SM. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett 212: 417–32. [CrossRef] [Google Scholar]
  • Jarrard RD. 1986. Relations among subduction parameters. Rev Geophys 24: 217–84. [CrossRef] [Google Scholar]
  • Jones RE, Kirstein LA, Kasemann SA, Litvak VD, Poma S, Alonso RN, Hinton R. 2016. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos 262: 169–91. [CrossRef] [Google Scholar]
  • Jourdon A, Le Pourhiet L, Petit C, Rolland Y. 2018. Impact of range‐parallel sediment transport on 2D thermo‐mechanical models of mountain belts: application to the Kyrgyz Tien Shan. Terra Nova 30 : 279–88. [CrossRef] [Google Scholar]
  • Katz RF, Spiegelman M, Langmuir CH. 2003. A new parameterization of hydrous mantle melting. Geochem Geophysics, Geosyst 4. [Google Scholar]
  • Kay RW, Kay SM. 2002. Andean adakites: Three ways to make them. Acta Petrolog Sin 18: 303–11. [Google Scholar]
  • Kay SM, Abbruzzi J. 1996. Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30 and 32 S. Tectonophysics 259: 15–28. [CrossRef] [Google Scholar]
  • Kay SM, Mpodozis C. 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci 15: 39–7. [CrossRef] [Google Scholar]
  • Kopp H, Flueh ER, Papenberg C, Klaeschen D. 2004. Seismic investigations of the O’Higgins Seamount Group and Juan Fernández Ridge: Aseismic ridge emplacement and lithosphere hydration. Tectonics 23. [CrossRef] [Google Scholar]
  • Lachenbruch AH. 1968. Preliminary geothermal model of the Sierra Nevada. J Geophys Rese 73: 6977–6989. [CrossRef] [Google Scholar]
  • Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back‐arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst 6: 2005GC000917. [CrossRef] [Google Scholar]
  • Lallemand S, Peyret M, Arcay D, Heuret A. 2024. Accretion versus erosion and sediment transfer balance near the subduction interface. Comptes Rendus. Géoscience 356 : 1–25. [Google Scholar]
  • Larvet T, Le Pourhiet L, Agard P. 2022. Cimmerian block detachment from Gondwana: a slab pull origin? Earth Planet Sci Lett 596: 117790. [CrossRef] [Google Scholar]
  • Larvet T, Le Pourhiet L, Pubellier M, Gyomlai T. 2023. Slab pull driven south China Sea opening implies a mesozoic proto South China Sea. Geophys Res Lett 50: e2023GL105292. [CrossRef] [Google Scholar]
  • Li Z-H., Gerya T, Connolly JA. 2019. Variability of subducting slab morphologies in the mantle transition zone: insight from petrological-thermomechanical modeling. Earth-Sci Rev 196: 102874. [CrossRef] [Google Scholar]
  • Linkimer L, Beck S, Zandt G, Alvarado P, Anderson M, Gilbert H, Zhang H. 2020. Lithospheric structure of the Pampean flat slab region from double-difference tomography. J South Am Earth Sci 97: 102417. [CrossRef] [Google Scholar]
  • Litvak VD, Poma S, Kay SM. 2007. Paleogene and Neogene magmatism in the Valle del Cura region: new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina. J South Am Earth Sci 24: 117–137. [CrossRef] [Google Scholar]
  • Liu Z, Perez-Gussinye M, García-Pintado J, Mezri L, Bach W. 2023. Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins. Geology 51: 284–289. [CrossRef] [Google Scholar]
  • Manthilake G, Bolfan-Casanova N, Novella D, Mookherjee M, Andrault D. 2016. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges. Sci Adv 2: e1501631. [CrossRef] [Google Scholar]
  • Margirier A, Robert X, Audin L, Gautheron C, Bernet M, Hall S, Simon-Labric T. 2015. Slab flattening, magmatism, and surface uplift in the Cordillera Occidental (northern Peru). Geology 43: 1031–1034. [CrossRef] [Google Scholar]
  • Marot M, Monfret T, Gerbault M, Nolet G, Ranalli G, Pardo M. 2014. Flat versus normal subduction zones: A comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys J Int 199: 1633–1654. [CrossRef] [Google Scholar]
  • Martinod J, Gérault M, Husson L, Regard, V. 2020. Widening of the Andes: an interplay between subduction dynamics and crustal wedge tectonics. Earth-Sci Rev 204: 103170. [CrossRef] [Google Scholar]
  • Martinod J, Husson L, Roperch P, Guillaume B, Espurt N. 2010. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet Sci Lett 299: 299–309. [CrossRef] [Google Scholar]
  • May DA, Brown J, Le Pourhiet L. 2014. pTatin3D: High-performance methods for long-term lithospheric dynamics. SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 274–284. [CrossRef] [Google Scholar]
  • May DA, Brown J, Le Pourhiet L. 2015. A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Comput Methods Appl Mech Eng 290: 496–523. [CrossRef] [Google Scholar]
  • McCollom TM, Klein F, Ramba M. 2022. Hydrogen generation from serpentinization of iron-rich olivine on Mars, icy moons, and other planetary bodies. Icarus 372: 114754. [CrossRef] [Google Scholar]
  • Menant A, Angiboust S, Gerya T, Lacassin R, Simoes M, Grandin R. 2020. Transient stripping of subducting slabs controls periodic forearc uplift. Nature Commun 11: 1823. [CrossRef] [Google Scholar]
  • Moretti I, Baby P, Alvarez Zapata P, Mendoza RV. 2023. Subduction and hydrogen release: the case of Bolivian Altiplano. Geosciences 13: 109. [CrossRef] [Google Scholar]
  • Moretti I, Webber M. 2021. Natural hydrogen: a geological curiosity or the primary energy source for a low-carbon future. Renew Matter 34. [Google Scholar]
  • Myers SC, Beck S, Zandt G, Wallace T. 1998. Lithospheric‐scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J Geophys Res: Solid Earth 103: 21233–21252. [CrossRef] [Google Scholar]
  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106: 380–398. [CrossRef] [Google Scholar]
  • Pe-Piper G, Piper DJW. 1994. Miocene magnesian andesites and dacites, Evia, Greece: Adakites associated with subducting slab detachment and extension. Lithos 31: 125–140. [CrossRef] [Google Scholar]
  • Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145: 325–394. [CrossRef] [Google Scholar]
  • Poli, S., & Schmidt, M. W. (2002). Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30: 207–235. [Google Scholar]
  • Poma SM, Ramos AM, Litvak VD, Quenardelle SM, Maisonnave EB, Díaz I. 2017. Southern Central Andes Neogene magmatism over the Pampean Flat Slab: implications on crustal and slab melts contribution to magma generation in Precordillera, Western Argentina., Andean Geology 44: 249–274. [CrossRef] [Google Scholar]
  • Poma S, Ramos A, Litvak VD, Quenardelle S, Maisonnave EB, Rubinstein N. 2023. Orogenic magmatism along the transition Precordillera-Sierras Pampeanas, between 29° and 31° S, Argentina. J South Am Earth Sci 123: 104236. [CrossRef] [Google Scholar]
  • Ramos VA, Cristallini EO, Pérez DJ. 2002. The Pampean flat-slab of the Central Andes. J South Am Earth Sci. 15: 59–78. [CrossRef] [Google Scholar]
  • Ramos VA, Folguera A. 2009. Andean flat-slab subduction through time. Geolog Soc London Special Publications 327: 31–54. [CrossRef] [Google Scholar]
  • Ranalli G, Murphy DC. 1987. Rheological stratification of the lithosphere. Tectonophysics 132: 281–295. [CrossRef] [Google Scholar]
  • Rough MEM. 2011. H2 and chlorite production from an olivine-rich Gabbroic Rock assemblage: A modeling and experimental study at 420C, 500 bars. M. S. thesis, Department of Earth Sciences, University of Minnesota. [Google Scholar]
  • Schmidt MW, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163: 361–37. [CrossRef] [Google Scholar]
  • Schwartz S, Allemand P, Guillot S. 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: Insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics 342: 193–06. [CrossRef] [Google Scholar]
  • Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P., & Auzende, A. L. (2013). Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197–210. [Google Scholar]
  • Sdrolias M, Müller RD. 2006. Controls on back-arc basin formation. Geochem Geophys Geosyst 7. [CrossRef] [Google Scholar]
  • Turcotte DL, Schubert G. 2002. Geodynamics. Cambridge University Press. [CrossRef] [Google Scholar]
  • Van Keken PE, Hacker BR, Syracuse EM, Abers GA. 2011. Subduction factory: 4. Depth-dependent flux of H 2 O from subducting slabs worldwide. J Geophys Res 116: B01401. [Google Scholar]
  • van Hunen J, van den Berg AP, Vlaar NJ. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett 182: 157–69. [CrossRef] [Google Scholar]
  • van Hunen J, van den Berg AP, Vlaar NJ. 2004. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys Earth Planet Inter 146: 179–94. [CrossRef] [Google Scholar]
  • Vitale Brovarone A, Sverjensky D, Piccoli F, Ressico F, Giovannelli D, Daniel I. 2020. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun 11: 3880. [CrossRef] [Google Scholar]
  • Wagner LS, Anderson ML, Jackson JM, Beck SL, Zandt G. 2008. Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36: 935. [CrossRef] [Google Scholar]
  • Wang, H., Huismans, R. S., & Rondenay, S. (2019). Water Migration in the Subduction Mantle Wedge : A Two-Phase Flow Approach. Journal of Geophysical Research: Solid Earth, 124: 9208–9225. https://doi.org/10.1029/2018JB017097 [Google Scholar]
  • Watremez L, Burov E, d’Acremont E, Leroy S, Huet B, Le Pourhiet L, Bellahsen N. 2013. Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden. Geochem Geophys Geosyst 14: 2800–817. [CrossRef] [Google Scholar]
  • Wilson, C. R., Spiegelman, M., Van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones : The role of solid rheology and compaction pressure. Earth and Planetary Science Letters, 401: 261–274. https://doi.org/10.1016/j.epsl.2014.05.052. [Google Scholar]
  • Wu S, Wang Y, Qian X, Asis JB, Lu X, Zhang Y, Gan C. 2022. Discovery of the Late Cretaceous Barru adakite in SW Sulawesi and slab break-off beneath the Central Indonesian Accretionary Complex. J Asian Earth Sci 232: 105214. [CrossRef] [Google Scholar]
  • Zwaan F, Brune S, Glerum A, Vasey DA, Naliboff JB, Manatschal G, Gaucher EC. 2023. Rift-inversion orogens are potential hotspots for natural H2 generation. https://doi.org/10.21203/rs.3.rs-3367317/v1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.