Open Access
Review
Numéro |
BSGF - Earth Sci. Bull.
Volume 191, 2020
|
|
---|---|---|
Numéro d'article | 19 | |
Nombre de pages | 20 | |
DOI | https://doi.org/10.1051/bsgf/2020019 | |
Publié en ligne | 20 juillet 2020 |
- Adjadj F, Helly B, Lauxerois R. 2014. Carte archéologique de la Gaule 38/3. Vienne, Paris, France. [Google Scholar]
- Amorèse D, Benjumea J, Cara M. 2020. Source parameters of the 1926 and 1927 Jersey earthquakes from historical, instrumental, and macroseismic data. Physics of the Earth and Planetary Interiors 300: 106420. https://doi.org/10.1016/j.pepi.2019.106420. [CrossRef] [Google Scholar]
- Asensio E, Khazaradze G, Echeverria A, King RW, Vilajosana I. 2012. GPS studies of active deformation in the Pyrenees. Geophysical Journal International 190: 913–921. https://doi.org/10.1111/j.1365-246X.2012.05525.x. [CrossRef] [Google Scholar]
- Assameur DM, Mareschal J-C. 1995. Stress induced by topography and crustal density heterogeneities: implication for the seismicity of southeastern Canada. Tectonophysics 241: 179–192. [CrossRef] [Google Scholar]
- Atkinson GM. 2007. Challenges in seismic hazard analysis for continental interior. In: Stein S, Mazzotti S, eds. Geological Society of America – Special Papers 425: 329–345. https://doi.org/10.1130/2007.2425(21). [Google Scholar]
- Baize S, Cushing EM, Lemeille F, Jomard H. 2013. Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bulletin de la Societe Geologique de France 184: 225–259. https://doi.org/10.2113/gssgfbull.184.3.225. [Google Scholar]
- Bakun WH, Scotti O. 2006. Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophysical Journal International 164: 596–610. https://doi.org/10.1111/j.1365-246X.2005.02808.x. [CrossRef] [Google Scholar]
- Baran R, Friedrich AM, Schlunegger F. 2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere 6: 124–131. https://doi.org/10.1007/s00015-009-1306-4. [CrossRef] [Google Scholar]
- Bardainne T, Dubos-Sallée N, Sénéchal G, Gaillot P, Perroud H. 2008. Analysis of the induced seismicity of the Lacq gas field (Southwestern France) and model of deformation. Geophysical Journal International 172: 1151–1162. https://doi.org/10.1111/j.1365-246X.2007.03705.x. [CrossRef] [Google Scholar]
- Baroux E, Béthoux N, Bellier O. 2001. Analyses of the stress field in southeastern France from earthquake focal mechanisms. Geophysical Journal International 145: 336–348. [CrossRef] [Google Scholar]
- Baroux E, Pino NA, Valensise G, Scotti O, Cushing EM. 2003. Source parameters of the 11 June 1909, Lambesc (Provence, southeastern France) earthquake: A reappraisal based on macroseismic, seismological, and geodetic observations. Journal of Geophysical Research: Solid Earth 108: 1–23. https://doi.org/10.1029/2000JB900259. [Google Scholar]
- Baumont D, Manchuel K, Traversa P, Durouchoux C, Nayman E, Ameri G. 2018. Intensity predictive attenuation models calibrated in Mw for metropolitan France. Bulletin of Earthquake Engineering 16: 2285–2310. https://doi.org/10.1007/s10518-018-0344-6. [CrossRef] [Google Scholar]
- Beck C. 2009. Late Quaternary lacustrine paleo-seismic archives in north-western Alps: Examples of earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews 96: 327–344. https://doi.org/10.1016/j.earscirev.2009.07.005. [CrossRef] [Google Scholar]
- Bertil D, Terrier M. 2017. Élaboration d’une méthodologie d’estimation de l’activité des failles – Phase 1 : synthèse des méthodes sur l’identification et la classification des failles actives. Rapport final, 148 p. BRGM/RP-67434-FR. [Google Scholar]
- Brandes C, Steffen H, Steffen R, Wu P. 2015. Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology 43: 611–614. https://doi.org/10.1130/G36710.1. [CrossRef] [Google Scholar]
- Brockmann E, Ineichen D, Marti U, Schaer S, Schlatter A. 2012. Determination of tectonic movements in the Swiss Alps using GNSS and levelling. In: Kenyon S, P achino M, Marti U, eds. Geodesy for Planet Earth, International Association of Geodesy Symposia, Berlin, Heidelberg, pp. 689–695. [CrossRef] [Google Scholar]
- Calais E, Bayer R, Chéry J, Cotton F, Doerflinger E, Flouzat M, et al. 2000a. Regal : réseau GPS permanent dans les Alpes occidentales. Configuration et premiers résultats. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 331: 435–442. [Google Scholar]
- Calais E, Galisson L, Stéphan JF, Delteil J, Derverchère J, Larroque C, et al. 2000b. Crustal strain in the Southern Alps, France, 1948–1998. Tectonophysics 319: 1–17. [CrossRef] [Google Scholar]
- Calais E, Camelbeeck T, Stein S, Liu M, Craig TJ. 2016. A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters 43: 10621–10637. https://doi.org/10.1002/2016GL070815. [CrossRef] [Google Scholar]
- Camelbeeck T, de Viron O, van Camp M, Kusters D. 2013. Local stress sources in Western Europe lithosphere from geoid anomalies. Lithosphere 5: 235–246. https://doi.org/10.1130/L238.1. [CrossRef] [Google Scholar]
- Cara M, Alasset P-J, Sira C. 2008. Magnitude of historical earthquakes, from macroseismic data to seismic waveform modelling: application to the Pyrenees and a 1905 earthquake in the Alps. In: Fréchet J, Meghraoui M, Stucchi M, eds. Historical Seismology. Dordrecht: Springer Netherlands, pp. 369–384. [CrossRef] [Google Scholar]
- Cara M, et al. 2015. SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France 186: 3–19. [CrossRef] [Google Scholar]
- Cara M, Denieul M, Sèbe O, Delouis B, Cansi Y, Schlupp A. 2017. Magnitude Mw in metropolitan France. Journal of Seismology 21(3): 551–565. https://doi.org/10.1007/s10950-016-9617-1. [CrossRef] [Google Scholar]
- Champagnac J-D, Molnar P, Anderson RS, Sue C, Delacou B. 2007. Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35: 195–198. https://doi.org/10.1130/G23053A.1. [CrossRef] [Google Scholar]
- Chardon D, Hermitte D, Nguyen F, Bellier O. 2005. First paleoseismological constraints on the strongest earthquake in France (Provence) in the twentieth century. Geology 33: 901. https://doi.org/10.1130/G21713.1. [CrossRef] [Google Scholar]
- Chartier T, Scotti O, Clément C, Jomard H, Baize S. 2017. Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France. Natural Hazards and Earth System Sciences 17: 1585–1593. https://doi.org/10.5194/nhess-17-1585-2017. [CrossRef] [Google Scholar]
- Chéry J, Genti M, Vernant P. 2016. Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps. Geophysical Research Letters 43: 1–8. https://doi.org/10.1002/2016GL067821. [CrossRef] [Google Scholar]
- Clark D, McPherson A, Van Dissen R. 2012. Long-term behaviour of Australian stable continental region (SCR) faults. Tectonophysics 566-567: 1–30. https://doi.org/10.1016/j.tecto.2012.07.004. [CrossRef] [Google Scholar]
- Coltice N, Gérault M, Ulvrová M. 2017. A mantle convection perspective on global tectonics. Earth Science Reviews 165: 120–150. https://doi.org/10.1016/j.earscirev.2016.11.006. [CrossRef] [Google Scholar]
- Combes P, Carbon D, Cushing EM, Granier T, Vaskou P. 1993. Mise en évidence d’un paléoséisme pléistocène supérieur dans la vallée du Rhône, implications sur les connaissances de la sismicité en France. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 317: 689–696. [Google Scholar]
- Cushing EM, Bellier O, Nechtschein S, Sébrier M, Lomax A, Volant, P, et al. 2008. A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: the example of the Middle Durance Fault (SE France). Geophysical Journal International 172: 1163–1178. https://doi.org/10.1111/j.1365-246X.2007.03683.x. [CrossRef] [Google Scholar]
- Dadson SJ, Hovius N, Chen H, Dade WB, Hsieh M-L, Willett SD, et al. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426: 648–651. https://doi.org/10.1038/nature02150. [CrossRef] [Google Scholar]
- D’Agostino N, Avallone A, Cheloni D, D’Anastasio E, Mantenuto S, Selvaggi G. 2008. Active tectonics of the Adriatic region from GPS and earthquake slip vectors. Journal of Geophysical Research: Solid Earth 113: B09401. https://doi.org/10.1029/2008JB005860. [Google Scholar]
- De Barros L, Baques M, Godano M, Helmstetter A, Deschamps A, Larroque C, et al. 2019. Fluid-Induced Swarms and Coseismic Stress Transfer: A Dual Process Highlighted in the Aftershock Sequence of the 7 April 2014 Earthquake (Ml 4.8, Ubaye, France). Journal of Geophysical Research: Solid Earth 124: 3918–3932. https://doi.org/10.1029/2018JB017226. [CrossRef] [Google Scholar]
- de La Taille C, Jouanne F, Crouzet C, Beck C, Jomard H, de Rycker K, et al. 2015. Impact of active faulting on the post LGM infill of Le Bourget Lake (western Alps, France). Tectonophysics 664: 31–49. https://doi.org/10.1016/j.tecto.2015.08.024. [CrossRef] [Google Scholar]
- Delouis B, Haessler H, Cisternas A, Rivera L. 1993. Stress tensor determination in France and neighbouring regions. Tectonophysics 221: 413–437. [CrossRef] [Google Scholar]
- DeMets C, Gordon RG, Argus DF. 2010. Geologically current plate motions. Geophysical Journal International 181: 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x. [CrossRef] [EDP Sciences] [Google Scholar]
- Dominique P, Autran A, Bles J, Fitzenz D, Samarcq F, Terrier M, et al. 1998. Probabilistic seismic hazard assessment in France, Part 2: probabilistic approach: seismic hazard map on the national territory (France). Balkema, Rotterdam, Paris, France. [Google Scholar]
- Dow JM, Neilan RE, Rizos C. 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy 83: 191–198. https://doi.org/10.1007/s00190-008-0300-3. [Google Scholar]
- Evans EL. 2017. Using strain rates to forecast seismic hazards. Eos 98. https://doi.org/10.1029/2017EO067343. [Google Scholar]
- Faccenna C, Becker TW. 2010. Shaping mobile belts by small-scale convection. Nature 465: 602–605. https://doi.org/10.1038/nature09064. [CrossRef] [Google Scholar]
- Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun J-P, et al. 2014. Mantle dynamics in the Mediterranean. Review of Geophysics 52: 283–332. https://doi.org/10.1002/(ISSN)1944-9208. [CrossRef] [Google Scholar]
- Ferhat G, Feigl K, Ritz J-F, Souriau A. 1998. Geodetic measurement of tectonic deformation in the southern Alps and Provence, France, 1947–1994. Earth and Planetary Science Letters 159: 35–46. [CrossRef] [Google Scholar]
- Ferhat G, Portier N, Hinderer J, Calvo Garcia-Maroto M, Abdelfettah Y, Riccardi U. 2017. Three years of monitoring using leveling and hybrid gravimetry applied to geothermal sites of Soultz-sous-Forêts and Rittershoffen, Rhine Graben, France. In: Intern. Conf. Eng. Surv., Lisbon, Portugal. [Google Scholar]
- Ferry M, Meghraoui M, Delouis B, Giardini D. 2005. Evidence for Holocene palaeoseismicity along the Basel-Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben. Geophysical Journal International 160: 554–572. https://doi.org/10.1111/j.1365-246X.2005.02404.x. [CrossRef] [Google Scholar]
- Field EH, Arrowsmith RJ, Biasi GP, Bird P, Dawson TE, Felzer KR, et al. 2014. Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) – The Time-Independent Model. Bulletin of the Seismological Society of America 104: 1122–1180. https://doi.org/10.1785/0120130164. [CrossRef] [Google Scholar]
- Fillon C, van der Beek PA. 2012. Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Research 24: 418–436. https://doi.org/10.1111/j.1365-2117.2011.00533.x. [CrossRef] [Google Scholar]
- Florineth D, Schlüchter C. 2000. Alpine Evidence for Atmospheric Circulation Patterns in Europe during the Last Glacial Maximum. Quaternary Research 54: 295–308. https://doi.org/10.1006/qres.2000.2169. [CrossRef] [Google Scholar]
- Foulger GR, Wilson MP, Gluyas JG, Julian BR, Davies RJ. 2018. Global review of human-induced earthquakes. Earth-Science Reviews 178: 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008. [CrossRef] [Google Scholar]
- Fourniguet J. 1980. Mouvements verticaux actuels en Bassin de Paris révélés par les combinaisons de nivellements. Bulletin de la Société Géologique de France 4: 685–693. [CrossRef] [Google Scholar]
- Fox M, Herman F, Kissling E, Willett SD. 2015. Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion. Geology 43: 379–382. https://doi.org/10.1130/G36411.1. [CrossRef] [Google Scholar]
- Frankel A. 2004. How can seismic hazard around the New Madrid seismic zone be similar to that in California? Seismological Research Letters 75: 575–586. [CrossRef] [Google Scholar]
- Fuhrmann T, Caro Cuenca M, Knöpfler A, van Leijen FJ, Mayer M, Westerhaus M, et al. 2015. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophysical Journal International 203: 614–631. https://doi.org/10.1016/0040-1951(92)90338-7. [CrossRef] [Google Scholar]
- Gardi A, Baize S, Scotti O. 2010. Present-day vertical isostatic readjustment of the Western Alps revealed by numerical modelling and geodetic and seismotectonic data. Geological Society, London, Special Publications 332: 115–128. https://doi.org/10.1144/SP332.8. [CrossRef] [Google Scholar]
- Genti M, Chéry J, Vernant P, Rigo A. 2016. Impact of gravity forces and topography denudation on normal faulting in Central–Western Pyrenees: Insights from 2D numerical models. Comptes rendus – Geoscience 348: 173–183. https://doi.org/10.1016/j.crte.2015.08.004. [CrossRef] [Google Scholar]
- Ghosh A, Holt WE, Flesch LM, Haines AJ. 2006. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology 34: 321. https://doi.org/10.1130/G22071.1. [CrossRef] [Google Scholar]
- Glotzbach C, Bernet M, van der Beek P. 2011. Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology 39: 239–242. https://doi.org/10.1130/G31757.1. [CrossRef] [Google Scholar]
- Glotzbach C, van der Beek P, Carcaillet J, Delunel R. 2013. Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: An example from the Western Alps. Journal of Geophysical Research: Earth Surface 118: 1491–1515. https://doi.org/10.1002/jgrf.20107. [CrossRef] [Google Scholar]
- Gölke M, Coblentz DD. 1996. Origins of the European regional stress field. Tectonophysics 266: 11–24. [CrossRef] [Google Scholar]
- Grasso JR, Guyoton F, Fréchet J, Gamond JF. 1992. Triggered earthquakes as stress gauge: Implication for the uppercrust behavior in the Grenoble area, France. Pure and Applied Geophysics 139: 579–605. [CrossRef] [Google Scholar]
- Grellet B, Combes P, Granier T, Philip H. 1993. Sismotectonique de la France métropolitaine dans son cadre géologique et géophysique. Société Géologique France. Mémoires de la société géologique de France 164: 76. [Google Scholar]
- Grollimund B, Zoback MD. 2001. Did deglaciation trigger intraplate seismicity in the New Madrid seismic zone? Geology 29: 175–178. [CrossRef] [Google Scholar]
- Guéguen Y, Deffontaines B, Fruneau B, Heib MA, Michele M de, Raucoules D, et al. 2009. Monitoring residual mining subsidence of Nord Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). Journal of Applied Geophysics 69: 24–34. https://doi.org/10.1016/j.jappgeo.2009.02.008. [CrossRef] [Google Scholar]
- Gueydan F, Leroy YM, Jolivet L, Agard P. 2003. Analysis of continental midcrustal strain localization induced by reaction-softening and microfracturing. Journal of Geophysical Research: Solid Earth 108: 2064. https://doi.org/10.1029/2001JB000611. [Google Scholar]
- Hays JD, Imbrie J, Shackleton NJ. 1976. Variations in the earth’s orbit: Pacemaker of the ice ages. Science 194: 1121–1132. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Heidbach O, Reinecker J, Tingay M, Müller B, Sperner B, Fuchs K, et al. 2007. Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database. Tectonics 26: TC6014. https://doi.org/10.1029/2007TC002133. [CrossRef] [Google Scholar]
- Heidbach O, Rajabi M, Cui X, Fuchs K, Müller B, Reinecker J, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744: 484–498. https://doi.org/10.1016/j.tecto.2018.07.007. [CrossRef] [Google Scholar]
- Heimlich C, Gourmelen N, Masson F, Schmittbuhl J, Kim SW, Azzola J. 2015. Uplift around the geothermal power plant of Landau (Germany) as observed by In: SAR monitoring. Geothermal Energy 3: 1–12. https://doi.org/10.1186/s40517-014-0024-y. [CrossRef] [Google Scholar]
- Henrion E, Ulrich P, Masson F. 2015. Champ de vitesse GPS du Nord-Est de la France, apport des stations permanentes pour une précision submillimétrique. XYZ 142: 19–23. [Google Scholar]
- Hinzen K-G. 2003. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377: 325–356. https://doi.org/10.1016/j.tecto.2003.10.004. [CrossRef] [Google Scholar]
- Holdsworth RE. 2004. Weak fault– Rotten core. Science 303: 181–182. [CrossRef] [Google Scholar]
- Jiménez-Munt I, Garcia-Castellanos D, Negredo AM, Platt JP. 2005. Gravitational and tectonic forces controlling postcollisional deformation and the present-day stress field of the Alps: Constraints from numerical modeling. Tectonics 24: TC5009. https://doi.org/10.1029/2004TC001754. [Google Scholar]
- Johnston AC. 1989. The Seismicity of “Stable Continental Interiors”. In: Gregersen S, Basham PW, eds. Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, NATO ASI Series. Dordrecht: Springer Netherlands, pp. 299–327. [CrossRef] [Google Scholar]
- Jomard H, Cushing EM, Palumbo L, Baize S, David C, Chartier T. 2017. Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France. Natural Hazards and Earth System Sciences 17: 1573–1584. https://doi.org/10.5194/nhess-17-1573-2017. [CrossRef] [Google Scholar]
- Jouanne F, Ménard G, Jault D. 1994. Present-day deformation of the French northwestern Alps/southern Jura mountains: comparison between historical triangulations. Geophysical Journal International 119: 151–165. [CrossRef] [Google Scholar]
- Jouanne F, Ménard G, Darmendrail X. 1995. Present-day vertical displacements in the north-western Alps and southern Jura Mountains: Data from leveling comparisons. Tectonics 14: 606–616. [CrossRef] [Google Scholar]
- Lacan P, Ortuño M. 2012. Active Tectonics of the Pyrenees: A review. Journal of Iberian Geology 38. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39203. [CrossRef] [Google Scholar]
- Le Pichon X, Rangin C, Hamon Y, Loget N, Lin JY, Andreani L, et al. 2010. Geodynamics of the France Southeast Basin. Bulletin de la Société Géologique de France 181: 477–501. [Google Scholar]
- Lee WHK, Meyers H, Shimazaki K, eds. 1988. Historical seismograms and earthquakes of the world. San Diego: Academic Press. [Google Scholar]
- Lenôtre N, Thierry P, Blanchin R, Brochard G. 1999. Current vertical movement demonstrated by comparative levelling in Brittany (northwestern France). Tectonophysics 301: 333–344. [CrossRef] [Google Scholar]
- Limoge-Schraen C, Giry C, Desprez C, Ragueneau F. 2014. Toward a large-scale seismic assessment method for heritage building: vulnerability of masonry baroque churches. European Journal of Environmental and Civil Engineering 20: 680–710. https://doi.org/10.1080/19648189.2015.1061459. [CrossRef] [Google Scholar]
- Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, et al. 2007. Induced seismicity associated with Enhanced Geothermal Systems. Geothermics 36: 185–222. https://doi.org/10.1016/j.geothermics.2007.03.003. [CrossRef] [Google Scholar]
- Manchuel K, Traversa P, Baumont D, Cara M, Nayman E, Durouchoux C. 2018. The French seismic CATalogue (FCAT-17). Bulletin of Earthquake Engineering 16: 2227–2251. https://doi.org/10.1007/s10518-017-0236-1. [CrossRef] [Google Scholar]
- Marin S, Avouac J-P, Nicolas M, Schlupp A. 2004. A Probabilistic Approach to Seismic Hazard in Metropolitan France. Bulletin of the Seismological Society of America 94: 2137–2163. [CrossRef] [Google Scholar]
- Martinod J, Jouanne F, Taverna J, Ménard G, Gamond JF, Darmendrail X, et al. 1996. Present-day deformation of the Dauphine Alpine and Subalpine massifs (SE France). Geophysical Journal International 127: 189–200. [CrossRef] [Google Scholar]
- Masson F, Knoepfler A, Mayer M, Ulrich P, Heck B. 2010. Upper bounds of deformation in the Upper Rhine Graben from GPS data – First results from GURN (GNSS Upper Rhine Graben Network). In: EGU General Assembly, 4516 p. [Google Scholar]
- Masson C, Mazzotti S, Vernant P. 2019a. Precision of continuous GPS velocities from statistical analysis of synthetic time series. Solid Earth 10: 329–342. https://doi.org/10.5194/se-10-329-2019. [CrossRef] [Google Scholar]
- Masson C, Mazzotti S, Vernant P, Doerflinger E. 2019b. Extracting small deformation beyond individual station precision from dense GNSS networks in France and Western Europe. Solid Earth 10: 1905–1920. https://doi.org/10.5194/se-10-1905-2019. [CrossRef] [Google Scholar]
- Mayor J, Traversa P, Calvet M, Margerin L. 2018. Tomography of crustal seismic attenuation in Metropolitan France: Implications for seismicity analysis. Bulletin of Earthquake Engineering 16(6): 2195–2210. [CrossRef] [Google Scholar]
- Mazabraud Y, Béthoux N, Guilbert J, Bellier O. 2005. Evidence for short-scale stress field variations within intraplate central-western France. Geophysical Journal International 160: 161–178. https://doi.org/10.2113/gssgfbull.S7-XXII.1.93. [CrossRef] [Google Scholar]
- Mazzotti S. 2007. Geodynamic models for earthquake studies in intraplate North America. In: Stein S, Mazzotti S, eds. Geological Society of America – Special Papers 425: 17–33. https://doi.org/10.1130/2007.2425(02). [Google Scholar]
- Mazzotti S. 2018. Challenges of integrating geodetic and model-based strain rates into seismic hazard calculations in regions of low distributed deformation. In: European Seismological Commission, Valeta, Malta, ESC2018-S22-744. [Google Scholar]
- Mazzotti S, Gueydan F. 2018. Control of tectonic inheritance on continental intraplate strain rate and seismicity. Tectonophysics 746: 602–610. https://doi.org/10.1016/j.tecto.2017.12.014. [CrossRef] [Google Scholar]
- Mazzotti S, Aubagnac C, Bollinger L, Coca Oscanoa K, Delouis B, Do Paco D, et al. subm. FMHex20: A database of earthquake focal mechanisms in metropolitan France and conterminous Western Europe. Bull. Soc. Geol. France. [Google Scholar]
- Mey J, Scherler D, Wickert AD, Egholm DL, Tesauro M, Schildgen TF, et al. 2016. Glacial isostatic uplift of the European Alps. Nature Communications 7: 1–9. https://doi.org/10.1038/ncomms13382. [Google Scholar]
- Mikko H, Smith CA, Lund B, Ask MVS, Munier R. 2015. LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF 137: 334–338. https://doi.org/10.1080/11035897.2015.1036360. [CrossRef] [Google Scholar]
- Molliex S, Rabineau M, Leroux E, Bourlès D, Authemayou C, Aslanian D, et al. 2016. Multi-approach quantification of denudation rates in the Gulf of Lion source-to-sink system (SE France). Earth and Planetary Science Letters 444: 101–115. https://doi.org/10.1016/j.epsl.2016.03.043. [CrossRef] [Google Scholar]
- Müller B, Zoback ML, Fuchs K, Mastin L, Gregesen S, Pavoni N, et al. 1992. Regional patterns of tectonic stress in Europe. Journal of Geophysical Research: Solid Earth 97: 11783–11803. [CrossRef] [Google Scholar]
- Neres M, Neves MC, Custódio S, Palano M, Fernandes R, Matias L, et al. 2018. Gravitational Potential Energy in Iberia: A Driver of Active Deformation in High-Topography Regions. Journal of Geophysical Research 123: 10277–10296. https://doi.org/10.1029/2017JB015002. [Google Scholar]
- Nguyen HN, Vernant P, Mazzotti S, Khazaradze G, Asensio E. 2016. 3-D GPS velocity field and its implications on the present-day post-orogenic deformation of the Western Alps and Pyrenees. Solid Earth 7: 1349–1363. https://doi.org/10.5194/se-7-1349-2016. [CrossRef] [Google Scholar]
- Nicolas M, Santoire JP, Delpech PY. 1990. Intraplate seismicity: new seismotectonic data in Western Europe. Tectonophysics 179: 27–53. [CrossRef] [Google Scholar]
- Nocquet J-M. 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 579: 220–242. https://doi.org/10.1016/j.tecto.2012.03.037. [CrossRef] [Google Scholar]
- Nocquet J-M, Calais E, Parsons B. 2005. Geodetic constraints on glacial isostatic adjustment in Europe. Geophysical Research Letters 32: 29077. https://doi.org/10.1029/2004GL022174. [Google Scholar]
- Nocquet J-M, Sue C, Walpersdorf A, Tran T, Lenôtre N, Vernant P, et al. 2016. Present-day uplift of the western Alps. Scientific Reports 6. https://doi.org/10.1038/srep28404. [Google Scholar]
- Olivetti V, Godard V, Bellier O. 2016. Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles. Earth and Planetary Science Letters 444: 179–191. https://doi.org/10.1016/j.epsl.2016.03.049. [CrossRef] [Google Scholar]
- Palano M, González PJ, Fernández J. 2015. The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters 430: 439–447. https://doi.org/10.1016/j.epsl.2015.08.040. [CrossRef] [Google Scholar]
- Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP. 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quaternary Science Reviews 153: 97–121. https://doi.org/10.1016/j.quascirev.2016.10.009. [CrossRef] [Google Scholar]
- Peltier WR, Argus DF, Drummond R. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120: 450–487. https://doi.org/10.1002/2014JB011176. [CrossRef] [Google Scholar]
- Pérez-Gussinyé M, Watts AB. 2005. The long-term strength of Europe and its implications for plate-forming processes. Nature 436: 381–384. https://doi.org/10.1038/nature03854. [CrossRef] [Google Scholar]
- Perrey A. 1845. Mémoire sur les tremblements de terre ressentis en France, en Belgique et en Hollande, depuis le quatrième siècle de l’ère chrétienne jusqu’à nos jours (1843 inclusiv.). Bruxelles: M. Hayez. [Google Scholar]
- Poursoulis G, Levret-Albaret A. 2014. Le tremblement de terre de 1708 à Manosque. Apport d’une étude historique et archéologique à l’évaluation du risque sismique en Moyenne Durance. Perpignan, France. [Google Scholar]
- Précigout J, Gueydan F. 2009. Mantle weakening and strain localization: Implications for the long-term strength of the continental lithosphere. Geology 37: 147–150. https://doi.org/10.1130/G25239A.1. [CrossRef] [Google Scholar]
- Provost L, Scotti O. 2020. QUake-MD: Open-Source Code to Quantify Uncertainties in Magnitude–Depth Estimates of Earthquakes from Macroseismic Intensities. Seismological Research Letters. https://doi.org/10.1785/0220200064. [Google Scholar]
- QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation. [Google Scholar]
- Quenet G, Baumont D, Scotti O, Levret A. 2004. The 14 August 1708 Manosque, France earthquake: new constraints on the damage area from in-depth historical studies. Annals of Geophysics 47: 583–595. [Google Scholar]
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
- Reilly WI, Gubler E. 1990. Crustal strain in Switzerland 1870–1970. Geophysical Journal International 103: 251–256. [CrossRef] [Google Scholar]
- Rigo A, Cushing EM. 1999. Effets topographiques sur les comparaisons de profils de nivellement: cas français de Saint-Paul-de-Fenouillet (Pyrénées-Orientales) et d’Arudy (Pyrénées-Atlantiques). C. R. Acad. Sci. 329: 697–704. [Google Scholar]
- Rigo A, Vernant P, Feigl K, Goula X, Khazaradze G, Talaya J, et al. 2015. Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011. Geophysical Journal International 201: 947–964. https://doi.org/10.1093/gji/ggv052. [CrossRef] [Google Scholar]
- Sánchez L, Völksen C, Sokolov A, Arenz H, Seitz F. 2018. Present-day surface deformation of the Alpine Region inferred from geodetic techniques. Earth System Science Data 10: 1503–1526. https://doi.org/10.5194/essd-10-1503-2018. [CrossRef] [Google Scholar]
- Santamaría-Gómez A, Bouin M-N, Collilieux X, Wöppelmann G. 2011. Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research: Solid Earth 116: B01405. https://doi.org/10.1029/2010JB007701. [Google Scholar]
- Schaller M, von Blanckenburg F, Hovius N, Kubik P. 2001. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters 188: 441–458. [CrossRef] [Google Scholar]
- Schulte SM, Mooney WD. 2005. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophysical Journal International 161: 707–721. https://doi.org/10.1111/j.1365-246X.2005.02554.x. [CrossRef] [Google Scholar]
- Scotti O, Baumont D, Quenet G, Levret A. 2004. The French macroseismic database SISFRANCE: objectives, results and perspectives. Annals of Geophysics 47: 571–581. [Google Scholar]
- Sébrier M, Ghafiri A, Bles J-L. 1997. Paleoseismicity in France: Fault trench studies in a region of moderate seismicity. Journal of Geodynamics 24: 207–217. https://doi.org/10.1016/S0264-3707(97)00005-7. [CrossRef] [Google Scholar]
- Selverstone J. 2005. Are the Alps Collapsing. Annual Review of Earth and Planetary Sciences 33: 113–132. https://doi.org/10.1146/annurev.earth.33.092203.122535. [CrossRef] [Google Scholar]
- Serpelloni E, Faccenna C, Spada G, Dong D, Williams SDP. 2013. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. Journal of Geophysical Research: Solid Earth 118: 6003–6024. https://doi.org/10.1002/2013JB010102. [CrossRef] [Google Scholar]
- Souriau A, Rigo A, Sylvander M, Benahmed S, Grimaud F. 2014. Seismicity in central-western Pyrenees (France): A consequence of the subsidence of dense exhumed bodies. Tectonophysics 621: 123–131. https://doi.org/10.1016/j.tecto.2014.02.008. [CrossRef] [Google Scholar]
- Steer P, Simoes M, Cattin R, Shyu JBH. 2014. Erosion influences the seismicity of active thrust faults. Nature Communications 5: 5564. https://doi.org/10.1038/ncomms6564. [CrossRef] [Google Scholar]
- Steer P, Jeandet L, Cubas N, Marc O, Meunier P, Hovius N, et al. 2017. Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon. Vienna, Austria: EGU2017-9089. [Google Scholar]
- Steffen R, Steffen H, Wu P, Eaton DW. 2014. Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle. Tectonics 33: 1461–1476. https://doi.org/10.1002/2013TC003450. [CrossRef] [Google Scholar]
- Stein S, Mazzotti S, eds. 2007. Continental intraplate earthquakes: Science, hazard, and policy issues. Boulder, CO: Geological Society of America. [CrossRef] [Google Scholar]
- Stocchi P, Spada G, Cianetti S. 2005. Isostatic rebound following the Alpine deglaciation: impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International 162: 137–147. https://doi.org/10.1111/j.1365-246X.2005.02653.x. [CrossRef] [Google Scholar]
- Strasser M, Anselmetti FS, Fäh D, Giardini D, Schnellmann M. 2006. Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34: 1005. https://doi.org/10.1130/G22784A.1. [CrossRef] [Google Scholar]
- Sue C, Thouvenot F, Fréchet J, Tricart P. 1999. Widespread extension in the core of the western Alps revealed by earthquake analysis. Journal of Geophysical Research: Solid Earth 104: 25611–25622. [CrossRef] [Google Scholar]
- Sue C, Delacou B, Champagnac J-D, Allanic C, Burkhard M. 2007. Aseismic deformation in the Alps: GPS vs. seismic strain quantification. Terra Nova 19: 182–188. https://doi.org/10.1111/j.1365-3121.2007.00732.x. [CrossRef] [Google Scholar]
- Sykes LR. 1978. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Review of Geophysics 16: 621. https://doi.org/10.1029/RG016i004p00621. [CrossRef] [Google Scholar]
- Talwani P. 2016. On the nature of intraplate earthquakes. Journal of Seismology 1–22. https://doi.org/10.1007/s10950-016-9582-8. [Google Scholar]
- Tarayoun A, Mazzotti S, Craymer MR, Henton JA. 2018. Structural Inheritance Control on Intraplate Present-Day Deformation: GPS Strain Rate Variations in the Saint Lawrence Valley, Eastern Canada. Journal of Geophysical Research 123: 7004–7020. https://doi.org/10.1029/2017JB015417. [Google Scholar]
- Tarayoun A, Mazzotti S, Gueydan F. 2019. Quantitative impact of structural inheritance on present-day deformation and seismicity concentration in intraplate deformation zones. Earth and Planetary Science Letters 518: 160–171. https://doi.org/10.1016/j.epsl.2019.04.043. [CrossRef] [Google Scholar]
- Terrier M, Bertil D, Rohmer J. 2018. Méthode d’identification des failles actives en domaine de déformation lente. Rapport final. BRGM/RP-68553-FR, 87 p. [Google Scholar]
- Tesauro M, Kaban MK, Cloetingh SAPL. 2009. How rigid is Europe’s lithosphere? Geophysical Research Letters 36. https://doi.org/10.1029/2009GL039229. [CrossRef] [Google Scholar]
- The RENAG Team. 2010. RESIF-RENAG: The French GPS component of a European infrastructure. In: EGU General Assembly, Vienna, Austria. [Google Scholar]
- Tommasi A, Knoll M, Vauchez A, Signorelli JW, Thoraval C, Logé R. 2009. Structural reactivation in plate tectonics controlled by olivine crystal anisotropy. Nature Geoscience 2: 423–427. https://doi.org/10.1038/ngeo528. [CrossRef] [Google Scholar]
- van Camp M, de Viron O, Scherneck H-G, Hinzen K-G, Williams SDP, Lecocq T, et al. 2011. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe. Journal of Geophysical Research: Solid Earth 116: B08402. https://doi.org/10.1029/2010JB008174. [Google Scholar]
- Vernant P, Hivert F, Chéry J, Steer P, Cattin R, Rigo A. 2013. Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology 41: 467–470. https://doi.org/10.1130/G33942.1. [CrossRef] [Google Scholar]
- Vigny C, Chéry J, Duquesnoy T, Jouanne F, Ammann J, Anzidei M, et al. 2002. GPS network monitors the Western Alps’ deformation over a five-year period: 1993–1998. Journal of Geodesy 76: 63–76. https://doi.org/10.1007/s00190-001-0231-8. [CrossRef] [Google Scholar]
- Volant P, Levret A, Carbon D, Scotti O, Combescure D, Verdel T, et al. 2008. An archaeo-seismological study of the Nîmes Roman aqueduct, France: indirect evidence for an M > 6 seismic event? Natural Hazards 49: 53–77. https://doi.org/10.1007/s11069-008-9276-9. [CrossRef] [Google Scholar]
- Vrolijk P, Pevear D, Covey M, LaRiviere A. 2018. Fault gouge dating: history and evolution. Peter Vrolijk et al. Fault gouge dating. Clay Minerals 53: 305–324. https://doi.org/10.1180/clm.2018.22. [CrossRef] [Google Scholar]
- Walpersdorf A, Sue C, Baize S, Cotte N, Bascou P, Beauval C, et al. 2015. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France). Journal of Geodynamics 85: 58–65. https://doi.org/10.1016/j.jog.2015.02.001. [CrossRef] [Google Scholar]
- Walpersdorf A, Pinget L, Vernant P, Sue C, Deprez A, The RENAG Team. 2018. Does Long-Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms? Tectonics 91: 937. https://doi.org/10.1029/96JB03860. [Google Scholar]
- Wang Z, Cobb JC. 2012. A critique of probabilistic versus deterministic seismic hazard analysis with special reference to the New Madrid seismic zone. In: Recent Advances in North American Paleoseismology and Neotectonics East of the Rockies. Geological Society of America Special Paper, pp. 259–275. [Google Scholar]
- Wells DL, Coppersmith KJ. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84: 974–1002. [Google Scholar]
- Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F. 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union 94: 409–410. https://doi.org/10.1002/2013EO450001. [CrossRef] [Google Scholar]
- Willett SD, Schlunegger F, Picotti V. 2006. Messinian climate change and erosional destruction of the central European Alps. Geology 34: 613. https://doi.org/10.1130/G22280.1. [CrossRef] [Google Scholar]
- Williams SDP. 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy 76: 483–494. https://doi.org/10.1007/s00190-002-0283-4. [CrossRef] [Google Scholar]
- Wu P, Mazzotti S. 2007. Effects of a lithospheric weak zone on postglacial seismotectonics in eastern Canada and the northeastern United States (S. Stein, S. Mazzotti, eds.). Geological Society of America – Special Papers 425: 113–128. https://doi.org/10.1130/2007.2425(09). [Google Scholar]
- Zoback ML. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map project. Journal of Geophysical Research: Solid Earth 97: 11703–11728. [CrossRef] [Google Scholar]
- Zoback ML, Zoback MD, Adams J, Assumpção M, Bell S, Bergman EA, et al. 1989. Global patterns of tectonic stress. Nature 341: 291–298. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.