Numéro
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
Numéro d'article 8
Nombre de pages 45
DOI https://doi.org/10.1051/bsgf/2021007
Publié en ligne 23 mars 2021
  • Acosta-Vigil A, Rubatto D, Bartoli O, Cesare B, Meli S, Pedrera A, et al. 2014. Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 210–211: 147–167. [CrossRef] [Google Scholar]
  • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Science Reviews 92: 53–79. [CrossRef] [Google Scholar]
  • Agard P, Augier R, Monié P. 2011. Shear band formation and strain localization on a regional scale: Evidence from anisotropic rocks below a major detachment (Betic Cordilleras, Spain). Journal of Structural Geology 33: 114–131. [CrossRef] [Google Scholar]
  • Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, et al. 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters 451: 208–220. https://doi.org/210.1016/j.epsl.2016.1006.1054. [CrossRef] [Google Scholar]
  • Aldaya, F., García-Dueñas, V. 1976. Les séquences lithologiques de nappes Alpujárrides au sud et au sud-ouest de la Sierra Nevada (Cordillères bétiques, Andalousie). Bull. Soc. Géol. France 18: 635–639. [CrossRef] [Google Scholar]
  • Andrieux J, Fontboté JM, Mattauer M. 1971. Sur un modèle explicatif de l’arc de Gibraltar. Earth Planet. Sci. Lett. 12: 191–193. [CrossRef] [Google Scholar]
  • Angrand P, Mouthereau F, Masini E, Asti R. 2020. A reconstruction of Iberia accounting for W-Tethys/N-Atlantic kinematics since the late Permian-Triassic. Solid Earth, European Geosciences Union. https://doi.org/10.5194/se-2020-5124. [Google Scholar]
  • Argles TW, Platt JP, Waters DJ. 1999. Attenuation and excision of a crustal section during extensional exhumation: the Carratraca massif, Betic Cordillera, southern Spain. J. Geol. Soc. London 156: 149–162. [CrossRef] [Google Scholar]
  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P. 2019. How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleopassive margin, western Pyrenees (France). Tectonics 38: 1666–1693. https://doi.org/1610.1029/2018TC005428. [CrossRef] [Google Scholar]
  • Augier R, Agard P, Jolivet L, Monié P, Robin C, Booth-Rea G. 2005a. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filábride complex. J. Metam. Geol. 23: 357–381. https://doi.org/310.1111/j.1525-1314.2005.00581.x. [CrossRef] [Google Scholar]
  • Augier R, Booth-Rea G, Agard P, Martinez-Martinez JM, Jolivet L, Azañón JM. 2005b. Exhumation constraints for the lower Nevado-Filábride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach. Bull. Soc. Géol. Fr. 176: 403–416. https://doi.org/410.2113/2176.2115.2403. [CrossRef] [Google Scholar]
  • Augier R, Jolivet L, Do Couto D, Negro F. 2013. From ductile to brittle, late- to post-orogenic evolution of the Betic Cordillera: Structural insights from the northeastern Internal zones. Bull Soc Géol Fr 184: 405–425. [CrossRef] [Google Scholar]
  • Azañón JM, Crespo-Blanc A. 2000. Exhumation during a continental collision inferred from the tectonometamorphic evolution of the Alpujárride Complex in the central Betics (Alboran Domain, SE Spain). Tectonics 19: 549–565. [CrossRef] [Google Scholar]
  • Azañón JM, Crespo-Blanc A, García-Dueñas V. 1997. Continental collision, crustal thinning and nappe-forming during the pre-Miocene evolution of the Alpujárride Complex (Alboran Domain, Betics). J Struct Geol 19: 1055–1071. [CrossRef] [Google Scholar]
  • Azañón JM, Garcia Dueñas V, Martinez-Martinez JM, Crespo-Blanc A. 1994. Alpujárride tectonic sheets in the Central Betics and similar eastern allochtonous units (SE Spain). C R Acad. Sci 318: 667–674. [Google Scholar]
  • Azañón JM, García-Dueñas V, Goffé B. 1992. High pressure mineral assemblages in the Trevenque Unit (Central Alpujárrides, Andalucía). Geogaceta 11: 81–84. [Google Scholar]
  • Azañón JM, García-Dueñas V, Goffé B. 1998. Exhumation of high-pressure metapelites and coeval crustal extension in the Alpujárride complex (Betic Cordillera). Tectonophysics 285: 231–252. [CrossRef] [Google Scholar]
  • Azañón JM, Goffé B. 1997. High-pressure, low-temperature metamorphic evolution of the Central Alpujárrides, Betic cordillera (S.E. Spain). Eur J Miner 9: 1035–1051. [CrossRef] [Google Scholar]
  • Azdimousa A, Bourgois J, Poupeau G, Vázquez M, Asebriy L, Labrin E. 2013. Fission track thermochronology of the Beni Bousera peridotite massif (Internal Rif, Morocco) and the exhumation of ultramafic rocks in the Gibraltar Arc. Arab J Geosci. https://doi.org/10.1007/s12517-12013-10924-12513. [Google Scholar]
  • Bakker HE, de Jong K, Helmers H, Biermann C. 1989. The geodynamic evolution of the Internal Zone of the Betic Cordilleras (south-east Spain): a model based on structural analysis and geothermobarometry. J Metamorph Geol 7: 359–381. [CrossRef] [Google Scholar]
  • Balanyá JC, García-Dueñas V. 1987. Les directions structurales dans le Domaine d’Alborán de part et d’autre du Détroit de Gibraltar. C R Acad Sci 304: 929–932. [Google Scholar]
  • Balanyá JC, García-Dueñas V, Azañón JM, Sanchez-Gómez M. 1997. Alternating contractional and extensional events in the Alpujárride nappes of the Alboran Domain. Tectonics 16: 226–238. [CrossRef] [Google Scholar]
  • Barich A. 2016. Unravelling the anatectic history of the lower conteninental crust through the petrology of melt inclusions and Lu-Hf garnet geochronology: a case study from the western Alpujárrides (Betic Cordillera, S. Spain). Universidad de Granada, pp. 200. [Google Scholar]
  • Barich A, Acosta-Vigil A, Garrido CJ, Cesare B, Tajčmanová L, Bartoli O. 2014. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis. Lithos 206–207: 303–320. https://doi.org/310.1016/j.lithos.2014.1008.1003. [CrossRef] [Google Scholar]
  • Bartoli O, Tajcmanova L, Cesare B, Acosta-Vigil A. 2013. Phase equilibria constraints on melting of stromatic migmatites from Ronda (S. Spain): insights on the formation of peritectic garnet. J Metamorph Geol 31: 775–789. https://doi.org/710.1111/jmg.12044. [CrossRef] [Google Scholar]
  • Beaudoin A, Scaillet S, Mora N, Jolivet L, Augier R. 2020. In situ and step-heating 40Ar/39Ar dating of white mica in low-temperature shear zones (Tenda Massif, alpine Corsica, France). Tectonics: e2020TC006246. https://doi.org/006210.001029/002020TC006246. [Google Scholar]
  • Behr WM, Platt JP. 2012. Kinematic and thermal evolution during two-stage exhumation of a Mediterranean subduction complex. Tectonics 31: TC4025. [Google Scholar]
  • Bessière E. 2019. Evolution géodynamique des zones internes des Cordillères Bétique (Andalousie, Espagne): apports d’une étude pluridisciplinaire du complexe Alpujárride, OSUC. Orléans: Université d’Orléans, pp. 316. [Google Scholar]
  • Beyssac O, Goffé B, Chopin C, Rouzaud JN. 2002. Raman spectra of carbonaceous material from metasediments: a new geothermometer. J Metam Geol 20: 859–871. https://doi.org/810.1046/j.1525-1314.2002.00408.x. [CrossRef] [Google Scholar]
  • Bezada MJ, Humphreys ED, Toomey DR, Harnafi M, Davila JM, Gallart J. 2013. Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging. Earth Planet Sci Lett 368: 51–60. https://doi.org/10.1016/j.epsl.2013.1002.1024. [CrossRef] [Google Scholar]
  • Blichert-Toft J, Albarède F, Kornprobst J. 1999. Lu-Hf isotope sys- tematics of garnet pyroxenites from Beni Bousera, Morocco: Implications for basalt origin. Science 283: 1303–1306. [CrossRef] [Google Scholar]
  • Blumenthal M. 1927. Versuch einer tektonishen Gliederung der Betischen Kordilleren von Central und Sudwest Andalusien. Eclogae Geol Helv 20: 487–592. [Google Scholar]
  • Boillot G, Girardeau J, Kornprobst J. 1988. Rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks on the seafloor. In: Boillot G, Winterer EL, Eds. Proc. Ocean Dril. Prog., Sci. Results, pp. 741–756. [Google Scholar]
  • Booth-Rea G, Azañón JM, Goffé B, Vidal O, Martínez-Martínez JM. 2002. High-pressure low-temperature metamorphism in the Alpujárride Units outcropping in the southeastern Betics (Spain). C R Geosci 334: 857–865. [CrossRef] [Google Scholar]
  • Booth-Rea G, Azañón JM, Azor A, García-Dueñas V. 2004. Influence of strike-slip fault segmentation on drainage evolution and topography. A case study: the Palomares fault zone (southeastern Betics, Spain). Journal of Structural Geology 26: 1615–1632. [CrossRef] [Google Scholar]
  • Booth-Rea G, Azañón JM, Martínez-Martínez JM, Vidal O, García-Dueñas V. 2005. Contrasting structural and P-T evolution of tectonic units in the southeastern Betics: Key for understanding the exhumation of the Alboran Domain HP/LT crustal rocks (western Mediterranean). Tectonics 24. [Google Scholar]
  • Booth-Rea G, Martínez-Martínez JM, Giaconia F. 2015. Continental subduction, intracrustal shortening, and coeval upper-crustal extension: P-T evolution of subducted south Iberian paleomargin metapelites (Betics, SE Spain). Tectonophysics 663: 122–139. [CrossRef] [Google Scholar]
  • Booth-Rea G, Ranero CR, Martinez-Martinez JM, Grevemeyer I. 2007. Crustal types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean. Geochem Geophys Geosyst 8: Q10005. https://doi.org/10010.11029/12007GC001639. [CrossRef] [Google Scholar]
  • Borque MJ, Sánchez-Alzola A, Martin-Rojas I, Alfaro P, Molina S, Rosa-Cintas S, et al. 2019. How much Nubia-Eurasia convergence is accommodated by the NE end of the Eastern Betic Shear Zone (SE Spain)? Constraints from GPS velocities. Tectonics 38: 1824–1839. https://doi.org/1810.1029/2018TC004970. [CrossRef] [Google Scholar]
  • Bouillin JP, Durand-Delga M, Olivier P. 1986. Betic, Rifian and Tyrrhenian arcs: distinctive features, genesis and development stage. In: Wezel FC, Ed. The origin of Arcs. New York: Elsevier, pp. 281–304. [Google Scholar]
  • Bourgois J, Chauve P, Magne J, Monnot J, Peyre Y, Rigo E, et al. 1972. La formation de Las Millanas. Série burdigallienne transgressive, sur les zones internes des cordillères bétiques occidentales (région d’Alozoina-Tolox, province de Malaga, Espagne). C R Acad Sci 275: 169–172. [Google Scholar]
  • Bourgois J, Mauffret A, Ammar A, Demnati A. 1992. Multichannel seismic data imaging of inversion tectonics of the Alboran Ridge (western Mediterranean Sea). Geo-Marine Letters: 117–122. [CrossRef] [Google Scholar]
  • Bousquet R, Goffé B, Henry P, Le Pichon X, Chopin C. 1997. Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the Upper Crust and eclogitisation of the lower crust. Tectonophysics 273: 105–128. [CrossRef] [Google Scholar]
  • Bousquet R, Oberhänsli R, Goffé B, Wiederkehr M, Koller F, Schmid SM, et al. 2008. Metamorphism of metasediments at the scale of an orogen: a key to the Tertiary geodynamic evolution of the Alps. In: Siegiesmund S, Fügenschuh B, Froitzheim N, Eds. Tectonic Aspects of the Alpine-Dinaride-Carpathian System. London: The Geological Society of London, pp. 393–411. https://doi.org/310.1144/SP1298.11180305-8719/1108/$1115.1100. [Google Scholar]
  • Bouybaouene ML, Goffé B, Michard A. 1995. High-pressure, low-temperature metamorphism in the Sebtides nappes, northern Rif, Morocco. Geogaceta 17: 117–119. [Google Scholar]
  • Brandão JASL, Feijó FJ. 1994. Bacia da foz do Amazonas. Bol Geociências PETROBRAS 8: 91–99. [Google Scholar]
  • Briend M, Montenat C, Ott d’Estevou P. 1990. Le bassin de Huercal-Overa. In: Montenat C, Ed. Les bassins Neogenes du Domaine Betique Oriental (Espagne) 12–13, pp. 239–259. [Google Scholar]
  • Brun JP, Faccenna C. 2008. Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Sciences Letters 272: 1–7. https://doi.org/10.1016/j.epsl.2008.1002.1038. [CrossRef] [Google Scholar]
  • Brun JP, Sokoutis D, Tirel C, Gueydan F, Van den Driessche J. 2018. Crustal versus mantle core complexes. Tectonophysics 746: 22–45. [CrossRef] [Google Scholar]
  • Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV. 2014. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications 5: 4014. https://doi.org/10.1038/ncomms5014. [CrossRef] [Google Scholar]
  • Burg JP, Davy P, Nievergelt P, Oberli F, Seward D, Zhizhong D, Meier M. 1997. Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova 9: 53–56. [CrossRef] [Google Scholar]
  • Casciello E, Fernandez M, Vergés J, Cesarano M, Torne M. 2015. The Alboran domain in the western Mediterranean evolution, the birth of a concept. Bull Soc Géol Fr 186: 371–384. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A. 1990. The Ghomarides Nappes, Rif Coastal Range, Morocco: A Variscan Chip in the Alpine Belt. Tectonics 9: 1565–1583. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A. 2004. The Alpine Rif Belt (Morocco): A Case of Mountain Building in a Subduction-Subduction-Transform Fault Triple Junction. Pure Appl Geophys 161: 489–519. https://doi.org/410.1007/s00024-00003-02460-00027. [CrossRef] [Google Scholar]
  • Chalouan A, Michard A, El Kadiri K, Negro F, Frizon de Lamotte D, Soto JI, et al. 2008. The Rif Belt. In: Michard A, et al., Ed. Continental Evolution: The Geology of Morocco, Lecture Notes 203 in Earth Sciences. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. [Google Scholar]
  • Chalouan A, Michard A, Feinberg H, Montigny R, Saddiqi O. 2001. The Rif mountain building (Morocco): a new tectonic scenario. Bull Geol Soc Fr 242: 603–616. [CrossRef] [Google Scholar]
  • Chalouan A, Saji R, Michard A, Bally AW. 1997. Neogene Tectonic Evolution of the Southwestern Alboran Basin as Inferred from Seismic Data Off Morocco. AAPG Bulletin 81: 1161–1184. [Google Scholar]
  • Chertova MV, Spakman W, Geenen T, van den Berg AP, van Hinsbergen DJJ. 2014. Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J Geophys Res Solid Earth 119: 5876–5902. https://doi.org/5810.1002/2014JB011150. [CrossRef] [Google Scholar]
  • Chevrot S, Sylvander M, Diaz J, Martin R, Mouthereau F, Manatschal G, et al. 2018. The non-cylindrical crustal architecture of the Pyrenees. Scientific Reports 8: 9591. https://doi.org/9510.1038/s41598-41018-27889-x. [CrossRef] [Google Scholar]
  • Cita MB. 1973. Mediterranean evaporite − paleontological arguments for a deep basin dessication model. In: Drooger CW, Ed. Messinian Events in the Mediterranean. Amsterdam: Kon. Nederl. Aked. Wetensh., North-Holland Pub. Co., pp. 206–228. [Google Scholar]
  • Clauzon G, Suc JP, Do Couto D, Jouannic G, Melinte-Dobrinescu MC, Jolivet L, et al. 2015. New insights on the Sorbas Basin (SE Spain): The onshore reference of the Messinian Salinity Crisis. Marine and Petroleum Geology 66: 71–100. https://doi.org/110.1016/j.marpetgeo.2015.1002.1016. [CrossRef] [Google Scholar]
  • Clauzon G, Suc JP, Gautier F, Berger A, Loutre MF. 1996. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24: 363–366. [CrossRef] [Google Scholar]
  • Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2014. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci (Geol Rundsch) 103: 141–163. https://doi.org/110.1007/s00531-00013-00927-z. [CrossRef] [Google Scholar]
  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol Fr 183: 443–459. [CrossRef] [Google Scholar]
  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. https://doi.org/610.5194/se-5196-5643-2015. [CrossRef] [Google Scholar]
  • Comas MC, García-Dueñas V, Jurado MJ. 1992. Neogene tectonic evolution of the Alboran Sea from MCS data. Geol Mar Lett 12: 157–164. [CrossRef] [Google Scholar]
  • Comas MC, Platt JP, Soto JI, Watts AB. 1999. The origin and tectonic history of the Alboran basin: insights from Leg 161 results. In: Zahn R, Comas MC, Klaus A, Eds. Proc. ODP, Sci. Results. College Station: TX (Ocean Drilling Program), pp. 555–582. [Google Scholar]
  • Comas MC, Zanh R, Klaus A, et al. 1996. Leg 161 − Western Mediterranean. Init Repts of Ocean Drilling Program 161: 1–638. [Google Scholar]
  • Crespo-Blanc A. 1995. Interference pattern of extensional fault systems: a case study of the Miocene rifting of the Alboran basement (North of Sierra Nevada, Betic Chain). J Struct Geol 17: 1559–1569. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Orozco M, García-Dueñas V. 1994. Extension versus compression during the Miocene tectonic evolution of the Betic chain. Late folding of normal fault system. Tectonics 13: 78–88. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Comas M, Balanyá JC. 2016. Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics 683: 308–324. https://doi.org/310.1016/j.tecto.2016.1005.1045. [CrossRef] [Google Scholar]
  • Crespo-Blanc A, Frizon de Lamotte D. 2006. Structural evolution of the external zones derived from the flysch trough and the south Iberian and Maghrebian paleomargins around the Gibraltar arc: a comparative study. Bull Soc Géol Fr 177: 267–282. [CrossRef] [Google Scholar]
  • d’Acremont E, Lafosse M, Rabaute A, Teurquety G, Do Couto D, Ercilla G, et al. 2020. Polyphase tectonic evolution of fore-arc basin related to STEP fault as revealed by seismic reflection data from the Alboran Sea (W- Mediterranean). Tectonics. https://doi.org/10.1029/2019TC005885. [Google Scholar]
  • Daudet M, Mouthereau F, Brichau S, Crespo-Blanc A, Gautheron C, Angrand P. 2020. Tectono-stratigraphic and thermal evolution of the western Betic flyschs: implications for the geodynamics of South Iberian margin and Alboran Domain. Tectonics. https://doi.org/10.1029/2020TC006093. [Google Scholar]
  • Davies GR, Nixon PH, Pearson DG, Obata M. 1993. Tectonic implications of graphitized diamonds from the Ronda peridotite massif, southern Spain. Geology 21: 471–474. [CrossRef] [Google Scholar]
  • Davy P, Gillet P. 1986. The stacking of thrust slices in collision zones and its thermal consequences. Tectonics 5: 913–929. [CrossRef] [Google Scholar]
  • De Jong G. 1993. The tectono-metamorphic evolution of the Veleta Complex and the development of the contact with the Mulhacen Complex (Betic Zone, SE Spain). Geol Mijnbouw 71: 227–237. [Google Scholar]
  • De Jong K, Wijbrans JR, Feraud G. 1992. Repeated Thermal Resetting of Phengites in the Mulhacen Complex (Betic Zone, Southeastern Spain) Shown By Ar-40/Ar-39 Step Heating and Single Grain Laser Probe Dating. Earth and Planetary Science Letters 110: 173–191. [CrossRef] [Google Scholar]
  • de la Peña LG, Ranero CR, Gràcia E, Booth-Rea G. 2020. The evolution of the westernmost Mediterranean basins. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2020.103445. [Google Scholar]
  • de Larouzière FD, Bolze J, Bordet P, Hernadez J, Montenant C, Ott d’Estevou P. 1988. The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics 152: 41–52. [CrossRef] [Google Scholar]
  • de Lis Mancilla F, Booth-Rea G, Stich D, Pérez-Peña JV, Morales J, Azañón JM, et al. 2015. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics 663: 225–237. https://doi.org/210.1016/j.tecto.2015.1006.1028. [CrossRef] [Google Scholar]
  • de Lis Mancilla F, Heit B, Morales J, Yuan X, Stich D, Molina-Aguilera A, et al. 2018. A STEP fault in Central Betics, associated with lateral lithospheric tearing at the northern edge of the Gibraltar arc subduction system. Earth and Planetary Science Letters 486: 32–40. https://doi.org/10.1016/j.epsl.2018.1001.1008. [CrossRef] [Google Scholar]
  • del Olmo Sanz A, Macía JG de P, Aldaya Valverde F, Campos Fernández J, Chacón Montero J, García Dueñas V, et al. 1987. Mapa Geológico de España, 1:50.000, hoja 1064 (Cortes de la Frontera). Instituto Geológico y Minero de España. [Google Scholar]
  • de Orueta D. 1917. Estudio geológico y petrográfico de la Serranía de Ronda. Mem Inst Geol Espana. [Google Scholar]
  • De Smet MEM. 1984. Wrenching in the external zone of the Betics Cordilleras, Southern Spain. Tectonophysics 107: 57–79. [CrossRef] [Google Scholar]
  • Diaz J, Gallart J, Carbonell R. 2016. Moho topography beneath the Iberian-Western Mediterranean region mapped from controlled-source and natural seismicity surveys. Tectonophysics 692: 74–85. [CrossRef] [Google Scholar]
  • Didon J, García-Dueñas V. 1976. Réunion extraordinaire de la Société géologique de France: Les Cordillères bétiques centrales et orientales. Bull Soc Géol Fr 18: 583–599. [CrossRef] [Google Scholar]
  • Dielforder A, Frasca G, Brune S, Ford M. 2019. Formation of the Iberian-European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe. Geochem Geophys Geosyst. https://doi.org/10.1029/2018GC007840. [Google Scholar]
  • Do Couto D, Gorini C, Jolivet L, Lebret N, Augier R, Gumiaux C, et al. 2016. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.1003.1020. [Google Scholar]
  • Do Couto D, Gumiaux C, Augier R, Lebret N, Folcher N, Jouannic G, et al. 2014. Tectonic inversion of an asymmetric graben: Insights from a combined field and gravity survey in the Sorbas basin. Tectonics 33. https://doi.org/10.1002/2013TC003458. [Google Scholar]
  • Do Couto D, Gumiaux C, Jolivet L, Augier R, Lebret N, Folcher N, et al. 2015. 3D modelling of the Sorbas Basin (Spain): New constraints on the Messinian Erosional Surface morphology. Marine and Petroleum Geology 66: 101–116. https://doi.org/110.1016/j.marpetgeo.2014.1012.1011. [CrossRef] [Google Scholar]
  • Doblas M, Oyarzun R. 1989. “Mantle core complexes” and Neogene extensional detachment tectonics in the western Betic Cordilleras, Spain: an alternative model for the emplacement of the Ronda peridotite. Earth Planet Sci Lett 93: 76–84. [CrossRef] [Google Scholar]
  • Dodson MH. 1973. Closure temperature in cooling geochronological and petrological systems. Contr Mineral Petrol 40: 259–274. [NASA ADS] [CrossRef] [Google Scholar]
  • Durand Delga M, Foucault A. 1967. La Dorsale bétique, nouvel élément paléogéographique et structural des Cordillères bétiques, au bord sud de la Sierra Arana (province de Grenade, Espagne). C R somm Soc geol Fr 242. [Google Scholar]
  • Dürr SH. 1963. Geologie der Serrania de Ronda und ihrer südwestlichen Ausläufer (Andalusien). Univ. Bonn. [Google Scholar]
  • Egeler CG. 1963. On the tectonics of the eastern Betic Cordilleras. Geol Rundsch LIII: 260–263. [Google Scholar]
  • Egeler CG, Simon OJ. 1969. Sur la tectonique de la zone bétique (Cordillères Bétiques, Espagne). Etude basée sur sur la recherche dans le secteur compris entre Almeria et Velez Rubio. Verh Kon Ned Akad Wet Afd Natuurk 25: 1–90. [Google Scholar]
  • El Bakili A, Corsini M, Chalouan A, Münch P, Romagny A, Lardeaux JM, et al. 2020. Neogene polyphase deformation related to the Alboran Basin evolution: new insights for the Beni Bousera massif (Internal Rif, Morocco). BSGF − Earth Sciences Bulletin 191: 10. https://doi.org/10.1051/bsgf/2020008. [Google Scholar]
  • Esteban JJ, Cuevas J, Tubía JM, Seward D. 2004a. Determinación de la naturaleza de la falla de Cerro Tajo (Macizo peridotítico de Carratraca) mediante termocronología de trazas de fisión. Geogaceta 36: 43–46. [Google Scholar]
  • Esteban JJ, Sanchez-Rodriguez L, Seward D, Cuevas J, Tuba JM. 2004b. The late thermal history of the Ronda area, southern Spain. Tectonophysics 389: 81–92. https://doi.org/10.1016/j.tecto.2004.1007.1050. [CrossRef] [Google Scholar]
  • Esteban JJ, Cuevas J, Tubía JM, Gil Ibarguchi JI, Seward D. 2005. Metamorfismo, exhumación y termocronología de la Unidad de Yunquera (Alpujárrides occidentales, Cordilleras Béticas). Rev Soc Geol Esp 18: 61–74. [Google Scholar]
  • Esteban JJ, Cuevas J, Vegas N, Tubía JM. 2008. Deformation and kinematics in a melt-bearing shear zone from the Western Betic Cordilleras (Southern Spain). Journal of Structural Geology 30: 380–393. https://doi.org/310.1016/j.jsg.2007.1011.1010. [CrossRef] [Google Scholar]
  • Esteban JJ, Cuevas J, Tubía JM, Sergeev S, Larionov A. 2011. A revised Aquitanian age for the emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). Geol Mag 148: 183–187. [CrossRef] [Google Scholar]
  • Estrada F, Galindo-Zaldıvar J, Vazquez JT, Ercilla G, D’Acremont E, Alonso B, et al. 2017. Tectonic indentation in the central Alboran Sea (westernmost Mediterranean). Terra Nova 30: 24–33. https://doi.org/10.1111/ter.12304. [CrossRef] [Google Scholar]
  • Etheve N, Mohn G, Frizon de Lamotte D, Roca E, Tugend J, Gómez-Romeu J. 2018. Extreme Mesozoic crustal thinning in the eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough). Tectonics 37. https://doi.org/10.1002/2017TC004613. [Google Scholar]
  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F. 2004. Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics 23. https://doi.org/10.1029/2002TC001488. [Google Scholar]
  • Fallot P. 1937. Essai sur la géologie du Rif septentrional. Notes et Mémoire Service géologique du Maroc 40: 533 p. [Google Scholar]
  • Feinberg H, Maaté A, Bouhdadi S, Durand-Delga M, Maaté M, Olivier P. 1990. Signification des dépôts de l’Oligocène supérieur-Miocène inférieur du Rif interne (Maroc), dans l’évolution géodynamique de l’arc de Gibraltar. C R Acad Sci Paris 310: 1487–1495. [Google Scholar]
  • Feinberg H, Saddiqi O, Michard A. 1996. New constraints on the bending of the Gibraltar Arc from palaeomagnetism of the Ronda peridotites (Betic Cordilleras, Spain). In: Morris A, Tarling DH, Eds. Palaeomagnetism and Tectonics of the Mediterranean region. Special Publication, 105. London: Geological Society, pp. 43–52. [Google Scholar]
  • Fernàndez M, Torne M, Vergés J, Casciello E, Macchiavelli C. 2019. Evidence of Segmentation in the Iberia-Africa Plate Boundary: A Jurassic Heritage? Geosciences 9: 343. https://doi.org/310.3390/geosciences9080343. [CrossRef] [Google Scholar]
  • Frasca G, Gueydan F, Brun JP, Monie P. 2016. Deformation mechanisms in a continental rift up to mantle exhumation. Field evidence from the western Betics, Spain. Marine and Petroleum Geology 76: 310–328. https://doi.org/310.1016/j.marpetgeo.2016.1004.1020. [CrossRef] [Google Scholar]
  • Frasca G, Gueydan F, Poujol M, Brun JP, Parat F, Monié P, et al. 2017. Fast switch from extensional exhumation to thrusting of the Ronda Peridotites (South Spain). Terra Nova 29: 117–126. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Andrieux J, Guézou JC. 1991 . Cinématique des chevauchements Néogènes dans l’arc bético-Rifains, discussion sur les modèles géodynamiques. Bull Soc Géol Fr 4: 611–626. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Crespo-Blanc A, Saint-Bézar B, Comas M, Fernàndez M, Zeyen H, et al. 2004. Transect I: Iberia-Meseta −Guadalquivir Basin − Betic Cordillera − Alboran Sea − Rif − Moroccan Meseta − High Atlas − Sahara Domain. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, PAZ, Eds. The TRANSMED Atlas − The Mediterranean region from crust to Mantle. Berlin, Heidelberg: Springer. [Google Scholar]
  • Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E. 2000. The two main steps of the Atlas building and geodynamics of the West Mediterranean. Tectonics 19: 740–761. [CrossRef] [Google Scholar]
  • Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, El Azzouzi M, Charriere A, et al. 2008. The Atlas system. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D, Eds. Continental Evolution: The Geology of Morocco. Heidelberg: Springer-Verlag, pp. 133–202. [CrossRef] [Google Scholar]
  • Gansser A. 1981. The Geodynamic history of the Himalaya. In: Gupta HK, Delany FM, Eds. Zagros, Hindu Kush, Himalaya Geodynamic evolution. Washington DC: American Geophysical Union. [Google Scholar]
  • Garcia-Castellanos D, Villaseñor A. 2011. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480: 359–365. https://doi.org/310.1038/nature10651. [CrossRef] [Google Scholar]
  • García-Dueñas V, Balanyá JC, Martínez-Martínez JM. 1992. Miocene extensional detachments in the outcropping basement of the Northern Alboran Basin (Betics) and their tectonic implications. Geol Mar Lett 12: 88–95. [CrossRef] [Google Scholar]
  • García-Dueñas V, Martinez-Martinez JM, Orozco M, Soto JI. 1988. Plis-nappes, cisaillements syn-à post-metamorphiques et cisaillements ductiles-fragiles en distension dans les Nevado-Filábrides (Cordil- lères Bétiques, Espagne). C R Acad Sci Paris 307: 1389–1395. [Google Scholar]
  • García-Dueñas V, Navarro-Vila F. 1976. Alpujárride-Malaguides et autres unités allochtones au nord de la Sierra Nevada (Cordillères Bétiques, Andalousie). Bull Soc Géol Fr 18: 641–648. [Google Scholar]
  • Garrido CJ, Bodinier JL. 1999. Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt-Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere. Journal of Petrology 40: 729–754 [CrossRef] [Google Scholar]
  • Garrido CJ, Gueydan F, Booth-Rea G, Précigout J, Hidas K, Padrón-Navarta JA, et al. 2011. Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology 39: 927–930. [CrossRef] [Google Scholar]
  • Gautier F, Clauzon G, Suc JP, Cravatte J, Violanti D. 1994. Age et durée de la crise de salinité messinienne. C R Acad Sci 318: 1103–1109. [Google Scholar]
  • Gimeno-Vives O, Mohn G, Bosse V, Haissen F, Zaghloul MN, Atouabat A, et al. 2019. The Mesozoic margin of the Maghrebian Tethys in the Rif belt (Morocco): Evidence for polyphase rifting and related magmatic activity. Tectonics 38: 2894–2918. https://doi.org/2810.1029/2019TC005508. [CrossRef] [Google Scholar]
  • Goffé B, Baronnet A, Morin G. 1994. La saliotite, interstratifié régulier 1:1 cookéite-paragonite. Un nouveau phyllosilicate du métamorphisme de haute pression et basse température. Eur J Miner 6: 897–911. [CrossRef] [Google Scholar]
  • Goffé B, Michard A, García-Dueñas V, Gonzales-Lodeiro F, Monié P, Campos J, et al. 1989. First evidence of high pressure, low temperature metamorphism in the Alpujárride nappes, Betic Cordillera (SE Spain). Eur J Miner 1: 139–142. [CrossRef] [Google Scholar]
  • Gómez-Pugnaire MT, Fernandez-Soler JM. 1987. High pressure metamorphism in metabasites from the Betic Cordilleras (SE Spain) and its evolution during the Alpine orogeny. Contrib Mineral Petrol 95: 231–244. [CrossRef] [Google Scholar]
  • Gómez-Pugnaire MT, Nieto F, Abad I, Velilla N, Garrido CJ, Acosta-Vigil A, et al. 2019. Alpine Metamorphism in the Betic Internal Zones. In: Quesada C, Oliveira JT, Eds. The Geology of Iberia: A Geodynamic Approach. Springer Nature Switzerland AG. https://doi.org/10.1007/1978-1003-1030-11295-11290_11213. [Google Scholar]
  • Gómez-Pugnaire MT, Rubatto D, Fernández-Soler JM, Jabaloy A, López-Sánchez-Vizcaíno V, González-Lodeiro F, et al. 2012. Late Variscan magmatism in the Nevado-Filábride Complex: U-Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos 146–147: 93–111. https://doi.org/110.1016/j.lithos.2012.1003.1027. [CrossRef] [Google Scholar]
  • González-Jiménez JM, Marchesi C, Griffin WL, Gervilla F, Belousova EA, Garrido CJ, et al. 2017. Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (Serranía de Ronda, Spain). Ore Geology Review 90: 193–209. https://doi.org/110.1016/j.oregeorev.2017.1002.1012. [CrossRef] [Google Scholar]
  • Gueydan F, Mazzotti S, Tiberi C, Cavin R, Villaseñor A. 2019. Western Mediterranean subcontinental mantle emplacement by continental margin obduction. Tectonics 38: 2142–2157. https://doi.org/2110.1029/2018TC005058. [CrossRef] [Google Scholar]
  • Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pêcher, A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics 451: 255–241. [CrossRef] [Google Scholar]
  • Hidas K, Booth-Rea G, Garrido CJ, Martínez-Martínez JM, Padrón-Navarta JA, Konc Z, et al. 2013. Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain). J Geol Soc Lond 170: 47–55. [CrossRef] [Google Scholar]
  • Hidas K, Varas-Reus MI, Garrido CJ, Marchesi C, Acosta-Vigil A, Padrón-Navarta JA, et al. 2015. Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean. Tectonophysics 650: 65–79. https://doi.org/10.1016/j.tecto.2015.1003.1011. [CrossRef] [Google Scholar]
  • Hofmann AW, Giletti BJ, Hinthorne JR, Andersen CA, Comaford D. 1974. Ion microprobe analysis of a potassium self-diffusion experiment in biotite. Earth and Planetary Science Letters 24: 48–52. [CrossRef] [Google Scholar]
  • Homonnay E, Corsini M, Lardeaux JM, Romagny A, Münch P, Bosch D, et al. 2018. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran domain. Tectonophysics 722: 507–535. https://doi.org/510.1016/j.tecto.2017.1011.1028. [CrossRef] [Google Scholar]
  • Hsü KJ, Cita MB, Ryan WBF. 1973. The origin of the Mediterranean evaporites. In: Ryan WFB, Hsü KJ, et al., Eds. Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Government Printing Office, pp. 1203–1231. [Google Scholar]
  • Hsü KJ, Montadert L, Bernouilli D, Cita MB, Erickson A, Garrison RE, et al. 1978. History of the Messinian salinity crisis. In: Hsü KJ, Montadert L, et al., Eds. Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Government Printing Office, pp. 1053–1078. [Google Scholar]
  • Iribarren L, Vergés J, Fernàndez M. 2009. Sediment supply from the Betic-Rif orogen to basins through Neogene. Tectonophysics 475: 68–84. [CrossRef] [Google Scholar]
  • Jabaloy A, Galindo-Saldivar J, Gonzales-Lodeiro F. 1993. The Alpujárride-Nevado-Filábride extensional shear zone, Betic Cordillera, SE Spain. J Struct Geol 15: 555–569. [CrossRef] [Google Scholar]
  • Janots E, Negro F, Brunet F, Goffé B, Engi M, Bouybaouène ML. 2006. Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos 87: 214–234. [CrossRef] [Google Scholar]
  • Janowski M, Loget N, Gautheron C, Barbarand J, Bellahsen N, Van Den Driessche J, et al. 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador. Terra Nova: 1–7. https://doi.org/10.1111/ter.12252. [Google Scholar]
  • Johanesen K, Platt JP, Kaplan MS, Ianno AJ. 2014. A revised thermal history of the Ronda peridotite, S. Spain: New evidence for excision during exhumation. Earth and Planetary Science Letters 393:187–199. https://doi.org/110.1016/j.epsl.2014.1001.1024. [CrossRef] [Google Scholar]
  • Johanesen KE, Platt JP. 2015. Rheology, microstructure, and fabric in a large scale mantle shear zone, Ronda Peridotite, southern Spain. Journal of Structural Geology 73: 1–17. https://doi.org/10.1016/j.jsg.2015.1001.1007. [CrossRef] [Google Scholar]
  • Johnson C, Harbury N, Hurford AJ. 1997. The role of extension in the Miocene denudation of the Nevado-Filábrides Complex, Betic Cordillera (SE Spain). Tectonics 16: 189–204. [CrossRef] [Google Scholar]
  • Jolivet L, Augier R, Faccenna C, Negro F, Rimmele G, Agard P, et al. 2008. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull Soc Géol Fr 179: 525–550. [CrossRef] [Google Scholar]
  • Jolivet L, Augier R, Robin C, Suc JP, Rouchy JM. 2006. The geodynamic context of the Messinian salinity crisis. Sedimentary Geology 188–189: 9–33. [CrossRef] [Google Scholar]
  • Jolivet L, Brun JP. 2010. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Science 99: 109–138. https://doi.org/110.1007/s00531-00008-00366-00534. [CrossRef] [Google Scholar]
  • Jolivet L, Daniel JM, Truffert C, Goffé B. 1994. Exhumation of deep crustal metamorphic rocks and crustal extension in back-arc regions. Lithos 33: 3–30. https://doi.org/10.1016/0024-4937(1094)90051-90055. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19: 1095–1106. https://doi.org/1010.1029/2000TC900018. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, et al. 1998. Mid-crustal shear zones in post-orogenic extension: the northern Tyrrhenian Sea case. J. Geophys. Res. 103: 12123–12160. https://doi.org/12110.11029/12197JB03616. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Goffé B, Burov E, Agard P. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am. J. Sci 303: 353–409. https://doi.org/310.2475/ajs.2303.2475.2353. [CrossRef] [Google Scholar]
  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, et al. 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597–598: 1–33. https://doi.org/10.1016/j.tecto.2012.06.011. [CrossRef] [Google Scholar]
  • Jolivet L, Gorini C, Smit J, Leroy S. 2015. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics 34. https://doi.org/10.1002/2014TC003570. [Google Scholar]
  • Jolivet L, Trotet F, Monié P, Vidal O, Goffé B, Labrousse L, et al. 2010. Along-strike variations of P-T conditions in accretionary wedges and syn-orogenic extension, the HP-LT Phyllite-Quartzite Nappe in Crete and the Peloponnese. Tectonophysics 480: 133–148. https://doi.org/110.1016/j.tecto.2009.1010.1002. [CrossRef] [Google Scholar]
  • Kirchner KL, Behr W, Loewy S, Stockli DF. 2016. Early Miocene subduction in the Western Mediterranean: constraints from Rb-Sr multi-mineral isochron geochronology. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1002/2015GC006208. [Google Scholar]
  • Kohn MK, Corrie SL, Markley C. 2015. The fall and rise of metamorphic zircon. American Mineralogist 100: 897–908. https://doi.org/810.2138/am-2015-5064. [CrossRef] [Google Scholar]
  • Kornprobst J. 1974. Contribution a l’etude petrographique et structurale de la zone interne du Rif (Maroc septentrional). Notes et Mémoires du Service Géologique, Rabat (Morocco) 251. [Google Scholar]
  • Kornprobst J. 1976. Signification structurale des péridotites dans l’orogène bético-rifain: arguments tirés de l’étude des détritus observés dans les sédiments paléozoïques. Bull. Soc. Géol. Fr XVIII, 607–618. [CrossRef] [Google Scholar]
  • Kornprobst J, Durand-Delga M. 1985. Carte géologique du Maroc à 1/50 000: Sebta. Notes et Mém. Serv. géol. Maroc 297. [Google Scholar]
  • Kornprobst J, Piboule M, Roden M, Tabit A. 1990. Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle. J. Petrol. 31: 717–745. [CrossRef] [Google Scholar]
  • Kornprobst J, Vielzeuf D. 1984. Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations. In: Kornprobst J, Ed. Kimberlites and related rocks. Elsevier, pp. 347–359. [Google Scholar]
  • Krijgsman W, Hilgen FJ, Marabini S, Vai GB. 1999. New paleomagnetic and cyclostratigraphic age constraints on the Messinian of the Northern Apennines (Vena del gesso Basin, Italy). Mem. Soc. Geol. It. 54: 25–33. [Google Scholar]
  • Lafosse M, d’Acremont E, Rabaute A, Estrada F, Jollivet-Castelot M, Vazquez JT, et al. 2020. Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth 11: 741–765. https://doi.org/710.5194/se-5111-5741-2020. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Labaume P, Uzel J, et al. 2019a. Mantle exhumation at magma-poor passive continental margins. Part II: Tectonic and metasomatic evolution of large-displacement detachment faults preserved in a fossil distal margin domain (Saraillé lherzolites, northwestern Pyrenees, France). BSGF − Earth Sciences Bulletin 190: 14. https://doi.org/10.1051/bsgf/2019013. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Asti R, Fourcade S, Corre B, Poujol M, Uzel J, et al. 2019b. Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France). BSGF − Earth Sciences Bulletin 190: 8. https://doi.org/10.1051/bsgf/2019007. [CrossRef] [Google Scholar]
  • Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20: 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lahfid A, Beyssac O, Deville E, Negro F, Chopin C, Goffé B. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22: 354–360. https://doi.org/310.1111/j.1365-3121.2010.00956.x. [Google Scholar]
  • Laurent V, Lanari P, Nair I, Augier R, Lahfid A, Jolivet L. 2018. Exhumation of eclogite and blueschist (Cyclades, Greece): Pressure-temperature evolution determined by thermobarometry and garnet equilibrium modeling. J Metam Geol 36: 769–798. https://doi.org/710.1111/jmg.12309. [CrossRef] [Google Scholar]
  • Lavier LL, Buck WR, Poliakov ANB. 1999. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27: 1127–1130. [CrossRef] [Google Scholar]
  • Lenoir X, Garrido CJ, Bodinier JL, Dautria JM, Gervilla F. 2001. The recrystallization front of the Ronda peridotite: Evidence for melting an thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. J. Petrol. 42: 141–158 [CrossRef] [Google Scholar]
  • Leprêtre R, Frizon de Lamotte D, Combier V, Gimeno-Vives O, Mohn G, Eschard R. 2018. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF − Earth Sciences Bulletin 189: 10. https://doi.org/10.1051/bsgf/2018009. [CrossRef] [Google Scholar]
  • Li B, Massonne HJ. 2018. Two Tertiary metamorphic events recognized in high-pressure metapelites of the Nevado-Filábride Complex, (Betic Cordillera, S,Spain). J Metam Geol 36: 603–630. [CrossRef] [Google Scholar]
  • Lonergan L. 1993. Timinig and kinematics of deformation in the Malaguide Complex, internal zone of the Betic Cordillera, southeast Spain. Tectonics 12: 460–476. [CrossRef] [Google Scholar]
  • Lonergan L, Platt JP. 1995. The Malaguide-Alpujárride boundary: a major extensional contact in the internal zones of the eastern Betic Cordillera, SE Spain. J Struct Geol 17: 1655–1671. [CrossRef] [Google Scholar]
  • Lonergan L, White N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16: 504–522. [CrossRef] [Google Scholar]
  • Loomis TP. 1975. Tertiary mantle diapirism, orogeny, and plate tectonics east of the Strait of Gibraltar. Am J Sci 275: 1–30. [CrossRef] [Google Scholar]
  • Loomis TP. 1972a. Contact metamorphism of pelitic rocks by the Ronda peridotite ultramafic intrusion, Southern Spain. Geol Soc Am Bull 83: 2449–2474. [CrossRef] [Google Scholar]
  • Loomis TP. 1972b. Diapiric emplacement of the Ronda high-temperature ultramafic intrusion, Southern Spain. Geol Soc Am Bull 83: 2475–2496. [CrossRef] [Google Scholar]
  • López Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O. 2001. Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filábride complex, SE Spain. Terra Nova 13: 327–332. [CrossRef] [Google Scholar]
  • Lundeen MT. 1978. Emplacement of the Ronda peridotite, Sierra Bermeja, Spain. Geol Soc Am Bull 89: 172–180. [Google Scholar]
  • MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 287: 333–344. https://doi.org/310.1016/j.epsl.2009.1008.1016. [CrossRef] [Google Scholar]
  • Malinverno A, Ryan W. 1986. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5: 227–245. [CrossRef] [Google Scholar]
  • Malusa MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, et al. 2015. Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria- Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. 16: 1786–1824. https://doi.org/1710.1002/2015GC005767. [CrossRef] [Google Scholar]
  • Martín-Algarra A, Andreo B, Balanyá JC, Estévez A, López-Garrido AC, O’Dogherty L, et al. 2004. Unidades Frontales de las Zonas Internas. In: Vera JA, Ed. Geología de España, Chap. 4. Cordillera Bética y BalearesSociedad Geológica de España. Madrid: Instituto Geológico y Minero de España, pp. 396–401. [Google Scholar]
  • Martínez-García P, Comas M, Lonergan L, Watts AB. 2017. From extension to shortening: Tectonic inversion distributed in time and space in the Alboran sea, western Mediterranean. Tectonics 36: 2777–2805. https://doi.org/2710.1002/2017TC004489. [CrossRef] [Google Scholar]
  • Martínez-García P, Comas M, Soto JI, Lonergan L, Watts AB. 2013. Strike-slip tectonics and basin inversion in the Western Mediterranean: the Post-Messinian evolution of the Alboran Sea. Basin Research 25: 361–387. https://doi.org/310.1111/bre.12005. [CrossRef] [Google Scholar]
  • Martínez-Martínez J, Soto J, Balanyá J. 1997. Large scale structures in the Nevado-Filáride Complex and crustal seismic fabrics of the deep seismic reflection profile ESCI-Béticas 2. Bol Soc Geol Esp 8: 477–489. [Google Scholar]
  • Martinez-Martinez JM, Azañón JM. 1997. Mode of extensional tectonics in the southeastern Betics (SE Spain): implications for the tectonic evolution of the peri-Alboran orogenic system. Tectonics 16: 205–225. [CrossRef] [Google Scholar]
  • Martinez-Martinez JM, Azañón JM. 2002. Orthogonal extension in the hinterland of the Gibraltar Arc (Betics, SE Spain). In: Rosenbaum G, Lister GS, Eds. Reconstruction of the evolution of the Alpine-Himalayan Orogen, pp. 3–22. [Google Scholar]
  • Martínez-Martínez JM, Soto JI, Balanyá JC. 2002. Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 21. https://doi.org/10.1029/2001TC001283. [Google Scholar]
  • Martínez-Martínez JM, Soto JI, Balanyá JC. 2002. Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 21. https://doi.org/10.1029/2001TC001283. [Google Scholar]
  • Martínez-Martínez JM, Soto JI, Balanyá JC. 2004. Elongated domes in extended orogens: A mode of mountain uplift in the Betics (southeast Spain). In: Whitney DL, Teyssier C, Siddoway CS, Eds. Gneiss domes in orogeny. Boulder, Colorado: Geological Society of America Special Paper, 380, pp. 243–266. [Google Scholar]
  • Massonne HJ. 2014. Wealth of P-T-t information in medium-high grade metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos 208–209: 137–157. https://doi.org/110.1016/j.lithos.2014.1008.1027. [CrossRef] [Google Scholar]
  • Maury RC, Fourcade S, Coulonc C, El Azzouzia M, Bellona H, Coutelle A, et al. 2000. Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. C R Acad Sci Paris, Sciences de la Terre et des planètes/Earth and Planetary Sciences 331: 159–173. [Google Scholar]
  • Mazzoli S, Martin-Algarra A. 2011. Deformation partitioning during transpressional emplacement of a ‘mantle extrusion wedge’: the Ronda peridotites, western Betic Cordillera, Spain. Journal of the Geological Society, London 168: 373–382. https://doi.org/310.1144/0016-76492010-76492126. [CrossRef] [Google Scholar]
  • Mazzoli S, Martin-Algarra A, Reddy SM, Lopez Sanchez-Vizcaino V, Fedele L, Noviello A. 2013. The evolution of the footwall to the Ronda subcontinental mantle peridotites: insights from the Nieves Unit (western Betic Cordillera). Journal of the Geological Society, London 170: 385–402. https://doi.org/310.1144/jgs2012-1105. [CrossRef] [Google Scholar]
  • Meijninger BML, Vissers RLM. 2006. Miocene extensional basin development in the Betic Cordillera, SE Spain revealed through analysis of the Alhama de Murcia and Crevillente Faults. Basin Research 18: 547–571. https://doi.org/510.1111/j.1365-2117.2006.00308.x. [CrossRef] [Google Scholar]
  • Michard A, Chalouan A, Feinberg H, Goffé B, Montigny R. 2002. How does the Alpine belt end between Spain and Morocco? Bull Geol Soc Fr 173: 3–15. [Google Scholar]
  • Michard A, Goffé B, Bouybaouene ML, Saddiqi O. 1997. Late Hercynian±Mesozoic thinning in the Alboran domain: metamorphic data from the northern Rif, Morocco. Terra Nova 9: 171–174. [CrossRef] [Google Scholar]
  • Michard A, Goffé B, Chalouan A, Saddiqi A. 1991. les corrélations entre les chaînes bético-rifaines et les Alpes et leurs conséquences. Bull Soc Géol Fr 162: 1151–1160. [Google Scholar]
  • Michard A, Mokhtari A, Chalouan A, Saddiqi O, Rossi P, Rjimati EC. 2014. New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides. Bull Soc Géol Fr 185: 313–328. [Google Scholar]
  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R, et al. 2006. Pressure-temperature-time constraints on the Maghrebide mountain building: evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. C R Geosci 338: 92–114. [Google Scholar]
  • Michard A, Saddiqi O, Chalouan A, Chabou MC, Lach P, Rossi P. 2020. Comment on “The Mesozoic margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for poly- phase rifting and related magmatic activity” by Gimeno-Vives et al. Tectonics 39. https://doi.org/10.1029/2019TC006004. [CrossRef] [Google Scholar]
  • Monié P, Lodeiro FG, Goffé B, Jabaloy A. 1991. 39Ar/40Ar geochronology of alpine tectonism in the Betic Cordillera (Southern Spain). J Geol Soc London 148: 289–297. [CrossRef] [Google Scholar]
  • Monié P, Torres-Roldán RL, García-Casco A. 1994. Cooling and exhumation of the Wertern Betic Cordilleras, 40Ar/39Ar thermochronological constraints on a collapsed terrane. Tectonophysics 238: 353–379. [CrossRef] [Google Scholar]
  • Montel JM, Kornprobst J, Vielzeuf D. 2000. Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorph Geol 18: 335–342. [CrossRef] [Google Scholar]
  • Montenat C, Ott d’Estevou P. 1990. Eastern betic Neogene Basins - A review. In: Montenat C, Ed. Les Bassins Neogenes du Domaine Bétique Oriental (Espagne) 12–13. Documents et Travaux IGAL, pp. 9–15. [Google Scholar]
  • Montenat C, Ott d’Estevou P. 1999. The diversity of Late Neogene sedimentary basins generated by wrench faulting in the Eastern Betics Cordillera, SE Spain. Journal of Petroleum Geology 22: 61–80. [CrossRef] [Google Scholar]
  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33: 2283–2314. https://doi.org/2210.1002/2014TC003663. [CrossRef] [Google Scholar]
  • Negro F, Rimmelé G, Jolivet L, Augier R, Goffé B, Azañón JM. 2005. Tectonic and metamorphic evolution of the Alpujárride Complex in Central and Eastern Betics (Alboran Domain, SE Spain). Tectonics (submitted). [Google Scholar]
  • Negro F, Beyssac O, Goffé B, Saddiqi O, Bouybaouène ML. 2006. Thermal structure of the Alboran domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from raman spectroscopy of carbonaceous material. J Metam Geol. https://doi.org/10.1111/j.1525-1314.2006.00639.x. [Google Scholar]
  • Nijhuis HJ. 1964. Plurifacial alpine metamorphism in the south-eastern Sierra de los Filabres south of Lubrin, Amsterdam. [Google Scholar]
  • Obata M. 1980. The Ronda Peridotite: Garnet-, Spinel-, and Plagioclase-Lherzolite Facies and the P—T Trajectories of a High-Temperature Mantle Intrusion. Journal of Petrology 21: 533–572. [Google Scholar]
  • Olivier P, Paquette JL. 2018. Early Permian age of granite pebbles from an Eocene or Oligocene conglomerate of the Internal Rif belt (Alboran domain, Morocco): hypothesis on their origin. BSGF − Earth Sciences Bulletin 189: 13. https://doi.org/10.1051/bsgf/2018012. [CrossRef] [Google Scholar]
  • Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, et al. 2006. The Andes: Active Subduction Orogeny. Springer. [CrossRef] [Google Scholar]
  • Palomeras I, Villaseñor A, Thurner S, Levander A, Gallart J, Harnafi M. 2017. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise. Geochem. Geophys. Geosyst.: Q01005. https://doi.org/10.1029/2003GC00061418:1824-1840. https://doi.org/1810.1002/2016GC006657. [Google Scholar]
  • Parra T, Vidal O, Jolivet L. 2002. Relation between deformation and retrogression in blueschist metapelites of Tinos island (Greece) evidenced by chlorite-mica local equilibria. Lithos 63: 41–66. https://doi.org/10.1016/S0024-4937(1002)00115-00119. [CrossRef] [Google Scholar]
  • Pearson DG, Davies GR, Nixon PH, Milledge HJ. 1989. Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338: 60–62. [CrossRef] [Google Scholar]
  • Pearson DG, Nowell GM. 2004. Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Sources. Journal of Petrology 45: 439–455. https://doi.org/2010.1093/petrology/egg2102. [Google Scholar]
  • Pedrera A, Ruiz-Constán A, García-Senz J, Azor A, Marín-Lechado C, Ayala C, et al. 2020. Evolution of the South-Iberian paleomargin: From hyperextension to continental subduction. Journal of Structural Geology 138: 104122. https://doi.org/10.1016/j.jsg.2020.104122. [Google Scholar]
  • Pedrera A, Galindo-Zaldívar J, Tello A, Marín-Lechadoa C. 2010. Intramontane basin development related to contractional and extensional structure interaction at the termination of a major sinistral fault: The Huércal-Overa Basin (Eastern Betic Cordillera). Journal of Geodynamics 49: 271–286. [CrossRef] [Google Scholar]
  • Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S. 2012. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°-15°N: The role of magmatic injections and hydrothermal alteration. Geochem Geophys Geosyst 13: Q04G09. https://doi.org/10.1029/2012GC004121. [CrossRef] [Google Scholar]
  • Picazo S, Manatschal G, Cannat M, Andréani M. 2013. Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: The Totalp unit in SE Switzerland. Lithos 175–176: 255–271. https://doi.org/210.1016/j.lithos.2013.1005.1010. [CrossRef] [Google Scholar]
  • Piles Mateo E, Chamon Cobos C, Estevez Gonzales C, Crespo V, Aguilar M, Reyes KL. 1973. Marbella, Mapa Geologico de España, escala 1:50.000, 1065. IGME. [Google Scholar]
  • Pindell J, Kennan L, Stanek KP, Maresch WV, Draper G. 2006. Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta: An International Earth Science Journal 4: 303–341. [Google Scholar]
  • Platt JP. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin 97: 1037–1053. [CrossRef] [Google Scholar]
  • Platt JP, Allerton S, Kirker A, Mandeville C, Mayfield A, Platzman ES, et al. 2003a. The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the external Betic-Rif arc. Tectonics 22: 1017. https://doi.org/1010.1029/2001TC001321. [CrossRef] [Google Scholar]
  • Platt JP, Anczkiewicz R, Soto JI, Kelley SP, Thirlwall M. 2006. Early Miocene continental subduction and rapid exhumation in the Western Mediterranean. Geology 34: 981–984. https://doi.org/910.1130/G22801A22801. [CrossRef] [Google Scholar]
  • Platt JP, Argles TW, Carter A, Kelley SP, Whitehouse MJ, Lonergan L. 2003b. Exhumation of the Ronda peridotite and its crustal envelope: constraints from thermal modelling of a P-T-time array. Journal of the Geological Society 160: 655–676. [CrossRef] [Google Scholar]
  • Platt JP, Behr WM, Johanesen K, Williams JR. 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annu Rev Earth Planet Sci 41: 313–357. 310.1146/annurev-earth-050212-123951. [CrossRef] [Google Scholar]
  • Platt JP, Kelley SP, Carter A, Orozco M. 2005. Timing of tectonic events in the Alpujárride Complex, Betic Cordillera, S. Spain. Journal of the Geological Society, London 162: 1–12. [CrossRef] [Google Scholar]
  • Platt JP, Soto JI, Whitehouse MJ, Hurford AJ, Kelley SP. 1998. Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean. Tectonics 17: 671–689. [CrossRef] [Google Scholar]
  • Platt JP, Vissers RLM. 1989. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17: 540–543. [CrossRef] [Google Scholar]
  • Platt JP, Whitehouse MJ. 1999. Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from U-Pb zircon ages. Earth Planet Sci Lett 171: 591–605. [CrossRef] [Google Scholar]
  • Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L. 2003c. Simultaneous extension exhumation across the Alboran Basin: implications for the causes of late orogenic extension. Geology 31: 251–254. [CrossRef] [Google Scholar]
  • Prada M, Ranero CR, Sallarès V, Zitellini N, Grevemeyer I. 2016. Mantle exhumation and sequence of magmatic events in the Magnaghi–Vavilov Basin (Central Tyrrhenian, Italy): New constraints from geological and geophysical observations. Tectonophysics 689: 133–142. https://doi.org/110.1016/j.tecto.2016.1001.1041. [CrossRef] [Google Scholar]
  • Précigout J, Gueydan F, Gapais D, Garrido CJ, Essaifi A. 2007. Strain localisation in the sub-continental mantle—A ductile alternative to the brittle mantle. Tectonophysics 445: 318–336. [CrossRef] [Google Scholar]
  • Précigout J, Gueydan F, Garrido CJ, Cogné N, Booth-Rea G. 2013. Deformation and Exhumation of the Ronda peridotite (Spain). Tectonics 32: 1011–1025. https://doi.org/1010.1002/tect.20062. [Google Scholar]
  • Précigout J, Prigent C, Palasse L, Pochon A. 2017. Water pumping in mantle shear zones. Nat. Commun. 8: 15736. https://doi.org/15710.11038/ncomms15736. [CrossRef] [Google Scholar]
  • Priem HNA, Boelrijk NAIM, Hebeda EH, Oen IS, Verdurmen EAT, Verschure RH. 1979. Isotopic dating of the emplacement of the ultramafic masses in the Serrania de Ronda, Southern Spain. Contrib Miner Pet 70: 103–109. [CrossRef] [Google Scholar]
  • Puga E, Diaz de Federico A, Demant A. 1995. The eclogitized pillows of the Betic Ophiolitic Association: relics of the Tethys Ocena floor incorporated in the Alpine chain after subduction. Terra Nova 7: 31–43. [CrossRef] [Google Scholar]
  • Puga E, Díaz de Federico A, Fanning M, Nieto JM, Rodríguez Martínez-Conde JA, et al. 2017. The Betic Ophiolites and the Mesozoic Evolution of the Western Tethys. Geosciences 7: 31. https://doi.org/10.3390/geosciences7020031. [CrossRef] [Google Scholar]
  • Puga E, Nieto JM, Díaz de Federico A. 2000. Contrasting P–T paths in eclogites of the Betic ophiolitic association, Mulhacen Complex, South-eastern Spain. Canadian Mineralogist 38: 1137–1161. [CrossRef] [Google Scholar]
  • Puga E, Dıaz de Federico A, Nieto JM. 2002. Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodinamica Acta 15: 23–43. [CrossRef] [Google Scholar]
  • Puga E, Nieto JM, Díaz de Federico A. 2000. Contrasting P–T paths in eclogites of the Betic ophiolitic association, Mulhacen Complex, South-eastern Spain. Canadian Mineralogist 38: 1137–1161. [CrossRef] [Google Scholar]
  • Puga E, Nieto JM, Diaz de Federico A, Bodinier JL, Morten L. 1999. Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49: 23–56. [CrossRef] [Google Scholar]
  • Quintana L, Pulgar JA, Alonso JL. 2015. Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics 663: 378–398. https://doi.org/310.1016/j.tecto.2015.1008.1046. [CrossRef] [Google Scholar]
  • Ramos A, Fernández O, Torne M, Sánchez de la Muela A, Muñoz JA, Terrinha P, et al. 2017. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys? Tectonophysics 705: 42–62. https://doi.org/10.1016/j.tecto.2017.1003.1012. [CrossRef] [Google Scholar]
  • Rat J, Mouthereau F, Brichau S, Crémades A, Bernet M, Balvay M. 2019. Tectonothermal evolution of the Cameros basin: Implications for tectonics of North Iberia. Tectonics 38: 440–469. https://doi.org/410.1029/2018TC005294. [CrossRef] [Google Scholar]
  • Reuber I, Michard A, Chalouan A, Juteau T, Jermoumi B. 1982. Structure and emplacement of the Alpine-type peridotites from Beni Bousera, Rif, Morocco: a polyphase tectonic interpretation. Tectonophysics 82: 231–251. [CrossRef] [Google Scholar]
  • Roca E, Guimerà J. 1992. The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203: 203–218. [CrossRef] [Google Scholar]
  • Romagny A, Jolivet L, Menant A, Bessière E, Maillard A, Canva A, et al. 2020. Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms. BSGF-Earth Sciences Bulletin 37. https://doi.org/10.1051/bsgf/2020040. [Google Scholar]
  • Rosenbaum G, Lister GS, Duboz C. 2002. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8: 107–126. [Google Scholar]
  • Rossetti F, Dini A, Lucci F, Bouybaouenne M, Faccenna C. 2013. Early Miocene strike-slip tectonics and granite emplacement in the Alboran Domain (Rif Chain, Morocco): significance for the geodynamic evolution of Western Mediterranean. Tectonophysics 608: 774–791. https://doi.org/710.1016/j.tecto.2013.1008.1002. [CrossRef] [Google Scholar]
  • Rossetti F, Faccenna C, Crespo-Blanc A. 2005. Structural and kinematic constraints of the Alpujárride complex (Central Betic Cordillera, Spain). J Struct Geol 27: 199–216. [CrossRef] [Google Scholar]
  • Rossetti F, Lucci F, Theye T, Bouybaouenne M, Gerdes A, Opitz J, et al. 2020. Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Research (in press). https://doi.org/10.1016/j.gr.2020.1001.1020. [Google Scholar]
  • Rossetti F, Theye T, Lucci F, Bouybaouene ML, Dini A, Gerdes A, et al. 2010. Timing and modes of granite magmatism in the core of the Alboran Domain (Rif chain, northern Morocco): implications for the Alpine evolution of the western Mediterranean. Tectonics 29: TC2017. https://doi.org/2010.1029/2009TC002487. [Google Scholar]
  • Ruiz-Cruz MD, Sanz de Galdeano C. 2014. Garnet variety and zircon ages in UHP meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain): evidence for a pre-Alpine emplacement of the Ronda peridotite. Int Geol Rev 56: 845–868. [CrossRef] [Google Scholar]
  • Saddiqi O, Reuber I, Michard A. 1988. Unroofing of the continental upper mantle in the beni Bousera, Norther Rif, Morocco. C R Acad Sci Paris 307: 657–662. [Google Scholar]
  • Salas R, Casas A. 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics 228: 33–55. https://doi.org/10.1016/0040-1951(1093)90213-90214. [CrossRef] [Google Scholar]
  • Salas R, Guimerà J, Mas R, Martín-Closas C, Melendez A, Alonso A. 2001. Evolution of the Mesozoic central Iberian rift system and its Cainozoic inversion (Iberian chain). Memoires Du Museum National d’Histoire Naturelle 186: 145–186. [Google Scholar]
  • Sanchez-Rodriguez L, Gebauer D, Tubia JM, Gil Ibarguchi JI, Rubatto D. 1996. First schrimp-ages on pyroxenite, eclogites and granites of the Ronda complex and its country-rocks. Geogaceta 20: 487–489. [Google Scholar]
  • Sánchez-Gómez M, Azañón JM, García-Dueñas V, Soto JI. 1999. Correlation between metamorphic rocks recovered from Site 976 and the Alpujárride rocks of the western Betics. In: Zahn R, Comas MC, Klaus A, Eds. Proccedings of the Ocean Drilling Program, Scientific results. College Station, TX, pp. 307–317. [Google Scholar]
  • Sánchez-Navas A, García-Casco A, Algarra AMN. 2014. Pre-Alpine discordant granitic dikes in the metamorphic core of the Betic Cordillera: tectonic implications. Terra Nova 26: 477–486. [CrossRef] [Google Scholar]
  • Sánchez-Navas A, García-Casco A, Mazzoli S, Martín-Algarra A. 2017. Polymetamorphism in the Alpujárride Complex, Betic Cordillera, South Spain. The Journal of Geology 125: 10.1086/693862. [Google Scholar]
  • Sánchez-Rodríguez L, Gebauer D. 2000. Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe dating of zircon. Tectonophysics 316: 19–44. [CrossRef] [Google Scholar]
  • Santamaria-Lopez A, Lanari P, Sanz de Galdeano C. 2019. Deciphering the tectono-metamorphic evolution of the Nevado-Filábride complex (Betic Cordillera, Spain) − A petrochronological study. Tectonophysics 767(2019) 128–158. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C. 2017. Implication of the geology of the Guadaiza and Verde valleys (Malaga Province, Betic Cordillera) on the position of the Ronda peri- dotites and the structure of the Alpujárride Complex. Boletín Geológico y Minero 128: 989–1006. https://doi.org/1010.21701/bolgeomin.21128.21704.21006. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, Vera JA. 1992. Stratigraphic record and paleogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research 4: 21–36. [CrossRef] [Google Scholar]
  • Sanz de Galdeano C, Andreo B. 1995. Structure of Sierra Blanca (Alpujárride complex, west of the Betic Cordillera). Estudios Geol 51: 43–55. [CrossRef] [Google Scholar]
  • Sautkin A, Talukder AR, Comas MC, Soto JI, Alekseev A. 2003. Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data. Marine Geology 195: 237–261. [CrossRef] [Google Scholar]
  • Scherer EE, Cameron KL, Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta 64: 3413–3432. [CrossRef] [Google Scholar]
  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Li T, et al. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull 9: 678–701. [CrossRef] [Google Scholar]
  • Selverstone J, Spear FS. 1985. Metamorphic P-T paths from pelitic schists and greenstones from the south-west Tauern Window. Journal of Metamorphic Geology 3: 439–465. [CrossRef] [Google Scholar]
  • Serrano F, Sanz de Galdeano C, El Kadiri K, Guerra-Merchan A, Lopez-Garrido AC, Martin-Martin L, et al. 2006. Oligocene-early Miocene transgressive cover of the Betic-Rif Internal Zone. Revision of its geologic significance. Eclogae Geol Helv 99: 237–253. https://doi.org/210.1007/s00015-00006-01186-00019. [CrossRef] [Google Scholar]
  • Simancas JF, Campos J. 1993. Compresión NNW-SSE tardi- a postmetamórfica y extensión subordinada en el Complejo Alpujárride (Dominio de Alborán, Orógeno bético). Revista de la Società Geolologica de España 6: 23–36. [Google Scholar]
  • Simon O, Westerhof A, Rondeel H. 1976. A propos d’une nouvelle paléogéographie de la zone bétique (Espagne méridionale); implications géodynamiques. Bull Soc Géol France 18: 601–605. [CrossRef] [Google Scholar]
  • Soret M, Agard P, Dubacq B, Plunder A, Yamato P. 2017. Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology 35: 1051–1080. https://doi.org/1010.1111/jmg.12267. [CrossRef] [Google Scholar]
  • Sosson M, Morillon AC, Bourgois J, Feraud G, Poupeau G, Saint-Marc P. 1998. Late exhumation stages of the Alpujárride Complex (western Betic Cordilleras, Spain): new thermochronological and structural data on Los Reales and Ojén nappes. Tectonophysics 285: 253–273. [CrossRef] [Google Scholar]
  • Soto JI, Flinch J, Tari G. 2017. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Tectonics and Hydrocarbon Potential. Amsterdam: Elsevier, 632 p. [Google Scholar]
  • Soto JI, Platt JP. 1999. Petrological and structural evolution of high-grademetamorphic rocks from the floor of the Alboran Sea basin, Western Mediterranean. J Petrol 40: 21–60. [CrossRef] [Google Scholar]
  • Spakman W, Wortel R. 2004. A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA, Eds. The TRANSMED Atlas − The Mediterranean region from crust to Mantle. Berlin, Heidelberg: Springer, pp. 31–52. [Google Scholar]
  • Teixell A, Labaume P, Ayarza P, Espurt N, de Saint Blanquat M, Lagabrielle Y. 2018. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics 724–725: 146–170. https://doi.org/110.1016/j.tecto.2018.1001.1009. [CrossRef] [Google Scholar]
  • Torres-Roldán R. 1979. The tectonic subdivision of the Betic Zone (Betic Cordilleras, Southern Spain): its significance and one possible geotectonic scenario for the westernmost Alpine belt. Am J Sci 279. [Google Scholar]
  • Trotet F, Goffé B, Vidal O, Jolivet L. 2006. Evidence of retrograde Mg-carpholite in the Phyllite-Quartzite nappe of Peloponnese from thermobarometric modelisation − geodynamic implications. Geodinamica Acta 19: 323–343. [CrossRef] [Google Scholar]
  • Tubía JM, Cuevas J. 1986. High-temperature emplacement of the Los Reales peridotite nappe (Betic Cordillera, Spain). Journal of Structural Geology 8: 473–482. [CrossRef] [Google Scholar]
  • Tubía JM, Cuevas J, Esteban JJ. 2004. Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination. Geology 32: 941. [CrossRef] [Google Scholar]
  • Tubía JM, Cuevas J, Ibarguchi JG. 1997. Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera. Tectonophysics 279: 227–252. [CrossRef] [Google Scholar]
  • Tubía JM, Gil Ibarguchi JI. 1991. Eclogites of the Ojén nappe: a record of subduction in the Apujarride complex (Betic Cordilleras, southern Spain). Journal of the Geological Society, London 148: 801–804. [CrossRef] [Google Scholar]
  • Valetti L, Rutter E, McCabe A, Mecklenburgh J. 2019. On the structure and evolution of the Sorbas basin, S.E. Spain. Tectonophysics 773: 228230. https://doi.org/228210.221016/j.tecto.222019.228230. [CrossRef] [Google Scholar]
  • Van der Wal D, Bodinier JL. 1996. Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow. Contrib Mineral Petrol 122: 387–405. [CrossRef] [Google Scholar]
  • van der Wal D, Vissers RLM. 1996. Structural Petrology of the Ronda Peridotite, SW Spain: Deformation History. Journal of Petrology 37: 23–43. [CrossRef] [Google Scholar]
  • van Hinsbergen DJJ, Vissers RLM, Spakman W. 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393–419. https://doi.org/310.1002/tect.20125. [CrossRef] [Google Scholar]
  • van Hinsbergen DJJ, Torsvik TH, Schmid SM, Maţenco LC, Maffione M, Vissers RLM, et al. 2019. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research (in press). https://doi.org/10.1016/j.gr.2019.1007.1009. [Google Scholar]
  • Vauchez A, Nicolas A. 1991. Mountain building: strike-parallel motion and mantle anisotropy. Tectonophysics 185: 183–201 [CrossRef] [Google Scholar]
  • Vergés J, Fernàndez M. 2012. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 579: 144–172. https://doi.org/110.1016/j.tecto.2012.1008.1032. [CrossRef] [Google Scholar]
  • Vergés J, Sabat F. 1999. Contraints on the western Mediterranean kinematic evolution along a 1000 km transect, from Iberia to Africa. In: Dur B, Jolivet L, Horvath F, Séranne M, Eds. The Mediterranean basins: Tertiary extension within the Alpine orogen. London: Geological Society, pp. 63–80. [Google Scholar]
  • Vidal O, Goffé B, Bousquet R, Parra T. 1999. Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite. J Metamorphic Geol 17: 25–39. [CrossRef] [Google Scholar]
  • Vidal O, Parra T. 2000. Exhumation paths of high pressure metapelites obtained from equilibria for chlorite-phengite assemblages. Geol J 35: 139–161. [CrossRef] [Google Scholar]
  • Vissers RLM, Platt JP, Van der Wal D. 1995. Late orogenic extension of the Betic Cordillera and the Alboran domain: a lithospheric view. Tectonics 14: 786–803. [CrossRef] [Google Scholar]
  • Weijermars R. 1991. Geology and tectonics of the Betic Zone, SE Spain. Earth-Sci Rev 31: 153–236. [CrossRef] [Google Scholar]
  • Weijermars R, Roep TB, Van den Eeckhout B, Postma G, Kleverlaan K. 1985. Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almería, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Geol en Mijnbouw 64: 397–411. [Google Scholar]
  • Westerhof AB. 1977. On the contact relations of high-temperature peridotites in the Serrania de Ronda, Southern Spain. Tectononophysics 39: 579–591. [CrossRef] [Google Scholar]
  • Whitehouse MJ, Platt JP. 2003. Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Miner Pet 145: 61–74. [CrossRef] [Google Scholar]
  • Williams JR, Platt JP. 2018. A new structural and kinematic framework for the Alborán Domain (Betic-Rif arc, western Mediterranean orogenic system). Journal of the Geological Society. https://doi.org/10.1144/jgs2017-1086. [Google Scholar]
  • Wortel MJR, Spakman W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290: 1910–1917. [CrossRef] [Google Scholar]
  • Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L, Tiberi C. 2007. Burial and exhumation in a subduction wedge: mutual constraints from thermomechanical modeling and natural P-T-t data (Sch. Lustrés, W. Alps). J Geophys Res 112: B07410. https://doi.org/07410.01029/02006JB004441. [Google Scholar]
  • Yamato P, Agard P, Goffé B, De Andrade V, Vidal O, Jolivet L. 2007. New, high precision P-T estimates for Oman blueschists: implications for obduction, nappe stacking and exhumation processes. J Metamorphic Geol 25: 657–682. [CrossRef] [Google Scholar]
  • Zeck H, Monié P, Villa I, Hansen BT. 1990. Mantle diapirism in the W-Mediterranean and high rates of regional uplift, denudation and cooling. In: Symposium on Diapirism, Proceedings 2, pp. 403–422. [Google Scholar]
  • Zeck H, Whitehouse M. 2002. Repeated age resetting in zircons from Hercynian-Alpine polymetamorphic schists (Betic-Rif tectonic belt, S. Spain)—a U-Th-Pb ion microprobe study. Chem Geol 182: 275–292. [Google Scholar]
  • Zeck HP, Whitehouse MJ. 1999. Hercynian, Pan-African, Proterozoic and Archean Ion-Microprobe Zircon Ages for a Betic-Rif Core Complex, Alpine Belt, W Mediterranean − Consequences for Its P-T-T Path. Contrib Mineral Petrol 134: 134–149. [Google Scholar]
  • Zeck HP, Williams IS. 2001. Hercynian metamorphism in nappe core complexes of the Alpine Betic-Rif belt, Western Mediterranean − a SHRIMP zircon study. Journal of Petrology 42: 1373–1385. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.