Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 195, 2024
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/bsgf/2024025 | |
Published online | 20 December 2024 |
- Abrajevitch A, Font E, Florindo F, Roberts AP. 2015. Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous-Paleogene boundary revisited. Earth Planet Sci Lett 430: 209–223. [CrossRef] [Google Scholar]
- Alibo DS, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63: 363–372. [CrossRef] [Google Scholar]
- Ambroggi R. 1963. Etude géologique du versant méridional du Haut Atlas occidental et de la plaine du Souss. Université de Paris, Paris. [Google Scholar]
- Aubineau J, Parat F, Chi Fru E, El Bamiki R, Mauguin O, Baron F, Poujol M, Séranne M. 2022a. Geodynamic seawater-sediment porewater evolution of the east central Atlantic Paleogene ocean margin revealed by U-Pb dating of sedimentary phosphates. Front Earth Sci 10: 997008. [CrossRef] [Google Scholar]
- Aubineau J, Parat F, Elghali A, Raji O, Addou A, Bonnet C, Muñoz M, Mauguin O, Baron F, Jouti MB, Yazami OK, Bodinier J-L. 2022b. Highly variable content of fluorapatite-hosted CO32− in the Upper Cretaceous/Paleogene phosphorites (Morocco) and implications for paleodepositional conditions. Chem Geol 597: 120818. [CrossRef] [Google Scholar]
- Aubineau J, Parat F, Pierson-Wickmann A-C., Séranne M, Fru EC, El Bamiki R, Elghali A, Raji O, Muñoz M, Bonnet C, Jourani E-S., Yazami OK, Bodinier J-L. 2024a. Phosphate δ13Corg chemostratigraphy from the Gantour basin, Morocco: a proof of concept from the K-Pg transition to mid-Thanetian. Chem Geol 121861. [Google Scholar]
- Aubineau J, Séranne M, Chi Fru E, Poujol M, El Bamiki R, Antonio PYJ, Muñoz M, Elghali A, Raji O, Jourani E-S., Bodinier J-L., Parat F. 2024b. Deciphering the U-Pb dates of sedimentary phosphates: a complex example from the Upper Cretaceous-Lower Paleogene series in northwestern Morocco. Chem Geol 661: 122178. [CrossRef] [Google Scholar]
- Aubourg C, Robion P. 2002. Composite ferromagnetic fabrics (magnetite, greigite) measured by AMS and partial AARM in weakly strained sandstones from western Makran, Iran. Geophys J Int 151: 729–737. [CrossRef] [Google Scholar]
- Aubourg C, Smith B, Bakhtari K, Guya N, Eshragi A, Lallemant S, Molinaro M, Braud X, Delaunay S. 2004. Post-Miocene shortening pictured by magnetic fabric across the Zagros-Makran syntaxis (Iran), in: Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses, edited by A.J. Sussman, A.B. Weil. Geological Society of America Special paper, pp. 11–4à. [Google Scholar]
- Averbuch O, Tribovillard N, Devleeschouwer X, Riquier L, Mistiaen B, Van Vliet-Lanoe B. 2005. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian-Famennian boundary (c. 376 Ma)? Terra Nova 17: 25–34. [CrossRef] [Google Scholar]
- Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precamb Res 79: 37–55. [Google Scholar]
- Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar Chem 56: 123–131. [CrossRef] [Google Scholar]
- Bilardello D. 2021. Late Paleozoic Depositional Environments and Sediment Transport Directions of the Itararé Group Rocks From the State of São Paulo, Brazil, Determined From Rock Magnetism and Magnetic Anisotropy. Earth Space Sci 8: e2021E A001703. [Google Scholar]
- Bilardello D, Jackson M. 2013. Cover article: What do the Mumpsies do? IRM Quarterly 23. [Google Scholar]
- Bogdanov YuA, Vikent’ev IV, Lein AYu, Bogdanova OYu, Sagalevich AM, Sivtsov AV. 2008. Low-temperature hydrothermal deposits in the rift zone of the Mid-Atlantic Ridge. Geol. Ore Deposits 50: 119–134. [CrossRef] [Google Scholar]
- Borradaile GJ, Puumala MA. 1989. Synthetic magnetic fabrics in a plasticene medium. Tectonophysics 164: 73–78. [CrossRef] [Google Scholar]
- Boulila S, de Rafélis M, Hinnov LA, Gardin S, Galbrun B, Collin P-Y. 2010. Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl-limestone alternations, Lower Kimmeridgian, SE France). Palaeogeogr Palaeoclimatol Palaeoecol 292: 57–70. [CrossRef] [Google Scholar]
- Boulila S, Galbrun B, Hinnov LA, Collin P-Y. 2008. Orbital calibration of the Early Kimmeridgian (southeastern France): implications for geochronology and sequence stratigraphy. Terra Nova 20: 455–462. [CrossRef] [Google Scholar]
- Brindley GW, Brown G. 1980. Crystal structure of clay minerals and their X-ray identification. Mineralogical Society, London. [Google Scholar]
- Burchette TP, Wright VP. 1992. Carbonate ramp depositional systems. Sediment Geol 79: 3–57. [Google Scholar]
- Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25: 187–198. [CrossRef] [Google Scholar]
- Chadima M, Jelínek V. 2008. Anisoft 4.2. − Anisotropy data browser. Paleo, Rock and Environmental Magnetism, 11th Castle Meeting. Contrib Geophys Geodesy. [Google Scholar]
- Charton R, Bertotti G, Arnould AD, Storms JEA, Redfern J. 2021. Low‐temperature thermochronology as a control on vertical movements for semi‐quantitative source‐to‐sink analysis: a case study for the Permian to Neogene of Morocco and surroundings. Basin Res 33: 1337–1383. [CrossRef] [Google Scholar]
- Chavagnac V, Leleu T, Fontaine F, Cannat M, Ceuleneer G, Castillo A. 2018. Spatial Variations in Vent Chemistry at the Lucky Strike Hydrothermal Field, Mid-Atlantic Ridge (37°N): Updates for Subseafloor Flow Geometry From the Newly Discovered Capelinhos Vent. Geochem Geophys Geosyst 19: 4444–4458. [Google Scholar]
- Clarkson MO, Poulton SW, Guilbaud R, Wood RA. 2014. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem Geol 382: 111–122. [CrossRef] [Google Scholar]
- Cosmidis J, Benzerara K, Gheerbrant E, Estève I, Bouya B, Amaghzaz M. 2013. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11: 139–153. [CrossRef] [Google Scholar]
- Crick RE, Ellwood BB, Hassani AE, Feist R, Hladil J. 1997. MagnetoSusceptibility Event and Cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boundary sequences in north Africa and Europe. Episodes J Int Geosci 20: 167–175. [CrossRef] [Google Scholar]
- Da Silva AC, De Vleeschouwer D, Boulvain F, Claeys P, Fagel N, Humblet M, Mabille C, Michel J, Sardar Abadi M, Pas D, Dekkers MJ. 2013. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks − merits and pitfalls: examples from the Devonian in Belgium. Mar Petrol Geol 46: 173–189. [CrossRef] [Google Scholar]
- Da Silva A-C., Mabille C, Boulvain F. 2009. Influence of sedimentary setting on the use of magnetic susceptibility: examples from the Devonian of Belgium. Sedimentology 56: 1292–1306. [CrossRef] [Google Scholar]
- Da Silva A-C., Sinnesael M, Claeys P, Davies JHFL, de Winter NJ, Percival LME, Schaltegger U, De Vleeschouwer D. 2020. Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Sci Rep 10: 12940. [CrossRef] [Google Scholar]
- Da Silva AC, Whalen MT, Hladil J, Chadimova L, Chen D, Spassov S, Boulvain F, Devleeschouwer X. 2015. Magnetic susceptibility application: a window onto ancient environments and climatic variations: foreword. Geological Society, London, Special Publications 414: 1–13. [Google Scholar]
- Da Silva A-C., Yans J, Boulvain F. 2010. Sedimentology and magnetic susceptibility during the “punctata“ event of the Ardenne area (Belgium): identification of severe and rapid sea level fluctuations, in: Magnetic Susceptibility, Correlations and Palaeozoic Environments, edited by A.-C. Da Silva and F. Boulvain pp. 319-322. [Google Scholar]
- De Baar HJW, Brewer PG, Bacon MP. 1985. Anomalies in rare earth distributions in seawater: Gd and Tb. Geochim Cosmochim Acta 49: 1961–1969. [CrossRef] [Google Scholar]
- Dekkers MJ. 1989. Magnetic Properties of Natural Goethite—II. TRM behaviour during thermal and alternating field demagnetization and low-temperature treatment. Geophys J Int 97: 341–355. [CrossRef] [Google Scholar]
- Döebelin N, Kleeberg R. 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Cryst 48: 1573–1580. [CrossRef] [Google Scholar]
- Dunlop DJ, Özdemir, Ö. (Eds.) 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge Studies in Magnetism. [Google Scholar]
- El Bamiki R, Raji O, Ouabid M, Elghali A, Khadiri Yazami O, Bodinier J-L. 2021. Phosphate rocks: a review of sedimentary and igneous occurrences in Morocco. Minerals 11: 1137. [CrossRef] [Google Scholar]
- El Bamiki R, Séranne M, Chellaï EH, Merzeraud G, Marzoqi M, Melinte-Dobrinescu MC. 2020. The Moroccan High Atlas phosphate-rich sediments: unraveling the accumulation and differentiation processes. Sediment Geol 403: 105655. [CrossRef] [Google Scholar]
- El Bamiki R, Séranne M, Parat F, Aubineau J, Chellaï EH, Marzoqi M, Bodinier J-L. 2023. Post-phosphogenesis processes and the natural beneficiation of phosphates: geochemical evidence from the Moroccan High Atlas phosphate-rich sediments. Chem Geol 631: 121523. [CrossRef] [Google Scholar]
- Ellouz N, Patriat M, Gaulier, J.-M., Bouatmani R, Sabounji S. 2003. From rifting to Alpine inversion: Mesozoic and Cenozoic subsidence history of some Moroccan basins. Sediment Geol 156: 185–212. [CrossRef] [Google Scholar]
- Ellwood BB, Crick RE, El Hassani A. 1999. The Magneto-Susceptibility Event and Cyclostratigraphy (MSEC) Method Used in Geological Correlation of Devonian Rocks from Anti-Atlas Morocco1. AAPG Bull 83: 1119–1134. [Google Scholar]
- Ellwood BB, Crick RE, Hassani AE, Benoist SL, Young RH. 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity. Geology 28: 1135–1138. [CrossRef] [Google Scholar]
- Ellwood BB, El Hassani A, Tomkins JH, Bultynck P. 2015. A climate-driven model and development of a floating-point timescale for the middle devonian Eifelian stage using time-series analysis of magnetic susceptibility (x) data set, in: Magnetic Susceptibility Application − a Window onto Ancient Environments and Climatic Variations, edited by Da Silva AC, Whalen MT, Hladil J, Chadimova L, Chen D, Spassov S, Boulvain F, Devleeschouwer, X. [Google Scholar]
- Fedo CM, Babechuk MG. 2022. Petrogenesis of siliciclastic sediments and sedimentary rocks explored in three-dimensional Al2O3-CaO*+Na2O-K2O-FeO+MgO (A-CN-K-FM) compositional space. Can J Earth Sci 60: 818–838. [Google Scholar]
- Fedo CM, Wayne Nesbitt H, Young GM. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23: 921–924. [CrossRef] [Google Scholar]
- Flinn D. 1978. Construction and computation of three-dimensional progressive deformations. J Geolog Soc 135: 291–305. [CrossRef] [Google Scholar]
- Font E, Carlut J, Rémazeilles C, Mather TA, Nédélec A, Mirão, J., Casale S. 2017. End-Cretaceous akaganéite as a mineral marker of Deccan volcanism in the sedimentary record. Sci Rep 7: 11453. [CrossRef] [Google Scholar]
- Font E, Fabre S, Nédélec A, Adatte T, Keller G, Viega-Pires C, Ponte J, Mirão, J., Khozyem H, Spangenberg JE. 2014. Atmospheric halogen and acid rains during the main phase of Deccan eruptions: magnetic and mineral evidence, in: Keller G, Kerr, A.C. (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geological Society of America pp. 353-368. [Google Scholar]
- Font E, Nédélec A, Ellwood BB, Mirão J, Silva PF. 2011. A new sedimentary benchmark for the Deccan Traps volcanism? Geophys Res Lett 38. https://doi.org/10.1029/2011GL049824 [Google Scholar]
- Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, El Azzouzi M, Maury RC, Charrière A, Taki Z, Benammi M, Michard A, 2008. The Atlas System, in: Michard, André, Saddiqi O, Chalouan A, Frizon de Lamotte, Dominique (Eds.), Continental Evolution: The Geology of Morocco: Structure, Stratigraphy, and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction, Lecture Notes in Earth Sciences. Springer, Berlin, Heidelberg, pp. 133-202. [Google Scholar]
- Frizon de Lamotte DF, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, Guillocheau F, Michard A. 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics 475: 9–28. [Google Scholar]
- Gao Y, Ibarra DE, Caves Rugenstein JK, Chen J, Kukla T, Methner K, Gao Y, Huang H, Lin Z, Zhang L, Xi D, Wu H, Carroll AR, Graham SA, Chamberlain CP, Wang C. 2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: a multiproxy record from the Songliao Basin in northeastern China. Earth-Sci Rev 216: 103572. [CrossRef] [Google Scholar]
- Garnit H, Bouhlel S, Barca D, Chtara C. 2012. Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: Insights from trace elements and REE into paleo-depositional environments. Geochemistry 72: 127–139. [CrossRef] [Google Scholar]
- Girard C, Feist R, Mossoni A, Cornée J-J., Camps P, Charruault A-L., Corradini C. 2021. North-Gondwana − Laurussia dynamic paleogeography challenged by magnetic susceptibility through the Famennian. Gondwana Res 97: 263–272. [CrossRef] [Google Scholar]
- Herbig H-G., Trappe J. 1994. Stratigraphy of the Subatlas Group (Maastrichtian − Middle Eocene, Morocco). Newsl Stratigr 125–165. [CrossRef] [Google Scholar]
- Hillier S. 2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals 35: 291–302. [CrossRef] [Google Scholar]
- Hladil J. 2002. Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia, Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 181: 213–250. [CrossRef] [Google Scholar]
- Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79: T63– T67. [CrossRef] [Google Scholar]
- Jian X, Guan P, Zhang W, Feng F. 2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: implications for provenance and weathering. Chem Geol 360-361: 74–88. [CrossRef] [Google Scholar]
- Johnston JH. 1977. Jarosite and akaganéite from White Island volcano, New Zealand: an X-ray and Mössbauer study. Geochim Cosmochim Acta 41: 539–544. [CrossRef] [Google Scholar]
- Knidiri A, Daoudi L, El Ouahabi M, Rhouta B, Rocha F, Fagel N. 2014. Palaeogeographic controls on palygorskite occurrence in Maastrichtian-Palaeogene sediments of the Western High Atlas and Meseta Basins (Morocco). Clay Minerals 49: 595–608. [CrossRef] [Google Scholar]
- Kocsis L, Gheerbrant E, Mouflih M, Cappetta H, Yans J, Amaghzaz M. 2014. Comprehensive stable isotope investigation of marine biogenic apatite from the late Cretaceous-early Eocene phosphate series of Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 394: 74–88. [CrossRef] [Google Scholar]
- Kosterov A. 2002. Low-temperature magnetic hysteresis properties of partially oxidized magnetite. Geophys J Int 149: 796–804. [CrossRef] [Google Scholar]
- Lanari R, Fellin MG, Faccenna C, Balestrieri ML, Pazzaglia FJ, Youbi N, Maden C. 2020. Exhumation and surface evolution of the Western High Atlas and surrounding regions as constrained by low-temperature thermochronology. Tectonics 39: e2019T C005562. [Google Scholar]
- Leprêtre R, Missenard Y, Barbarand J, Gautheron C, Jouvie I, Saddiqi O. 2018. Polyphased Inversions of an Intracontinental Rift: case study of the Marrakech High Atlas, Morocco. Tectonics 37: 818–841. [CrossRef] [Google Scholar]
- Li L, Keller G. 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Mar Micropaleontol 33: 55–86. [CrossRef] [Google Scholar]
- Lowrie W, Alvarez W, Asaro F. 1990. The origin of the White Beds below the Cretaceous-Tertiary boundary in the Gubbio section, Italy. Earth Planet Sci Lett 98: 303–312. [CrossRef] [Google Scholar]
- Mahboubi A, Cornée, J.-J., Feist R, Camps P, Girard C. 2019. Frasnian (Upper Devonian) integrated facies analysis, magnetic susceptibility and sea-level fluctuations in the NW Algerian Sahara. Geolog Mag 156: 1295–1310. [CrossRef] [Google Scholar]
- McClellan GH, Van Kauwenbergh SJ. 1991. Mineralogical and chemical variation of francolites with geological time. J Geolog Soc 148: 809–812. [CrossRef] [Google Scholar]
- Mead GA, Tauxe L, LaBrecque JL. 1986. Oligocene paleoceanography of the South Atlantic: Paleoclimatic implications of sediment accumulation rates and magnetic susceptibility measurements. Paleoceanography 1: 273–284. [CrossRef] [Google Scholar]
- Meunier A, Caner L, Hubert F, Albani AE, Prêt D. 2013. The weathering intensity scale (WIS): An alternative approach of the Chemical Index of Alteration (CIA). Am J Sci 313: 113–143. [CrossRef] [Google Scholar]
- Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D. 2008. Continental Evolution: The Geology of Morocco. Springer, Berlin, Heidelberg. [CrossRef] [Google Scholar]
- Missenard Y, Saddiqi O, Barbarand J, Leturmy P, Ruiz G, El Haimer F-Z., Frizon de Lamotte D. 2008. Cenozoic denudation in the Marrakech High Atlas, Morocco: insight from apatite fission-track thermochronology. Terra Nova 20: 221–228. [Google Scholar]
- Morin FJ. 1950. Magnetic susceptibility of α Fe2O3 and α Fe2O3 with added titanium. Phys Rev 78: 819–820. [CrossRef] [Google Scholar]
- Nathan Y. 1984. The Mineralogy and Geochemistry of Phosphorites, in: Nriagu JO, Moore, P.B. (Eds.), Phosphate Minerals. Berlin, Heidelberg: Springer-Verlag, pp. 275-291. [Google Scholar]
- Nesbitt HW, Young GM, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. [CrossRef] [Google Scholar]
- Nguidi MA, Mouflih M, Benbouziane A, Kocsis L, El Ouariti S, El Boukhari H, Aquit M, Yazami OK. 2021. Lithofacies analysis, sedimentary dynamics and genesis of Maastrichtian-Eocene phosphorites of BouCraa deposit (Southern Morocco). J Afr Earth Sci 177: 104161. [CrossRef] [Google Scholar]
- Nowaczyk NR, Minyuk P, Melles M, Brigham-Grette J, Glushkova O, Nolan M, Lozhkin AV, Stetsenko TVM, Andersen P, Forman SL. 2002. Magnetostratigraphic results from impact crater Lake El’gygytgyn, northeastern Siberia: a 300 kyr long high-resolution terrestrial palaeoclimatic record from the Arctic. Geophys J Int 150: 109–126. [CrossRef] [Google Scholar]
- Özdemir Ö, Dunlop DJ. 2010. Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles. J Geophys Res: Solid Earth 115. https://doi.org/10.1029/2009JB006756 [Google Scholar]
- Özdemir Ö, Dunlop DJ. 2005. Thermoremanent magnetization of multidomain hematite. J Geophys Res: Solid Earth 110. https://doi.org/10.1029/2005JB003820 [Google Scholar]
- Özdemir Ö, Dunlop DJ, Moskowitz BM. 2002. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth Planet Sci Lett 194: 343–358. [CrossRef] [Google Scholar]
- Pas D, Da Silva A-C., Poulain G, Spassov S, Boulvain F. 2019. Magnetic Susceptibility Record in Paleozoic Succession (Rhenohercynian Massif, Northern Europe) − Disentangling Sea Level, Local and Diagenetic Impact on the Magnetic Records. Front Earth Sci 7. [Google Scholar]
- Paterson GA, Zhao X, Jackson M, Heslop D. 2018. Measuring, processing, and analyzing hysteresis data. Geochem Geophys Geosyst 19: 1925–1945. [CrossRef] [Google Scholar]
- Potter DK, Stephenson A. 1988. Single-domain particles in rocks and magnetic fabric analysis. Geophys Res Lett 15: 1097–1100. [CrossRef] [Google Scholar]
- Pufahl PK, Groat LA. 2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Econ Geol 112: 483–516. [CrossRef] [Google Scholar]
- Reynard B, Lécuyer C, Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem Geol 155: 233–241. [CrossRef] [Google Scholar]
- Riquier L, Averbuch O, Devleeschouwer X, Tribovillard N. 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions. Int J Earth Sci (Geol Rundsch) 99: 57–73. [CrossRef] [Google Scholar]
- Robinson SG. 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys Earth Planetary Interiors 42: 22–47. [CrossRef] [Google Scholar]
- Rohais S, Hamon Y, Deschamps R, Beaumont V, Gasparrini M, Pillot D, Romero-Sarmiento, M-F. 2019. Patterns of organic carbon enrichment in a lacustrine system across the K-T boundary: insight from a multi-proxy analysis of the Yacoraite Formation, Salta rift basin, Argentina. Int J Coal Geol 210: 103208. [CrossRef] [Google Scholar]
- Schneider J, Bechstädt T, Machel HG. 2004. Covariance of C- and O-isotopes with magnetic susceptibility as a result of burial diagenesis of sandstones and carbonates: an example from the Lower Devonian La Vid Group, Cantabrian Zone, NW Spain. Int J Earth Sci (Geol Rundsch) 93: 990–1007. [CrossRef] [Google Scholar]
- Schuffert JD, Kastner M, Emanuele G, Jahnke RA. 1990. Carbonate-ion substitution in francolite: a new equation. Geochim Cosmochim Acta 54: 2323–2328. [CrossRef] [Google Scholar]
- Schwertmann U, Cornell RM. 1991. Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons. [Google Scholar]
- Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, Response of the Oceanic / Atmospheric Systems to Past Global Changes 175: 29–48. [Google Scholar]
- Singer A, Galan E. 1984. Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Amsterdam: Elsevier. [Google Scholar]
- Środoń J, Eberl DD. 1984. Illite, in: Review in Mineralogy Vol. 13, Micas, edited by S.W. Bailey. Mineralogical Society of America, Washington DC, pp. 495-544. [Google Scholar]
- Stage M. 2001. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth Planet Sci Lett 188: 17–27. [CrossRef] [Google Scholar]
- Tauxe L, Gee JS, Staudigel H. 1998. Flow directions in dikes from anisotropy of magnetic susceptibility data: the bootstrap way. J Geophys Res 103: 17775–17790. [CrossRef] [Google Scholar]
- Taylor SN, Lagroix F, Rousseau D-D., Antoine P. 2014. Mineral magnetic characterization of the Upper Pleniglacial Nussloch loess sequence (Germany): an insight into local environmental processes. Geophys J Int 199: 1463–1480. [CrossRef] [Google Scholar]
- Taylor SR, McLennan SM. 1985. The continental crust: Its composition and evolution. Blackwell Scientific Publications, Oxford. [Google Scholar]
- Vanderaveroet P, Averbuch O, Deconinck J-F., Chamley H. 1999. A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain-size and magnetic susceptibility data. Marine Geol 159: 79–92. [CrossRef] [Google Scholar]
- Velde B, Suzuki T, Nicot E. 1986. Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples. Clays Clay Minerals 34: 435–441. [CrossRef] [Google Scholar]
- Verwey E. 1935. The crystal structure of γ-Fe2O3 and γ-Al2 O3. Zeitsch Kristallogr Crystalline Mater. 91: 65–69. [CrossRef] [Google Scholar]
- Walker JCG, Hays PB, Kasting JF. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res: Oceans 86: 9776–9782. [CrossRef] [Google Scholar]
- Walker RG, James NP. 1992. Facies Models: Response to Sea Level Change. Geological Association of Canada, Geotext. ed. [Google Scholar]
- Warr LN. 2022. Earth’s clay mineral inventory and its climate interaction: a quantitative assessment. Earth-Sci Rev 234: 104198. [CrossRef] [Google Scholar]
- Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369: 1383–1387. [Google Scholar]
- Whalen MT, Day JE. (Jed). 2010. Cross-Basin Variations in Magnetic Susceptibility Influenced by Changing Sea Level, Paleogeography, and Paleoclimate: Upper Devonian, Western Canada Sedimentary Basin. J Sedimentary Res 80: 1109–1127. [Google Scholar]
- Wouters S, Spassov S, Martinez M, Steurbaut E, Storme J-Y., Yans J, Devleeschouwer X. 2019. Depositional changes during the Danian-Selandian transition in Loubieng (France), Zumaia (Spain) and Sidi Nasseur (Tunisia): insights from and limits of rock magnetism. Geolog Mag 156: 1982–2000. [Google Scholar]
- Zhang R, Kravchinsky VA, Zhu R, Yue L. 2010. Paleomonsoon route reconstruction along a W-E transect in the Chinese Loess Plateau using the anisotropy of magnetic susceptibility: Summer monsoon model. Earth Planet Sci Lett 299: 436–446. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.